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patience: “All right, wise guy, I think it is obvious to the whole class that we just sum over
all the holes.”

To make what the professor said precise, denote the amplitude for the particle to
propagate from the source S through the hole Ai and then onward to the point O as
A(S → Ai → O). Then the amplitude for the particle to be detected at the point O is

A(detected at O)=
∑

i

A(S → Ai → O) (1)

But Feynman persisted, “What if we now add another screen (fig. I.2.2) with some holes
drilled in it?” The professor was really losing his patience: “Look, can’t you see that you
just take the amplitude to go from the source S to the hole Ai in the first screen, then to
the hole Bj in the second screen, then to the detector at O , and then sum over all i and j?”

Feynman continued to pester, “What if I put in a third screen, a fourth screen, eh? What
if I put in a screen and drill an infinite number of holes in it so that the screen is no longer
there?” The professor sighed, “Let’s move on; there is a lot of material to cover in this
course.”
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Figure I.2.3

But dear reader, surely you see what that wise guy Feynman was driving at. I especially
enjoy his observation that if you put in a screen and drill an infinite number of holes in it,
then that screen is not really there. Very Zen! What Feynman showed is that even if there
were just empty space between the source and the detector, the amplitude for the particle
to propagate from the source to the detector is the sum of the amplitudes for the particle to
go through each one of the holes in each one of the (nonexistent) screens. In other words,
we have to sum over the amplitude for the particle to propagate from the source to the
detector following all possible paths between the source and the detector (fig. I.2.3).

A(particle to go from S to O in time T ) =
∑

(paths)

A
(
particle to go from S to O in time T following a particular path

)
(2)

Now the mathematically rigorous will surely get anxious over how
∑

(paths) is to be
defined. Feynman followed Newton and Leibniz: Take a path (fig. I.2.4), approximate it
by straight line segments, and let the segments go to zero. You can see that this is just like
filling up a space with screens spaced infinitesimally close to each other, with an infinite
number of holes drilled in each screen.

Fine, but how to construct the amplitude A(particle to go from S to O in time T following
a particular path)? Well, we can use the unitarity of quantum mechanics: If we know the
amplitude for each infinitesimal segment, then we just multiply them together to get the
amplitude of the whole path.
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Figure I.2.4
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In quantum mechanics, the amplitude to propagate from a point qI to a point qF in
time T is governed by the unitary operator e−iHT, where H is the Hamiltonian. More
precisely, denoting by |q⟩ the state in which the particle is at q, the amplitude in question
is just ⟨qF | e−iHT |qI ⟩. Here we are using the Dirac bra and ket notation. Of course,
philosophically, you can argue that to say the amplitude is ⟨qF | e−iHT |qI ⟩ amounts to a
postulate and a definition of H . It is then up to experimentalists to discover that H is
hermitean, has the form of the classical Hamiltonian, et cetera.

Indeed, the whole path integral formalism could be written down mathematically start-
ing with the quantity ⟨qF | e−iHT |qI ⟩, without any of Feynman’s jive about screens with an
infinite number of holes. Many physicists would prefer a mathematical treatment without
the talk. As a matter of fact, the path integral formalism was invented by Dirac precisely
in this way, long before Feynman.1

A necessary word about notation even though it interrupts the narrative flow: We denote
the coordinates transverse to the axis connecting the source to the detector by q , rather
than x , for a reason which will emerge in a later chapter. For notational simplicity, we will
think of q as 1-dimensional and suppress the coordinate along the axis connecting the
source to the detector.

