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Exercise 1: Ghost CFT

The ghost CFT has the energy momentum tensor

T (z) = 2:∂c(z)b(z) : + :c(z)∂b(z) : . (1.1)

(a) Calculate the central charge of the ghost system by considering the OPE of two energy momentum tensors.
In order to perform the cross contractions you will need the OPEs

b(z1)c(z2) = c(z1)b(z2) =
1

z1 − z2
+ finite , b(z1)b(z2) = finite , c(z1)c(z2) = finite . (1.2)

(b) By considering the OPE of T (z) with c and b, calculate the weights of c and b.

Hint: You have to be careful with the signs. In order to perform the contractions, you first have to commute
the fields in such a way that they are next to each other.

Exercise 2: The moduli space of T 2

A torus can be represented as a rectangle in the plane with opposite sides identified, cf. figure 1. One can
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L1!Fig. 26.15 (a) A rectangular torus is a rectangular region of the complex z-plane with identifications.
(b) Gluing the vertical sides of the rectangular region gives a cylinder. (c) Gluing the
horizontal sides as well gives a torus.

Since the answers to these questions are interesting even for tori without punctures, we
will consider this case in detail. We will see that tori have two real moduli and that the
moduli space is surprisingly intricate.

We begin with the simplest type of torus, the rectangular torus. As shown in Figure 26.15,
the torus can be defined as a rectangular region of the complex plane C with some iden-
tifications. In particular, the horizontal sides must be identified as indicated by the double
arrows, and the vertical sides must be identified as indicated by the triple arrows. To the
right, we show the region after the vertical lines have been identified, and then, in the right-
most part of the figure, we have the final result.

The identifications that lead to the rectangular torus, starting from the full complex plane,
are described by the equations

z ∼ z + L1 , z ∼ z + i L2 . (26.21)

The fundamental domain for these identifications is the rectangular region 0 ≤ ℜ(z) < L1,
0 ≤ ℑ(z) < L2. This torus is a Riemann surface because the complex plane C is one and
because the identifications above are analytic identifications: z ∼ f (z), with f an analytic
function.

It is important to note that neither L1 nor L2 is a parameter of the rectangular torus. We
can scale the z coordinate by a constant factor. Letting z′ = z/L1, which is obviously a
conformal map, the identifications in (26.21) become

z′ ∼ z′ + 1 , z′ ∼ z′ + iT , T ≡ L2

L1
. (26.22)

It follows that a rectangular torus has just one parameter, the value of T . The above equa-
tions define the canonical presentation of a rectangular torus. In the canonical presentation,
the horizontal length is one.

Surprisingly, rectangular tori with different T parameters can sometimes be conformally
equivalent. To prove this, consider the torus shown in the top left of Figure 26.16. This is
a rectangular torus with T < 1, shown as a rectangular domain in the w plane. Now we
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Figure 1: Torus

parametrize the torus with the coordinates σ1 and σ2 in the region

0 ≤ σ1 ≤ 2π , 0 ≤ σ2 ≤ 2π , (2.1)

with the metric gab(σ
1, σ2) periodic in both directions. Alternatively, one can think of this as the whole σ plane

with the identification of points

(σ1, σ2) ∼= (σ1, σ2) + 2π(m,n) , m, n ∈ Z . (2.2)

We would now like to argue that one can bring a general metric on the torus into the form

ds2 = |dσ1 + τdσ2|2 , τ ∈ C , (2.3)

leaving the periodicity (2.1) intact.
To see this, one can first argue, similar to our earlier discussion, that one can make the metric flat by a

Weyl transformation g′ = e2ωg, where the Weyl factor fulfills 2∇2ω = R, cf. ex. 2, sheet 3. This has a unique
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solution up to the addition of a constant to ω. For the torus, this can be done globally, as its Euler number
vanishes and there is no obstruction to having a globally flat metric.

(a) By introducing new coordinates σ̃a, one can bring the metric to unit form g = 12. Show that this changes
the original periodicity to

σ̃a ∼= σ̃a + 2π(mua + nva) , (2.4)

with two linearly independent vectors ua and va. Depending on the original flat metric, arbitrary (linearly
independent) vectors ua and va can arise.

By rotating the coordinates and rescaling them with an overall factor (accompanied by a Weyl-transformation
in order to keep the components of the metric in unit form), one can set u = (1, 0). This leaves the components
of v as two parameters. Defining w = σ̃1 + iσ̃2, the metric is dwdw̄ and the periodicity is

w ∼= w + 2π(m+ nτ) , τ = v1 + iv2 , (2.5)

cf. figure 2. Alternatively, one can define the coordinates σa by w = σ1 + τσ2. Obviously, these coordinates
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Figure 2: Coordinate region of σ̃a.

have the original periodicity (2.1), but using these coordinates the metric takes the more general form (2.3).

