Exercises for Conformal Field Theory (MD4)

Christmas sheet, due January 8, 2020
If you have questions write an E-mail to: mtraube@mpp.mpg.de

This exercise sheet is split into two pieces. Exercises from C) on on the extra sheet are optional!

\mathcal{W}-algebras from Drinfel'd-Sokolov reduction

In the lecture you learned about \mathcal{W}-algebras, which are extension of the Virasoro-algebra by higher spin currents. In general it is a tough question to determine which higher spin extensions are possible, but there is a procedure to produce $\mathcal{W}(2,3,4, \ldots, N-1)$-algebras for specified central charges. This is the quantum Drinfel'd-Sokolov reduction (or BRST-reduction).
First recall the (b, c) ghost system where $b(z), c(z)$ are chiral bosonic primaries but they have the wrong spin-statistics, i.e. they are anticommuting. The OPEs/ commutation relations read:

$$
\begin{equation*}
b(z) c(w) \sim \frac{1}{z-w} \quad \Leftrightarrow \quad\left\{b_{m}, c_{n}\right\}=\delta_{m,-n} \tag{1}
\end{equation*}
$$

The conformal weights of the (b, c) system can be chosen such that their difference is exactly 1^{1}, here we choose $(1,0)$ as their default conformal weights ${ }^{2}$. The second ingredient is the vacuum representation for the $\widehat{\mathfrak{s l}}(N)_{k}$ Kac-Moody algebra, i.e. the vector space obtained from $|0\rangle$ by applying $\left\{J_{n}^{i}\right\}_{i=1, \ldots, M}(M=\operatorname{dimst}(N))$ subject to

$$
\begin{equation*}
J_{n}^{i}|0\rangle=0, \text { for } n>-1, \quad\left[J_{n}^{i}, J_{m}^{k}\right]=f_{j}^{i k} J_{n+m}^{j}+\delta^{i k} k n \delta_{n,-m} \tag{2}
\end{equation*}
$$

We denote this representation as V_{k}^{0}. Recall that $\mathfrak{s l}(N)$ has a Cartan-Weyl decomposition

$$
\begin{equation*}
\mathfrak{s l}(N)=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+} \tag{3}
\end{equation*}
$$

with $\operatorname{dim} \mathfrak{h}=N-1$ the rank of $\mathfrak{s l}(N)$. Let $\Delta_{s}=\left\{\alpha_{1}, \ldots, \alpha_{N-1}\right\}$ be the simple roots and Δ_{+}be the positive roots. Accordingly there are $\operatorname{dim} \mathfrak{n}_{+} \equiv T$ positive roots. For every positive root A we introduce a $\left(b^{A}, c^{A}\right)$ ghost system and the combined Fock-module $\bigwedge \mathfrak{n}_{+}$generated by applications of the modes of the ghost systems subject to

$$
\begin{equation*}
b_{n}^{A}|0\rangle=0, n \geq 0, \quad c_{n}^{A}|0\rangle=0, n \geq 1, \quad\left\{b_{n}^{A}, c_{m}^{B}\right\}=\delta^{A B} \delta_{n,-m} \tag{4}
\end{equation*}
$$

The vector space we are interested in is the following one.

$$
\begin{equation*}
C(\mathfrak{s l}(N))_{k} \equiv V_{k}^{0} \otimes \bigwedge \mathfrak{n}_{+} \tag{5}
\end{equation*}
$$

We will suppress the tensor product in all our formulas. Let

$$
\begin{equation*}
Q(z)=\sum_{\alpha \in \Delta_{+}} J^{A}(z) c^{A}(z)-\frac{1}{2} \sum_{A, B, C \in \Delta_{+}} f_{C}^{A B}: c^{A}(z) c^{B}(z) b^{C}(z):+\sum_{i=1}^{N-1} c^{\alpha_{i}}(z) \tag{6}
\end{equation*}
$$

A) Show that the OPE $Q(z) Q(w)$ is regular for $z=w$.