Dirac’s formulation

Let us divide the time T into N segments each lasting δt = T/N . Then we write

⟨qF | e−iHT |qI ⟩ = ⟨qF | e−iH δte−iH δt . . . e−iH δt |qI ⟩

Our states are normalized by ⟨q ′|q⟩ = δ(q ′ − q) with δ the Dirac delta function. (Recall
that δ is defined by δ(q) =

∫ ∞
−∞(dp/2π)eipq and

∫
dqδ(q) = 1. See appendix 1.) Now use

the fact that |q⟩ forms a complete set of states so that
∫

dq |q⟩⟨q| = 1. To see that the
normalization is correct, multiply on the left by ⟨q ′′| and on the right by |q ′⟩, thus obtaining∫

dqδ(q ′′ − q)δ(q − q ′) = δ(q ′′ − q ′). Insert 1 between all these factors of e−iH δt and write

⟨qF | e−iHT |qI ⟩

= (

N−1∏

j=1

∫
dqj)⟨qF | e−iH δt |qN−1⟩⟨qN−1| e−iH δt |qN−2⟩ . . . ⟨q2| e−iH δt |q1⟩⟨q1| e−iH δt |qI ⟩ (3)

Focus on an individual factor ⟨qj+1| e−iH δt |qj⟩. Let us take the baby step of first eval-
uating it just for the free-particle case in which H = p̂2/2m. The hat on p̂ reminds us
that it is an operator. Denote by |p⟩ the eigenstate of p̂, namely p̂ |p⟩ = p |p⟩. Do you re-
member from your course in quantum mechanics that ⟨q|p⟩ = eipq? Sure you do. This

1 For the true history of the path integral, see p. xv of my introduction to R. P. Feynman, QED: The Strange
Theory of Light and Matter.
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We recognize the quantity 1
2mq̇2 − V (q) as just the Lagrangian L(q̇ , q). The Lagrangian

has emerged naturally from the Hamiltonian! In general, we have

⟨qF | e−iHT |qI ⟩ =
∫

Dq(t) e
i
∫ T

0
dtL(q̇ ,q) (6)

To avoid potential confusion, let me be clear that t appears as an integration variable in
the exponential on the right-hand side. The appearance of t in the path integral measure
Dq(t) is simply to remind us that q is a function of t (as if we need reminding). Indeed,
this measure will often be abbreviated to Dq . You might recall that

∫ T
0 dtL(q̇ , q) is called

the action S(q) in classical mechanics. The action S is a functional of the function q(t).
Often, instead of specifying that the particle starts at an initial position qI and ends at

a final position qF , we prefer to specify that the particle starts in some initial state I and
ends in some final state F . Then we are interested in calculating ⟨F | e−iHT |I ⟩, which upon
inserting complete sets of states can be written as

∫
dqF

∫
dqI ⟨F |qF ⟩⟨qF | e−iHT |qI ⟩⟨qI |I ⟩,

which mixing Schrödinger and Dirac notation we can write as
∫

dqF

∫
dqI#F (qF )∗⟨qF | e−iHT |qI ⟩#I (qI ).

In most cases we are interested in taking |I ⟩ and |F ⟩ as the ground state, which we will
denote by |0⟩. It is conventional to give the amplitude ⟨0| e−iHT |0⟩ the name Z.

At the level of mathematical rigor we are working with, we count on the path integral
∫

Dq(t) e
i
∫ T

0
dt [ 1

2 mq̇
2−V (q)] to converge because the oscillatory phase factors from different

paths tend to cancel out. It is somewhat more rigorous to perform a so-called Wick rotation
to Euclidean time. This amounts to substituting t → −it and rotating the integration
contour in the complex t plane so that the integral becomes

Z =
∫

Dq(t) e
−

∫ T

0
dt [ 1

2 mq̇
2+V (q)], (7)

known as the Euclidean path integral. As is done in appendix 2 to this chapter with ordinary
integrals we will always assume that we can make this type of substitution with impunity.

The classical world emerges

One particularly nice feature of the path integral formalism is that the classical limit of
quantum mechanics can be recovered easily. We simply restore Planck’s constant ! in (6):

⟨qF | e−(i/!)HT |qI ⟩ =
∫

Dq(t) e
(i/!)

∫ T

0
dtL(q̇ ,q)

and take the ! → 0 limit. Applying the stationary phase or steepest descent method (if you

don’t know it see appendix 3 to this chapter) we obtain e
(i/!)