Remark: The parameter τ is called a modulus or a Teichmüller parameter. The upshot of the above discussion
is that one can parametrize inequivalent metrics on the torus in two different ways. One can either work with
coordinates in which the metric takes the unit form and the modulus τ appears in the periodicity of the coor-
dinates, cf. (2.5), or one can work with a fixed periodicity of the coordinates and then the modulus appears in
the form of the metric, cf. (2.3). This second description is typically used in the path integral when integrating
over inequivalent metrics.

(b) The metric (2.3) is obviously invariant under complex conjugation of τ and it is degenerate for real τ (show
this). Thus, one can restrict attention to Im τ > 0. There is actually an additional redundancy. Consider the
coordinate transformation(

σ1

σ2

)
=

(
d b
c a

)(
σ′1

σ′2

)
, a, b, c, d ∈ Z , ad− bc = 1 . (2.6)

Show that this takes the metric (2.3) into a metric of the same form in σ′ (up to a Weyl-rescaling) but with
modulus

τ ′ =
aτ + b

cτ + d
. (2.7)

Argue that σ′ has the same periodicity as σ, i.e. (2.1).

Remark: The coordinate transformations (2.6) are not continuously connected to the identity (with the ex-
ception of a = d = 1, b = c = 0). They are called large coordinate transformations and form the group SL(2,Z),
which is called the modular group of the torus. Using the modular transformations (2.7) every τ is equivalent
to exactly one point in a fundamental region, which can be chosen for example as

F0 : −1

2
≤ Re τ ≤ 1

2
, |τ | ≥ 1 , (2.8)

cf. figure 3, where the left (dashed) boundary has to be identified with the right boundary. This form of
the fundamental region might seem plausible because the modular transformations (2.6) contain τ ′ = τ + 1
and τ ′ = − 1

τ as special cases. However, the actual proof is non-trivial and can be found for instance in
chapter 26.6 of the book by Zwiebach. (To see that the statement is indeed non-trivial, note that the region
− 1

2 ≤ Re τ ≤ 1
2 , |τ | ≤ 1 can not be chosen as a fundamental region.)
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!Fig. 26.21 The fundamental domain F0 for the identifications τ ∼ τ + 1 and τ ∼ −1/τ of H. The
closure F̄0 of the region F0, with suitable identifications is the moduli space M1,0 of tori
shown to the right.

restriction in (26.31). We will give below part of the proof that F0 is a fundamental domain
for the identifications (26.30), leaving the rest of the proof for Problem 26.6.

The moduli space of tori, denoted as M1,0, is the τ upper half-plane H subject to the
identifications (26.30). We learned in Section 2.7 how to build a space which arises from
identifications: we take the fundamental domain together with its boundary and implement
the identifications on the boundary. In the present situation, the fundamental domain F0

together with its boundary defines the closure F̄0:

F̄0 =
{
− 1

2 ≤ ℜ(τ ) ≤ 1
2 ,ℑ(τ ) > 0, |τ | ≥ 1

}
. (26.32)

On F̄0 we impose two identifications: ℜ(τ ) = −1/2 and ℜ(τ ) = 1/2 are identified by
τ → τ + 1, and the points with |τ | = 1 are identified among themselves by τ → −1/τ .
These are, in fact, all the identifications in F̄0 (see Problem 26.6). The resulting moduli
space M1,0 of tori can be visualized by cutting out the region F0, folding it along the
imaginary axis, and gluing the boundaries, as shown in the right side of Figure 26.21.

Quick calculation 26.1 Consider the points on the unit circle |τ | = 1 that lie on H in
between the vertical lines ℜ(τ ) = ±1/2. Show that the points to the right of τ = i are
identified with the points to the left of τ = i via τ → −1/τ .

Let us consider the physical implications of this result. Since all inequivalent tori are con-
tained in F0, one-loop closed string amplitudes must only include the contributions from
tori with τ ∈ F0. Since the tori in F0 are long tori, ultraviolet divergences are not an issue.
If amplitudes used the full strip S0, the situation would have been quite problematic. This
is not because we would have had some small tori to deal with, since, after all, they are
conformally equivalent to (safe) long tori. The problem would have arisen because the
complement of F0 in S0 contains an infinite number of copies of all the tori in F0! We
can easily verify, for example, that it contains infinitely many copies of the torus τ = i .
Consider the set τn of values

τn = i + n , n ≥ 1 , (26.33)

i

Figure 3: Fundamental region for the modulus τ of the torus.

