String Theory I
 Ludwig-Maximilians-Universität München
 Dr. Michael Haack

Exercise sheet 11

Due on January 17, 2020

Exercise 1: Correspondence between highest weight states and primary fields

Consider a local field \mathcal{O} with scaling weights h and \tilde{h}, i.e. under a rescaling $z \rightarrow \lambda z($ with $\lambda \in \mathbb{C})$ it transforms as $\mathcal{O} \rightarrow \lambda^{-h} \bar{\lambda}^{-\tilde{h}} \mathcal{O}$. Its OPE with $T(z)$ takes the form

$$
\begin{equation*}
T(z) \mathcal{O}(w, \bar{w})=\text { more divergent }+\frac{h}{(z-w)^{2}} \mathcal{O}(w, \bar{w})+\frac{1}{z-w} \partial \mathcal{O}(w, \bar{w})+\text { finite } \tag{1.1}
\end{equation*}
$$

(and similarly for $\tilde{T}(\bar{z})$). For a primary field, there are no more singular terms in the OPE than the ones given explicitly in (1.1), whereas for a secondary field there is at least one more singular term involving an operator which creates a non-null state from the vacuum via the state-operator correspondence. Consider the state $|\mathcal{O}\rangle=\mathcal{O}(0)|0\rangle$ and use $T=\sum_{n \in \mathbb{Z}} \frac{L_{n}}{z^{n+2}}$ in order to show

- $L_{-1}|\mathcal{O}\rangle=|\partial \mathcal{O}\rangle$,
- $L_{0}|\mathcal{O}\rangle=h|\mathcal{O}\rangle$,
- $L_{n}|\mathcal{O}\rangle=0$ for all $n>0$, if and only if \mathcal{O} is a primary operator.
(Analogous results hold for \tilde{L}_{m}.)

Exercise 2: Unitary CFT's

Show that a unitary CFT (i.e. one without negative norm states) has the following two characteristics:
(i) $c \geq 0$, where c is the central charge,
(ii) $h \geq 0$, where h is the weight of any primary field (and similar for \tilde{h}).

Hint: You need to make use of the Virasoro algebra $\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+$ $\frac{c}{12}\left(m^{3}-m\right) \delta_{m,-n}$.
Remark: One can show that in a unitary CFT the only quasi primary field with $(h, \tilde{h})=(0,0)$ is the unit operator (or multiples thereof) and the only state with L_{0} and \tilde{L}_{0} eigenvalues 0 is the $\operatorname{PSL}(2, \mathbb{C})$-invariant vacuum state.

Exercise 3: Weights of some typical operators of the free X^{μ} CFT

(a) By computing the operator product expansions with $T(z)=-\frac{1}{\alpha^{\prime}}: \partial X^{\mu} \partial X_{\mu}$: and $\tilde{T}(\bar{z})=-\frac{1}{\alpha^{\prime}}: \bar{\partial} X^{\mu} \bar{\partial} X_{\mu}$: and comparing with (1.1) (and similarly for $\tilde{T}(\bar{z})$), confirm that the following operators have the indicated scaling weights (h, \tilde{h}) :

$$
\begin{gather*}
X^{\mu} \rightarrow(0,0), \quad \partial X^{\mu} \rightarrow(1,0), \quad \bar{\partial} X^{\mu} \rightarrow(0,1) \tag{3.1}\\
\partial^{2} X^{\mu} \rightarrow(2,0), \quad: e^{i k \cdot X}: \rightarrow\left(\frac{\alpha^{\prime} k^{2}}{4}, \frac{\alpha^{\prime} k^{2}}{4}\right) . \tag{3.2}
\end{gather*}
$$

Which of the operators are tensor operators?
(b) Calculate the singular terms in the OPE of $T\left(z_{1}\right) T\left(z_{2}\right)$.

Exercise 4: Closed string vertex operator

Consider the operator

$$
\begin{equation*}
\mathcal{O}=\zeta_{\mu \nu}: \partial X^{\mu} \bar{\partial} X^{\nu} e^{i k \cdot X}:, \tag{4.1}
\end{equation*}
$$

where $\zeta_{\mu \nu}$ is a constant tensor. Determine the condition for this operator to be primary of weight $(1,1)$, by looking at the operator product expansion with the energy momentum tensors $T=-\frac{1}{\alpha^{\prime}}: \partial X_{\rho} \partial X^{\rho}:$ and $\tilde{T}=-\frac{1}{\alpha^{\prime}}: \bar{\partial} X_{\rho} \bar{\partial} X^{\rho}:$.

For questions:
michael.haack@lmu.de