∫ T

0
dtL(q̇c ,qc), where qc(t) is

the “classical path” determined by solving the Euler-Lagrange equation (d/dt)(δL/δq̇) −
(δL/δq) = 0 with appropriate boundary conditions.
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Appendix 1

For your convenience, I include a concise review of the Dirac delta function here. Let us define a function dK(x) by

dK(x) ≡
∫ K

2

− K
2

dk

2π
eikx = 1

πx
sin

Kx

2
(8)

for arbitrary real values of x. We see that for large K the even function dK(x) is sharply peaked at the origin x = 0,
reaching a value of K/2π at the origin, crossing zero at x = 2π/K , and then oscillating with ever decreasing
amplitude. Furthermore,

∫ ∞

−∞
dx dK(x) = 2

π

∫ ∞

0

dx

x
sin

Kx

2
= 2

π

∫ ∞

0

dy

y
sin y = 1 (9)

The Dirac delta function is defined by δ(x) = limK→∞dK(x). Heuristically, it could be thought of as an
infinitely sharp spike located at x = 0 such that the area under the spike is equal to 1. Thus for a function s(x)

well-behaved around x = a we have

∫ ∞

−∞
dx δ(x − a)s(x) = s(a) (10)

(By the way, for what it is worth, mathematicians call the delta function a “distribution,” not a function.)
Our derivation also yields an integral representation for the delta function that we will use repeatedly in this

text:

δ(x) =
∫ ∞

−∞

dk

2π
eikx (11)

We will often use the identity

∫ ∞

−∞
dx δ(f (x))s(x) =

∑

i

s(xi)

|f ′(xi)|
(12)

where xi denotes the zeroes of f (x) (in other words, f (xi) = 0 and f ′(xi) = df (xi)/dx.) To prove this, first show
that

∫ ∞
−∞ dx δ(bx)s(x) =

∫ ∞
−∞ dx δ(x)

|b| s(x) = s(0)/|b|. The factor of 1/b follows from dimensional analysis. (To
see the need for the absolute value, simply note that δ(bx) is a positive function. Alternatively, change integration
variable to y = bx: for b negative we have to flip the integration limits.) To obtain (12), expand around each of
the zeroes of f (x).

Another useful identity (understood in the limit in which the positive infinitesimal ε tends to zero) is

1
x + iε

= P 1
x

− iπδ(x) (13)

To see this, simply write 1/(x + iε) = x/(x2 + ε2) − iε/(x2 + ε2), and then note that ε/(x2 + ε2) as a function
of x is sharply spiked around x = 0 and that its integral from −∞ to ∞ is equal to π . Thus we have another
representation of the Dirac delta function:

δ(x) = 1
π

ε

x2 + ε2
(14)

Meanwhile, the principal value integral is defined by

∫
dxP 1

x
f (x) = lim

ε→0

∫
dx

x

x2 + ε2
f (x) (15)
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Appendix 2

I will now show you how to do the integral G ≡
∫ +∞
−∞ dxe− 1

2 x2
. The trick is to square the integral, call the dummy

integration variable in one of the integrals y, and then pass to polar coordinates:

G2 =
∫ +∞

−∞
dx e− 1

2 x2
∫ +∞

−∞
dy e− 1

2 y
2
= 2π

∫ +∞

0
dr re− 1

2 r
2

= 2π
∫ +∞

0
dw e−w = 2π

Thus, we obtain
∫ +∞

−∞
dx e− 1

2 x2 =
√

2π (16)

Believe it or not, a significant fraction of the theoretical physics literature consists of varying and elaborating
this basic Gaussian integral. The simplest extension is almost immediate:

∫ +∞

−∞
dx e− 1

2 ax2 =
(

2π
a

) 1
2

(17)

as can be seen by scaling x → x/
√

a.
Acting on this repeatedly with −2(d/da) we obtain

⟨x2n⟩ ≡
∫ +∞
−∞ dx e− 1

2 ax2
x2n

∫ +∞
−∞ dx e− 1

2 ax2 = 1
an

(2n − 1)(2n − 3) . . . 5 . 3 . 1 (18)

