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Virasoro-Shapiro amplitude

The Virasoro-Shapiro amplitude gives the result of the scattering of four closed
string tachyons at tree-level, i.e. the world-sheet takes the form of a sphere. In
class we will obtain this amplitude using the path integral formalism. There
is an alternative way to calculate it, the operator formalism, which should be
employed in this exercise.

After gauge fixing the metric on the sphere (i.e. the plane with a point
added at infinity), one still has some gauge symmetry left: those conformal
transformations which are globally defined on the sphere. This left over gauge
symmetry allows to fix the position of any three vertex operators to arbitrary
positions, for instance z1 = 0, z2 = 1 and z3 =∞ (cf. ex. 2, sheet 10). Thus, we
are interested in calculating

A(4) ∼
∫
d2z

〈
: eik3·X(∞,∞) :′ : eik4·X(z,z̄) : : eik2·X(1,1) : : eik1·X(0,0) :

〉
,

(1.1)
where the prime at the first vertex operator indicates that it is the operator
conformally mapped via z3 → z′3 = 1/z3; by a slight abuse of notation we
still give the position in terms of z3. Moreover, the z-integral is over the whole
Riemann sphere. Using the state-operator map, this can be rewritten as∫

d2z
〈

0; k3

∣∣∣R( : eik4·X(z,z̄) : : eik2·X(1,1) :
)∣∣∣0; k1

〉
, (1.2)

where R denotes radial ordering as usual.

Normal ordering amounts to placing annihilation operators to the right of
the creation operators, i.e.

: eik·X(z,z̄) : = eik·XC(z,z̄)eik·XA(z,z̄) , (1.3)

and it is conventional to group xµ with the creation operators and pµ with the
annihilation operators, i.e.

Xµ
C(z, z̄) = xµ − i

√
α′

2

∞∑
m=1

1

m
(αµ−mz

m + α̃µ−mz̄
m) ,

Xµ
A(z, z̄) = −iα

′

2
pµ ln |z|2 + i

√
α′

2

∞∑
m=1

1

m

(
αµm
zm

+
α̃µm
z̄m

)
. (1.4)
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(a) Use the Baker-Campbell-Hausdorff formula, i.e. (Xi ≡ X(zi, z̄i))

eik1·X1Aeik2·X2C = eik2·X2Ceik1·X1Ae−[k1·X1A,k2·X2C ] , (1.5)

and the commutators

[αµm, α
ν
n] = [α̃µm, α̃

ν
n] = mηµνδm+n,0 , [α̃µm, α

ν
n] = 0 , m, n ∈ Z ,

[xµ, pν ] = iηµν , [αµn, x
ν ] = 0 , n 6= 0 , (1.6)

to show for |z1| > |z2|:

eik1·X1Aeik2·X2C = eik2·X2Ceik1·X1A |z1 − z2|α
′k1·k2 . (1.7)

(b) Use (1.3) and (1.7) to show that (1.2) is given by

δD
( 4∑
i=1

ki

)∫
d2z|1− z|−α

′t/2−4|z|−α
′u/2−4 , (1.8)

up to an overall constant. Here, we used the Mandelstam variables

s = −(k1 + k2)2 , t = −(k1 + k3)2 , u = −(k1 + k4)2 , (1.9)

which obey

s+ t+ u = −
∑
i

k2
i =

∑
i

m2
i = −16

α′
. (1.10)

Hint: Use eik
′·x|0; k〉 = |0; k + k′〉 and 〈0; k|0; k′〉 ∼ δD(k + k′).

(c) Solve the integral (1.8) by showing

C(a, b) ≡
∫
d2z|z|2a−2|1−z|2b−2 = 2π

Γ(a)Γ(b)Γ(c)

Γ(a+ b)Γ(a+ c)Γ(b+ c)
, a+b+c = 1 .

(1.11)
Hint: Start by showing

|z|2a−2 =
1

Γ(1− a)

∫ ∞
0

dt t−ae−|z|
2t (1.12)

and similarly for |1 − z|2b−2. Use this in (1.11) and decompose the complex
coordinate z = x + iy. Now first perform the integrals over x and y which are
simply Gaussian. You should obtain

C(a, b) =
2π

Γ(1− a)Γ(1− b)

∫ ∞
0

dudt
t−au−b

t+ u
e−tu/(t+u) . (1.13)

To make contact with (1.11) perform a change of variables t = αβ and u = (1−
β)α, with α ∈ [0,∞) and β ∈ [0, 1]. You can then use the integral representation
of the Euler beta function

B(x, y) ≡ Γ(x)Γ(y)

Γ(x+ y)
, (1.14)

i.e.

B(x, y) =

∫ 1

0

dt tx−1(1− t)y−1 , (1.15)

2



valid for Re(x) > 0 and Re(y) > 0.

(d) Using (1.11) in (1.8) you get the amplitude for the scattering of four closed
string tachyons (up to an overall constant). The derivation is performed in a
region of momentum space where the occurring integrals are convergent. The
final result, however, is an analytic function of s, t and u, exhibiting poles at
certain values. Via analytic continuation, it describes the scattering of four ta-
chyons for arbitrary momenta. Where are the poles of the result?

(e) Discuss the result in the hard scattering limit, i.e. the limit of large center of
mass energy and fixed (finite) angle. To do so, use that for a scattering process
1 + 2 → 3 + 4 of equal mass particles (of mass m), the Mandelstam variables
are related to the center of mass energy E and the scattering angle θ (i.e. the
angle between particles 1 and 3) as

s = E2 , t = (4m2 − E2) sin2 θ

2
, u = (4m2 − E2) cos2 θ

2
. (1.16)

What does the hard scattering limit imply for s, t and u? Use the approximation
Γ(x) ≈ exp(x lnx) (valid for |x| → ∞)1 to show that

A(4) ≈ exp
[
− α

′

2

(
s ln(sα′)+t ln(tα′)+u ln(uα′)

)]
∼ exp

[
− α

′

2
sf(θ)

]
, (1.17)

where in the second step a phase is neglected and f(θ) can be approximated as

f(θ) ≈ − sin2 θ

2
ln
(

sin2 θ

2

)
− cos2 θ

2
ln
(

cos2 θ

2

)
, (1.18)

which is non-negative. Thus, the amplitude is exponentially suppressed in the
hard scattering limit. This is a general feature of string scattering amplitudes
(in particular also valid for the massless states). This soft high energy behavior
is due to the extended nature of strings and is in contrast to the power law fall
off found for the scattering of particles.

For questions:

michael.haack@lmu.de

1Strictly speaking this formula does not hold along the negative real axis. Implicitly we
move away from the real axis by adding a small imaginary part to s. This is ultimately justified
because all the higher mass string states are actually unstable in the interacting theory and,
thus, their poles are shifted away from the real axis. This can be mimicked by leaving the
poles on the real axis, but instead taking the large s limit slightly away from the real axis.
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