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Note: The exam will take place on Tuesday, February 25, at 9.30 am.

Exercise 1: Ghost CFT
The ghost CFT has the energy momentum tensor
T(z) =2:0c(2)b(z): + :¢(2)0b(2): . (1.1)

(a) Calculate the central charge of the ghost system by considering the OPE of two energy momentum tensors.
In order to perform the cross contractions you will need the OPEs

b(21)c(22) = c(21)b(22) =

+ finite , b(21)b(z2) = finite , ¢(2z1)c(z2) = finite . (1.2)
zZ1 — 22

(b) By considering the OPE of T'(z) with ¢ and b, calculate the weights of ¢ and b.

Hint: You have to be careful with the signs. In order to perform the contractions, you first have to commute
the fields in such a way that they are next to each other.

Exercise 2: The moduli space of T2

A torus can be represented as a rectangle in the plane with opposite sides identified, cf. figure 1. One can

2 -—

——

Figure 1: Torus
parametrize the torus with the coordinates o' and o2 in the region
0<ol<2r, 0<o?<2rm, (2.1)

with the metric g,;(o!, 0?) periodic in both directions. Alternatively, one can think of this as the whole ¢ plane
with the identification of points

(o' 0%) = (', 0%) + 2n(m,n), m,neZ. (2.2)
We would now like to argue that one can bring a general metric on the torus into the form
ds* = |do* + 7do??, T€C, (2.3)

leaving the periodicity (2.1) intact.
To see this, one can first argue, similar to our earlier discussion, that one can make the metric flat by a
Weyl transformation g’ = €2¥g, where the Weyl factor fulfills 2V2w = R, cf. ex. 2, sheet 3. This has a unique



solution up to the addition of a constant to w. For the torus, this can be done globally, as its Euler number
vanishes and there is no obstruction to having a globally flat metric.

(a) By introducing new coordinates 6%, one can bring the metric to unit form g = 15. Show that this changes
the original periodicity to
7% 2 5% 4 2r(mu® + nv?) | (2.4)

with two linearly independent vectors u® and v®.

independent) vectors u® and v® can arise.

By rotating the coordinates and rescaling them with an overall factor (accompanied by a Weyl-transformation
in order to keep the components of the metric in unit form), one can set u = (1,0). This leaves the components
of v as two parameters. Defining w = 6! + i52, the metric is dwdw and the periodicity is

Depending on the original flat metric, arbitrary (linearly

w=w+2n(m+nr), T=0v"+iv?, (2.5)
cf. figure 2. Alternatively, one can define the coordinates ¢® by w = o' 4+ 702. Obviously, these coordinates
6>
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Figure 2: Coordinate region of °.

have the original periodicity (2.1), but using these coordinates the metric takes the more general form (2.3).

Remark: The parameter 7 is called a modulus or a Teichmiiller parameter. The upshot of the above discussion
is that one can parametrize inequivalent metrics on the torus in two different ways. One can either work with
coordinates in which the metric takes the unit form and the modulus 7 appears in the periodicity of the coor-
dinates, cf. (2.5), or one can work with a fixed periodicity of the coordinates and then the modulus appears in
the form of the metric, cf. (2.3). This second description is typically used in the path integral when integrating
over inequivalent metrics.

(b) The metric (2.3) is obviously invariant under complex conjugation of 7 and it is degenerate for real 7 (show
this). Thus, one can restrict attention to Im 7 > 0. There is actually an additional redundancy. Consider the
coordinate transformation

1 /1
<Z2>:<i 2)(2,2) abe,de€Z, ad—bc=1. (2.6)

Show that this takes the metric (2.3) into a metric of the same form in ¢’ (up to a Weyl-rescaling) but with

modulus b
,  art+
= . 2.7
T ct+d (2.7)

Argue that ¢’ has the same periodicity as o, i.e. (2.1).

