## String Theory I

Ludwig-Maximilians-Universität München
Dr. Michael Haack

## Exercise sheet 3

Due on November 8, 2019

## Exercise 1: Polyakov action

The Polyakov action is given by

$$
\begin{equation*}
S_{p}=-\frac{1}{4 \pi \alpha^{\prime}} \int d^{2} \sigma \sqrt{-g} g^{\alpha \beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} \eta_{\mu \nu} \tag{1.1}
\end{equation*}
$$

As discussed in class, using

$$
\begin{equation*}
\delta \sqrt{-g}=\frac{1}{2} \sqrt{-g} g^{\alpha \beta} \delta g_{\alpha \beta} \quad \text { and } \quad g^{\alpha \beta} \delta g_{\alpha \beta}=-g_{\alpha \beta} \delta g^{\alpha \beta} \tag{1.2}
\end{equation*}
$$

and the general relativistic definition of the energy momentum tensor,

$$
\begin{equation*}
\delta S_{\text {matter }}=\frac{1}{4 \pi} \int d^{2} \sigma \sqrt{-g} T_{\alpha \beta} \delta g^{\alpha \beta} \tag{1.3}
\end{equation*}
$$

(with $S_{\text {matter }}$ the matter part of the action, which for the string is $S_{p}$ ) leads to the following form of the energy momentum tensor for the Polyakov action:

$$
\begin{equation*}
T_{\alpha \beta}=-\frac{1}{\alpha^{\prime}}\left(\partial_{\alpha} X \cdot \partial_{\beta} X-\frac{1}{2} g_{\alpha \beta} g^{\gamma \delta} \partial_{\gamma} X \cdot \partial_{\delta} X\right) \tag{1.4}
\end{equation*}
$$

(a) The equation of motion for the world sheet metric $g_{\alpha \beta}$ is given by $T_{\alpha \beta}=0$. Use this to show the on-shell equivalence of the Polyakov and the Nambu-Goto action.
(b) Show that the equation of motion for $X^{\mu}$ can be expressed as

$$
\begin{equation*}
g^{\alpha \beta} \nabla_{\alpha}\left(\partial_{\beta} X^{\mu}\right)=0 \tag{1.5}
\end{equation*}
$$

Hint: You will probably have to use the relation

$$
\begin{equation*}
\nabla_{\alpha}\left(\sqrt{-g} V^{\alpha}\right)=\partial_{\alpha}\left(\sqrt{-g} V^{\alpha}\right) \tag{1.6}
\end{equation*}
$$

for an arbitrary vector $V^{\alpha}$. Proof this (hint: eq. (1.2)).
(c) Use (1.5) to explicitly show the conservation of the energy momentum tensor (1.4), i.e.

$$
\begin{equation*}
\nabla^{\alpha} T_{\alpha \beta}=0 \tag{1.7}
\end{equation*}
$$

(d) Show that for any Weyl-invariant matter action the energy momentum tensor, defined by (1.3), is traceless.
(e) Now add to the Polyakov action a cosmological constant term

$$
\begin{equation*}
S_{c c}=\lambda \int d^{2} \sigma \sqrt{-g} . \tag{1.8}
\end{equation*}
$$

Show that the equation of motion for $g_{\alpha \beta}$ implies $\lambda=0$.

## Exercise 2: Gravity in two dimensions

(a) In your GR course you learned that the symmetries of the Riemann tensor reduce its number of independent components in $D$ dimensions to $D^{2}\left(D^{2}-\right.$ 1)/12. This holds for any tensor $T_{\alpha \beta \gamma \delta}$ with the same symmetries as the Riemann tensor, i.e.

$$
\begin{align*}
& T_{\alpha \beta \gamma \delta}=-T_{\beta \alpha \gamma \delta}=-T_{\alpha \beta \delta \gamma},  \tag{2.1}\\
& T_{\alpha \beta \gamma \delta}=T_{\gamma \delta \alpha \beta},  \tag{2.2}\\
& T_{\alpha \beta \gamma \delta}+T_{\alpha \gamma \delta \beta}+T_{\alpha \delta \beta \gamma}=0 . \tag{2.3}
\end{align*}
$$

Thus, for $D=2$ this implies that the Riemann tensor only has one independent component, which could for example be taken to be $R_{0101}$. Use this result to show that in two dimensions the Riemann tensor can be completely expressed in terms of the Ricci scalar $R$ and the metric $g_{\alpha \beta}$ as

$$
\begin{equation*}
R_{\alpha \beta \gamma \delta}=\frac{R}{2}\left(g_{\alpha \gamma} g_{\beta \delta}-g_{\alpha \delta} g_{\beta \gamma}\right) . \tag{2.4}
\end{equation*}
$$

(b) Compute the Einstein tensor $G_{\alpha \beta}=R_{\alpha \beta}-\frac{1}{2} g_{\alpha \beta} R$ in two dimensions and interpret your result.
(c) Show that in two dimensions the combination $\sqrt{-g} R$ transforms under a Weyl rescaling $g_{\alpha \beta} \rightarrow g_{\alpha \beta}^{\prime}=e^{2 \omega(x)} g_{\alpha \beta}$ according to

$$
\begin{equation*}
\sqrt{-g} R \rightarrow \sqrt{-g^{\prime}} R^{\prime}=\sqrt{-g}\left(R-2 \nabla^{2} \omega\right) . \tag{2.5}
\end{equation*}
$$

Note: This part of the exercise is a bit tedious.
(d) Use (2.5) to argue that the two-dimensional Einstein-Hilbert action is invariant under a Weyl transformation for a closed string worldsheet.
Remark: In contrast, for an open string world-sheet $\Sigma$ with boundary $\partial \Sigma$ only the combination

$$
\begin{equation*}
\chi=\frac{1}{4 \pi} \int_{\Sigma} d^{2} \sigma \sqrt{-g} R+\frac{1}{2 \pi} \int_{\partial \Sigma} d s k \tag{2.6}
\end{equation*}
$$

is invariant under Weyl transformations ( $d s$ is the proper time along the boundary). The geodesic curvature of the boundary $k$ is defined as

$$
\begin{equation*}
k= \pm n_{\beta} t^{\alpha} \nabla_{\alpha} t^{\beta} \tag{2.7}
\end{equation*}
$$

with $t^{\alpha}$ a unit vector tangent to the boundary and $n^{\alpha}$ an outward pointing unit vector normal to the boundary. The upper/lower sign refers to a Lorentzian/Euclidean world-sheet. The quantity $\chi$ is the Euler number of a worldsheet with boundary.
(e) Use the results (2.5) and (2.4) to argue that (locally) every metric of signature $(-1,1)$ can be brought into the form $\eta_{\alpha \beta}=\operatorname{diag}(-1,1)$ by a Weyl rescaling and a diffeomorphism.

For questions:
michael.haack@lmu.de

