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Exercises for Conformal Field Theory (MD4)

Problem set 5, due November 27, 2019

If you have questions write an E-mail to: mtraube@mpp.mpg.de

1 Singular Vectors and Minimal Models

Recall exercise 2 on sheet 3 where we constructed a highest weight representation (Verma-module) V(h,c)
from a chiral primary field φ of conformal dimension h. We want to determine conditions on h, c for which
the Verma-module doesn’t contain null-vectors. Let |ψ〉 6= |φ〉 be a state in V(h,c) s.th.

Ln |ψ〉 = 0, ∀n ≥ 1 . (1)

Such a state |ψ〉 is called singular vector. Relations (1) tell that the descendants of |ψ〉 span their own
Verma-module inside V(h,c), i.e. a subrepresentation of the Virasoro-algebra. Thus the Verma-module is
reducible. By the construction of excercise 2 on sheet 3 this also yields that we have another primary field
ψ(z) corresponding to the state |ψ〉 in our theory. (Of course it is also a descendant of the primary φ).

A) Show that the Verma-module built on |ψ〉 is orthogonal to any state in V(h,c).

Thus if the Verma-module contains a singular vector we better quotient out its corresponding submodule to
get rid of null fields. In the lecture you learned about the Kac-determinant (at level N) for a Verma-module
V(h,c):

detMN (h, c) = AN

∏
1≤m,n≤N

(h− hm,n(c))P (N−mn) . (2)

Roots of the Kac-determinant correspond to singular vectors at the corresponding level in the Verma-module.
It turns out, that an important class of CFTs have singular vectors, the so called minimal models. They
occur for highest weight representations with

c = 1− 6
(p− q)2

pq

hr,s =
(pr − qs)2 − (p− q)2

4pq

(3)

where 1 ≤ r < q − 1, 1 ≤ s < p and p, q are fixed coprime positive integers. They are unitary (i.e. don’t
have negative norm states) for p = m+ 1, q = m and m ≥ 3, i.e.

c = 1− 6

m(m+ 1)

hr,s(m) =
[(m+ 1)r −ms]2 − 1

4m(m+ 1)
.

(4)

Minimal models have the nice property that they are closed under fusion and only finitely many propagating
conformal primaries are present (they are examples of rational conformal field theories). Since they are very
computable and have a vast range of applications (see e.g. Di Francesco et. al. chapter 7.4) it is worthwhile
to study them more closely. Let VR,S be a highest weight representation (Verma-module) with h = hR,S

and central charge from (3).

B) Show

hr,s = hq−r,p−s, hr,s = hq+r,p+s, hr,s + rs = hr,−s . (5)



C) Use this and the Kac-determinant to show that VR,S has singular vectors at level RS and (q−R)(p−S).
Show that the Verma-modules built on those singular vectors are again reducible. You should find that
they have again two common reducible submodules.

Hint: Use the relations (5) to compute the conformal weight of the singular vectors.

The above is an iterative procedure. At every step one finds, that there are two reducible submodules which
have two common reducible submodules.

D) Show that at the k-th iteration the two common reducible submodules are

Vkq+R,(−1)kS+(1−(1)k) p
2
, VR,kp+(−1)kS+(1−(−1)k) p

2
. (6)

Hint:You already verified this for k = 1, hence you can use induction.

Thus the honest state space of the minimal model is

MR,S ≡ VR,S/(Vq+R,p−S ⊕ VR,2p−S)

= VR,S − (Vq+R,p−S + VR,2p−S) + · · ·+ (−1)k
(
Vkq+R,(−1)kS+(1−(1)k) p

2
+ VR,kp+(−1)kS+(1−(−1)k) p

2

)
. . . .

(7)

E) Compute the character χ(MR,S)(q) = trMR,S
qL0− c

24 .

(Hint: Use the generic Virasoro-character from sheet 3 and linearity of the trace.

F) Explain why the appearance of singular vectors puts severe constraints on the OPEs between chiral
primaries of minimal models.

(You don’t have to compute anything here. Have a look at conformal Ward identities and lay out steps
for a procedure to constrain OPEs using singular vectors.)

2 Zero modes of the Ramond sector

As said in the last exercise sheet every free boson corresponds to a dimension in string theory. Now in
superstring theory every free boson comes hand in hand with a free fermion. Therefore also the amount of
free fermions corresponds to the dimensions. Let us therefore consider an even amount of free fermions ψi

with i = 1, 2, . . . 2n.1 The mode expansion of a fermion on C is

ψi(z) =
∑
r

ψi
rz

−r− 1
2 . (8)

with r ∈ Z for the Ramond (R) sector while r ∈ Z + 1
2 for the Neveu-Schwarz (NS) sector.

A) A string propagating through time is a cylinder. To go back to the string picture we apply the conformal
transformation w = x0 + ix1 = f(z) = log z to map C back to the cylinder. Show that

ψi
cyl(w) =

∑
r

ψi
re

rw
(9)

What happens to the boundary conditions of the fermion under this coordinate transformation?

One sees that (only) in the R sector there is a zero-mode ψ0. Recalling [L0, ψ
i
0] = 0 it is clear that ψi

0 does
not alter the L0 eigenvalue. This means that for any state |h〉 with ψi

0|h〉 6= 0 we find a second state ψi
0|h〉

with the same energy. This degeneracy is actually a degeneracy of the vacuum as we can always shift the ψi
0

to the right using {ψi
r, ψ

j
s} = δr,−sδ

ij without getting extra terms. One immediately sees that the ψ0 obey
the Clifford algebra

{γi, γj} = 2δij (10)

after an appropriate rescaling γi =
√

2ψi
0. Therefore the degenerate vacuum of the Ramond sector is actually

a spinor. This motivates us to investigate the representation theory of the Clifford algebra. Having a free
theory we can specialize to two dimensions thus i = 1, 2 without loss of generality and see representations
in higher (even) dimensions as tensorproduct of the two dimensional theory.

1Superstring theory needs ten dimensions to cancel the conformal anomaly. Lightcone gauge can be used to eliminate two of
them leaving eight effective euclidean dimensions, thus 2n = D − 2 = 8



B) Representation theory is most easily done using raising and lowering operators. Build appropriate
γ+, γ− out of γ1, γ2 and verify that they obey the usual (anti)-commutation relations of raising and
lowering operators.

C) Use the raising and lowering operators to construct the vector space of a highest weight representation
(thus the module of the representation). What is the dimension of the vectorspace? What is the
dimension in higher (even) dimension?

D) One can build a chirality operator out of the γ matrices2

Γ = inγ1 . . . γ2n . (11)

Show that

{Γ, γi} = 0 , Γ2 = 1 (12)

What does this imply for the vector space you constructed above?

Note: The degeneracy of the Ramond groundstate will reappear later when looking at N = 2 superconformal
theories.

2Of course in four dimensions this is the well known γ5