[^0]Thus

$$
\begin{equation*}
d \equiv Q_{(0)}=\oint Q(z) d z \tag{7}
\end{equation*}
$$

satisfies $\{d, d\}=0$ (note that $Q(z)$ has odd statistics) and therefore $d^{2}=0$. Having a nilpotent operator on $C(\mathfrak{s l}(N))_{k}$ we can take its cohomology. Unfortunately we have to refine the procedure to extract \mathcal{W}-algebras. For this we introduce the so called ghost number gh for the elements in $C(\mathfrak{s l}(N))_{k}$. We define

$$
\begin{equation*}
g h\left(J^{A}\right)=0, \quad g h\left(b^{A}\right)=-1, \quad g h\left(c^{A}\right)=1 . \tag{8}
\end{equation*}
$$

With these definitions we have $g h(Q)=1$ and ghost number in $C(\mathfrak{s l}(N))_{k}$ is completely determined by the second factor. We denote $\left(C^{\bullet}(\mathfrak{s l}(N))_{k}, d\right)$ for the vector space when ghost number taken into account. In the following exercises we are going to show

Theorem 1. Let $H_{k}^{\bullet}(\mathfrak{s l}(N))$ be the cohomology of $\left(C^{\bullet}(\mathfrak{s l}(N))_{k}, d\right)$. Then

1) $H_{k}^{i}(\mathfrak{s l}(N))=0$ for $i \neq 0$.
2) In ghost number 0 we get $H_{k}^{0}(\mathfrak{s l}(N))=\mathcal{W}(2,3,4, \ldots, N-1)$ where the central charge depends on the level k.

This takes some effort, but after all is a nice construction. First we introduce the field

$$
\begin{equation*}
\bar{J}^{a}(z)=\sum_{n} \bar{J}_{n}^{a} z^{-n-1}=J^{a}(z)+\sum_{A, B \in \Delta_{+}} f_{C}^{a B}: b^{C}(z) c^{B}(z): \tag{9}
\end{equation*}
$$

and split the differential

$$
\begin{align*}
& d=d_{0}+\chi \tag{10}\\
& d_{0}=\oint\left[\sum_{A \in \Delta_{+}} J^{A}(z) c^{A}(z)-\frac{1}{2} \sum_{A, B, C \in \Delta_{+}} f_{C}^{A B}: c^{A}(z) c^{B}(z) b^{C}(z):\right] d z \tag{11}\\
& \chi=\oint \sum_{i=1}^{N-1} c^{\alpha_{i}}(z) d z
\end{align*}
$$

B) Show

$$
\begin{align*}
{\left[\chi, \bar{J}^{a}(z)\right] } & =\sum_{i=1}^{N-1} \sum_{B} f_{i}^{a, B} c^{B}(z), \\
\left\{\chi, c^{a}(z)\right\} & =0 \\
\left\{\chi, b^{A}(z)\right\} & =\sum_{i=1}^{N-1} \delta^{i A} \tag{12}\\
{\left[d_{0}, \bar{J}^{a}(z)\right] } & =\sum_{A, B} f_{B}^{A a}: \bar{J}^{B}(z) c^{A}(z):+k \sum_{A} \kappa\left(J^{a}, J^{A}\right) \partial_{z} c^{A}(z)-\sum_{A, B, d} f_{B}^{A d} f_{d}^{B a} \partial_{z} c^{A}(z) \\
\left\{d_{0}, c^{A}(z)\right\} & =-\frac{1}{2} \sum_{B, C} f_{A}^{B C} c^{B}(z) c^{C}(z) \\
\left\{d_{0}, b^{A}(z)\right\} & =\bar{J}^{A}(z)
\end{align*}
$$

(Hint: When using the Wick-formula keep an eye on extra minus signs.)
We derived he action of the differential on the state space. In the exercises on christmas sheet part 2 we compute the cohmology for the differential.

[^0]: ${ }^{1}$ In string theory the conformal weights are fixed to $(2,-1)$, since they stem from integrating over different conformal structures of the world sheet
 ${ }^{2}$ Later we deform the energy momentum tensor and conformal weights get shifted!