The factor 1/an follows from dimensional analysis. To remember the factor (2n − 1)!! ≡ (2n − 1)(2n − 3) . . . 5 .
3 . 1 imagine 2n points and connect them in pairs. The first point can be connected to one of (2n − 1) points, the
second point can now be connected to one of the remaining (2n − 3) points, and so on. This clever observation,
due to Gian Carlo Wick, is known as Wick’s theorem in the field theory literature. Incidentally, field theorists use
the following graphical mnemonic in calculating, for example, ⟨x6⟩ : Write ⟨x6⟩ as ⟨xxxxxx⟩ and connect the x’s,
for example

〈 〉xxxxxx

The pattern of connection is known as a Wick contraction. In this simple example, since the six x’s are identical,
any one of the distinct Wick contractions gives the same value a−3 and the final result for ⟨x6⟩ is just a−3 times
the number of distinct Wick contractions, namely 5 . 3 . 1 = 15. We will soon come to a less trivial example, with
distinct x’s, in which case distinct Wick contraction gives distinct values.

An important variant is the integral

∫ +∞

−∞
dx e− 1

2 ax2+Jx =
(

2π
a

) 1
2

eJ 2/2a (19)

To see this, take the expression in the exponent and “complete the square”: −ax2/2 + Jx = −(a/2)(x2 −
2Jx/a) = −(a/2)(x − J/a)2 + J 2/2a. The x integral can now be done by shifting x → x + J/a, giving the
factor of (2π/a)

1
2 . Check that we can also obtain (18) by differentiating with respect to J repeatedly and then

setting J = 0.
Another important variant is obtained by replacing J by iJ :

∫ +∞

−∞
dx e− 1

2 ax2+iJ x =
(

2π
a

) 1
2

e−J 2/2a (20)
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To get yet another variant, replace a by −ia:

∫ +∞

−∞
dx e

1
2 iax2+iJ x =

(
2π i

a

) 1
2

e−iJ 2/2a (21)

Let us promote a to a real symmetric N by N matrix Aij and x to a vector xi (i , j = 1, . . . , N). Then (19)
generalizes to

∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞
dx1dx2 . . . dxN e− 1

2 x .A.x+J .x =
(

(2π)N

det[A]

) 1
2

e
1
2 J .A−1.J (22)

where x . A . x = xiAijxj and J . x = Jixi (with repeated indices summed.)
To derive this important relation, diagonalize A by an orthogonal transformation O so that A = O−1 . D . O,

where D is a diagonal matrix. Call yi = Oijxj . In other words, we rotate the coordinates in the N -dimensional
Euclidean space we are integrating over. The expression in the exponential in the integrand then becomes
− 1

2 y . D . y + (OJ ) . y. Using
∫ +∞
−∞ . . . ∫ +∞

−∞ dx1 . . . dxN =
∫ +∞
−∞ . . . ∫ +∞

−∞ dy1 . . . dyN , we factorize the left-hand

side of (22) into a product of N integrals, each of the form
∫ +∞
−∞ dyie

− 1
2 Diiy

2
i
+(OJ )iyi . Plugging into (19) we

obtain the right hand side of (22), since (OJ ) . D−1 . (OJ ) = J . O−1D−1O . J = J . A−1 . J (where we use the
orthogonality of O). (To make sure you got it, try this explicitly for N = 2.)