Exercise 3: The 1-loop vacuum amplitude

The (1-loop) contribution to the vacuum energy in oriented closed string theory is given by the torus amplitude
without any vertex operators. In order to discuss this amplitude, let us start by considering the vacuum energy
in QFT, in particular for the field theory of a scalar with mass M in D dimensions described by the (Euclidean)
action

S =

∫
dDx

(
1
2∂µφ∂

µφ+ 1
2M

2φ2
)
. (3.1)

The vacuum energy Γ is defined via the path integral

e−Γ =

∫
Dφ e−S ∼ det−1/2

(
−∆ +M2

)
. (3.2)

This can be further rewritten by using the identity

ln(det(A)) = −
∫ ∞
ε

dt

t
tr
(
e−tA

)
, (3.3)

where ε is an ultraviolet cutoff and t is a Schwinger parameter. The kinetic operator can be diagonalized by
the complete set of momentum eigenstates, which results in

Γ = −V
2

∫ ∞
ε

dt

t
e−tM

2

∫
dDp

(2π)D
e−tp

2

, (3.4)

where the space-time volume V arises from the continuum normalization of the momentum, i.e. Σp becomes
V (2π)−D

∫
dDp (see for example eq. (2.28) in Ashcroft, Mermin “Solid State Physics”). Performing the Gaussian

momentum integrals yields

Γ = − V

2(4π)D/2

∫ ∞
ε

dt

tD/2+1
e−tM

2

. (3.5)

For several bosonic fields, one has to sum over their contributions, i.e.

Γtot = − V

2(4π)D/2

∫ ∞
ε

dt

tD/2+1
tr
(
e−tM

2
)
, (3.6)

where the trace is over the entire mass spectrum.

One can now try to apply (3.6) to the bosonic string in D = 26, whose mass spectrum is encoded in

M2 =
2

α′
(N⊥ + Ñ⊥ − 2) , (3.7)

subject to the level matching condition N⊥ = Ñ⊥.

(a) Impose the level matching condition by using the integral representation of the Kronecker delta∫ 1/2

−1/2

ds e2πis(N⊥−Ñ⊥) = δN⊥,Ñ⊥ . (3.8)
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Show that the result can be written as

Γtot = − V

2(4π2α′)13

∫ 1/2

−1/2

dτ1

∫ ∞
ε

dτ2
τ14
2

tr
(
qN

⊥−1q̄Ñ
⊥−1

)
, (3.9)

where we introduced the complex Schwinger parameter

τ = τ1 + iτ2 = s+ i
t

α′π
(3.10)

and the notation
q = e2πiτ , q̄ = e−2πiτ̄ . (3.11)

This formula shows an ultraviolet divergence for ε → 0, as usual for field theory. In string theory, an exact
treatment would lead to a similar formula as (3.9) with the τ of (3.10) given by the modulus of the world-sheet
torus. However, the torus modulus is only integrated over the fundamental region F0, cf. (2.8), which introduces
an effective ultraviolet cutoff!

(b) Up to an overall factor, the torus amplitude without vertex operators is, thus, given by (d2τ ≡ dτdτ̄)

T =

∫
F0

d2τ

τ2
2

1

τ12
2

tr
(
qN

⊥−1q̄Ñ
⊥−1

)
. (3.12)

The trace over the bosonic string spectrum can be performed analogously to ex. 3 (a), sheet 6, resulting in

T =

∫
F0

d2τ

τ2
2

1

τ12
2

1

|η(τ)|48
, (3.13)

with the Dedekind η function

η(τ) = q
1
24

∞∏
n=1

(1− qn) . (3.14)

Show that both, the measure τ−2
2 d2τ as well as the integrand τ−12

2 |η(τ)|−48 of (3.13), are invariant under an
SL(2,Z) transformation (2.7). To do so, show first that

d2τ → d2τ ′ =
d2τ

|cτ + d|4 , τ2 → τ ′2 =
τ2

|cτ + d|2 . (3.15)

Moreover, use (without proof) that a general SL(2,Z) transformation (2.7) can be generated by a sequence of
T and S transformations

T : τ → τ ′ = τ + 1 , S : τ → τ ′ = −1

τ
. (3.16)

The transformation of the Dedekind η function under the generators T and S is

T : η(τ + 1) = e
iπ
12 η(τ) , S : η(−1/τ) =

√
−iτ η(τ) . (3.17)

For questions:

michael.haack@lmu.de
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