Remark: The coordinate transformations (2.6) are not continuously connected to the identity (with the ex-
ception of a =d = 1,b = ¢ = 0). They are called large coordinate transformations and form the group SL(2,7Z),
which is called the modular group of the torus. Using the modular transformations (2.7) every 7 is equivalent
to exactly one point in a fundamental region, which can be chosen for example as

yo : —

S ReT S ’ |T| Z 1 b (28)

N =

1
2
cf. figure 3, where the left (dashed) boundary has to be identified with the right boundary. This form of
the fundamental region might seem plausible because the modular transformations (2.6) contain 7/ = 7+ 1
and 7 = —% as special cases. However, the actual proof is non-trivial and can be found for instance in
chapter 26.6 of the book by Zwiebach. (To see that the statement is indeed non-trivial, note that the region
—1 <Ret <1 ,|7| <1 can not be chosen as a fundamental region.)
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Figure 3: Fundamental region for the modulus 7 of the torus.

Exercise 3: The 1-loop vacuum amplitude

The (1-loop) contribution to the vacuum energy in oriented closed string theory is given by the torus amplitude
without any vertex operators. In order to discuss this amplitude, let us start by considering the vacuum energy
in QFT, in particular for the field theory of a scalar with mass M in D dimensions described by the (Euclidean)
action

S = /de (10,00 + S M?¢?) . (3.1)

The vacuum energy I' is defined via the path integral
el = /Dqs e ~det™V2 (—A + M?) . (3.2)

This can be further rewritten by using the identity

In(det(A)) = — / h %tr (7Y | (3.3)

€

where € is an ultraviolet cutoff and ¢ is a Schwinger parameter. The kinetic operator can be diagonalized by
the complete set of momentum eigenstates, which results in

Vo[ dt 2 de 2
ro Y [Tt m / ~tp 3.4
2 / t ¢ @nDp° (34)

where the space-time volume V' arises from the continuum normalization of the momentum, i.e. ¥, becomes
V(2m)~P [ dPp (see for example eq. (2.28) in Ashcroft, Mermin “Solid State Physics”). Performing the Gaussian
momentum integrals yields

\%4 Cdt e
I'= T (4m)Dr2 /E D21 ¢ : (3:5)
For several bosonic fields, one has to sum over their contributions, i.e.
1% o dt M2
Ttor = " 2(4m)DR2 / Y (e ) : (3.6)

where the trace is over the entire mass spectrum.

One can now try to apply (3.6) to the bosonic string in D = 26, whose mass spectrum is encoded in
2 .
M? = a(NL + Nt -2, (3.7)

subject to the level matching condition N+ = N+

(a) Impose the level matching condition by using the integral representation of the Kronecker delta

1/2 ) Lo
/1/2 ds 27N = Gy) (3.8)



Show that the result can be written as

V 1/2 ° dTg €1 L
P Y Y I ] 39
tot 2(47‘(’20/)13 /_1/2 7—1/E 7_214 rvaq q ( )

where we introduced the complex Schwinger parameter

T=T1+im=s+1 (3.10)

o'm

and the notation ) _
qg= 6271'17' , j= 6—27717' ) (311)

This formula shows an ultraviolet divergence for ¢ — 0, as usual for field theory. In string theory, an exact
treatment would lead to a similar formula as (3.9) with the 7 of (3.10) given by the modulus of the world-sheet
torus. However, the torus modulus is only integrated over the fundamental region %y, cf. (2.8), which introduces
an effective ultraviolet cutoff!

(b) Up to an overall factor, the torus amplitude without vertex operators is, thus, given by (d? = drd7)

d27' 1 L1 L
Fo T2 T2

The trace over the bosonic string spectrum can be performed analogously to ex. 3 (a), sheet 6, resulting in

d2r 1 1
_ [ &1 3.13
T L g s (3.13)

with the Dedekind n function

n(r)=q= [J(1—q") . (3.14)
n=1

Show that both, the measure 7, 2d?7 as well as the integrand 7, |n(7)|~*® of (3.13), are invariant under an
SL(2,7) transformation (2.7). To do so, show first that

d*r Ty
&r - d*r' = —— N S——
’ ler+df 2T Jer+d?

(3.15)
Moreover, use (without proof) that a general SL(2,Z) transformation (2.7) can be generated by a sequence of

T and S transformations )
T:7>7=7+1, S:7—>7=—=. (3.16)
T

The transformation of the Dedekind 7 function under the generators 7' and S is

T: npir+1)=eBn(r) , S: n(=1/7)=+v—ir n(7) . (3.17)
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