Putting in some i’s (A → −iA, J → iJ ), we find the generalization of (22)
∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞
dx1dx2 . . . dxN e(i/2)x .A.x+iJ .x

=
(

(2π i)N

det[A]

) 1
2

e−(i/2)J .A−1.J (23)

The generalization of (18) is also easy to obtain. Differentiate (22) p times with respect to Ji , Jj , . . . Jk , and

Jl, and then set J = 0. For example, for p = 1 the integrand in (22) becomes e− 1
2 x .A.xxi and since the integrand

is now odd in xi the integral vanishes. For p = 2 the integrand becomes e− 1
2 x .A.x(xixj ), while on the right hand

side we bring down A−1
ij . Rearranging and eliminating det[A] (by setting J = 0 in (22)), we obtain

⟨xixj ⟩ =
∫ +∞
−∞

∫ +∞
−∞ . . . ∫ +∞

−∞ dx1dx2 . . . dxN e− 1
2 x .A.xxixj

∫ +∞
−∞

∫ +∞
−∞ . . . ∫ +∞

−∞ dx1dx2 . . . dxN e− 1
2 x .A.x

= A−1
ij

Just do it. Doing it is easier than explaining how to do it. Then do it for p = 3 and 4. You will see immediately how
your result generalizes. When the set of indices i , j , . . . , k , l contains an odd number of elements, ⟨xixj

. . . xkxl⟩
vanishes trivially. When the set of indices i , j , . . . , k , l contains an even number of elements, we have

⟨xixj
. . . xkxl⟩ =

∑

Wick

(A−1)ab
. . . (A−1)cd (24)

where we have defined

⟨xixj
. . . xkxl⟩

=
∫ +∞
−∞

∫ +∞
−∞ . . . ∫ +∞

−∞ dx1dx2 . . . dxN e− 1
2 x .A.xxixj

. . . xkxl
∫ +∞
−∞

∫ +∞
−∞ . . . ∫ +∞

−∞ dx1dx2 . . . dxN e− 1
2 x .A.x (25)

and where the set of indices {a , b, . . . , c, d} represent a permutation of {i , j , . . . , k , l}. The sum in (24) is over
all such permutations or Wick contractions.

For example,

⟨xixjxkxl⟩ = (A−1)ij (A
−1)kl + (A−1)il(A

−1)jk + (A−1)ik(A
−1)jl (26)

(Recall that A, and thus A−1, is symmetric.) As in the simple case when x does not carry any index, we could
connect the x’s in ⟨xixjxkxl⟩ in pairs (Wick contraction) and write a factor (A−1)ab if we connect xa to xb .

Notice that since ⟨xixj ⟩ = (A−1)ij the right hand side of (24) can also be written in terms of objects like ⟨xixj ⟩.
Thus, ⟨xixjxkxl⟩ = ⟨xixj ⟩⟨xkxl⟩ + ⟨xixl⟩⟨xjxk⟩ + ⟨xixk⟩⟨xjxl⟩.
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Please work out ⟨xixjxkxlxmxn⟩; you will become an expert on Wick contractions. Of course, (24) reduces to
(18) for N = 1.

Perhaps you are like me and do not like to memorize anything, but some of these formulas might be worth
memorizing as they appear again and again in theoretical physics (and in this book).

Appendix 3

To do an exponential integral of the form I =
∫ +∞
−∞ dqe−(1/!)f (q) we often have to resort to the steepest-descent

approximation, which I will now review for your convenience. In the limit of ! small, the integral is dominated
by the minimum of f (q). Expanding f (q) = f (a) + 1

2 f
′′(a)(q − a)2 + O[(q − a)3] and applying (17) we obtain

I = e−(1/!)f (a)

(
2π!

f ′′(a)

) 1
2

e−O(!
1
2 ) (27)

For f (q) a function of many variables q1, . . . , qN and with a minimum at qj = aj , we generalize immediately
to

I = e−(1/!)f (a)

(
(2π!)N

det f ′′(a)

) 1
2

e−O(!
1
2 ) (28)

Here f ′′(a) denotes the N by N matrix with entries [f ′′(a)]ij ≡ (∂2f/∂qi∂qj)|q=a . In many situations, we do
not even need the factor involving the determinant in (28). If you can derive (28) you are well on your way to
becoming a quantum field theorist!

Exercises

I.2.1 Verify (5).

I.2.2 Derive (24).


