String Theory I

Ludwig-Maximilians-Universität München

Exercise sheet 10

Due on January 10, 2020

Exercise 1: The OPE of the energy momentum tensor

In the complex plane, the Virasoro generators L_{n} are given by

$$
\begin{equation*}
L_{n}=\oint_{C_{0}} \frac{d z}{2 \pi i} z^{n+1} T(z) \tag{1.1}
\end{equation*}
$$

(a) Show that

$$
\begin{equation*}
\left[L_{n}, L_{m}\right]=\oint_{C_{0}} \frac{d z_{2}}{2 \pi i} \oint_{C_{z_{2}}} \frac{d z_{1}}{2 \pi i} z_{1}^{n+1} z_{2}^{m+1} T\left(z_{1}\right) T\left(z_{2}\right) \tag{1.2}
\end{equation*}
$$

Here, C_{0} denotes a contour around $0, C_{z_{2}}$ is a contour around z_{2}, and, as usual, the product $T\left(z_{1}\right) T\left(z_{2}\right)$ is meant to be the radially ordered product:

$$
T\left(z_{1}\right) T\left(z_{2}\right) \equiv R\left(T\left(z_{1}\right) T\left(z_{2}\right)\right)=\left\{\begin{array}{ll}
T\left(z_{1}\right) T\left(z_{2}\right) & \text { for }\left|z_{1}\right|>\left|z_{2}\right| \tag{1.3}\\
T\left(z_{2}\right) T\left(z_{1}\right) & \text { for }\left|z_{2}\right|>\left|z_{1}\right|
\end{array}\right\}
$$

(Hint: Write the commutator as a difference of two double contour integrals and use a contour deformation of the $d z_{1}$ integration for fixed z_{2}, just as was done in class for $\delta_{\epsilon Q} \phi(\tilde{z})=\epsilon[Q, \phi(\tilde{z})]$.)
(b) Use (1.2) and the (radially ordered) operator product

$$
\begin{equation*}
T\left(z_{1}\right) T\left(z_{2}\right)=\frac{c / 2}{\left(z_{1}-z_{2}\right)^{4}}+\frac{2 T\left(z_{2}\right)}{\left(z_{1}-z_{2}\right)^{2}}+\frac{\partial_{z_{2}} T\left(z_{2}\right)}{\left(z_{1}-z_{2}\right)}+(\text { finite terms }) \tag{1.4}
\end{equation*}
$$

as well as Cauchy's integral formula,

$$
\begin{equation*}
\oint_{C_{z_{2}}} \frac{d z_{1}}{2 \pi i} \frac{f\left(z_{1}\right)}{\left(z_{1}-z_{2}\right)^{n}}=\frac{1}{(n-1)!} \partial^{(n-1)} f\left(z_{2}\right) \tag{1.5}
\end{equation*}
$$

to rederive the quantum Virasoro algebra:

$$
\begin{equation*}
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{c}{12} n\left(n^{2}-1\right) \delta_{m+n, 0} \tag{1.6}
\end{equation*}
$$

(c) Use (1.4) and the general formula for infinitesimal conformal transformations

$$
\begin{equation*}
\delta_{\epsilon \xi} \phi(z)=\epsilon\left[L_{\xi}, \phi(z)\right] \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{\xi}=-\oint_{C_{0}} \frac{d z}{2 \pi i} \xi(z) T(z), \tag{1.8}
\end{equation*}
$$

to show that

$$
\begin{equation*}
\delta_{\epsilon \xi} T(z)=-\epsilon\left[\frac{c}{12} \partial^{3} \xi(z)+2 \partial \xi(z) T(z)+\xi(z) \partial T(z)\right] . \tag{1.9}
\end{equation*}
$$

(d) The Schwarzian derivative is defined as

$$
\begin{equation*}
\{f(z), z\}=\partial_{z}^{3} f\left(\partial_{z} f\right)^{-1}-\frac{3}{2}\left(\partial_{z}^{2} f\right)^{2}\left(\partial_{z} f\right)^{-2} \tag{1.10}
\end{equation*}
$$

Show that the transformation

$$
\begin{align*}
z & \rightarrow z^{\prime} \tag{1.11}\\
T(z) & \rightarrow T^{\prime}\left(z^{\prime}\right)=\left(\partial_{z} z^{\prime}\right)^{-2}\left[T(z)-\frac{c}{12}\left\{z^{\prime}, z\right\}\right] \tag{1.12}
\end{align*}
$$

gives (1.9) for an infinitesimal transformation $z^{\prime}=z+\epsilon \xi(z)$.

Exercise 2: Fractional linear transformations

In this exercise we want to show that one can use conformal transformations on the Riemann-sphere (i.e. $\mathbb{C} \cup\{\infty\}$) to map any 3 points to any other 3 points. As will be discussed in more detail in class, the globally defined conformal transformations on the Riemann-sphere are given by the group $S L(2, \mathbb{C})$ of 2×2-matrices with unit determinant. They act on the points of the Riemann-sphere by fractional linear transformations

$$
z \rightarrow z^{\prime}=\frac{a z+b}{c z+d} \quad, \quad \text { with }\left(\begin{array}{ll}
a & b \tag{2.1}\\
c & d
\end{array}\right) \in S L(2, \mathbb{C})
$$

(a) Show that performing two successive fractional linear transformations

$$
\begin{equation*}
z \rightarrow z^{\prime}=\frac{a z+b}{c z+d} \quad, \quad z^{\prime} \rightarrow z^{\prime \prime}=\frac{e z^{\prime}+f}{g z^{\prime}+h} \tag{2.2}
\end{equation*}
$$

is equivalent to performing the fractional linear transformation

$$
z \rightarrow z^{\prime \prime}=\frac{j z+k}{l z+m} \quad, \quad \text { with }\left(\begin{array}{cc}
j & k \tag{2.3}\\
l & m
\end{array}\right)=\left(\begin{array}{cc}
e & f \\
g & h
\end{array}\right) \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Remark: This immediately implies that the inverse fractional transformation is given by the components of the inverse $S L(2, \mathbb{C})$-matrix.
(b) Consider the map

$$
\begin{equation*}
z \rightarrow z^{\prime}=\frac{\left(x_{2}-x_{3}\right)\left(z-x_{1}\right)}{\left(x_{2}-x_{1}\right)\left(z-x_{3}\right)} \tag{2.4}
\end{equation*}
$$

Show that this defines an $S L(2, \mathbb{C})$ transformation if $x_{1}, x_{2}, x_{3} \in \mathbb{C} \cup\{\infty\}$ are all distinct. Use this in order to show that one can map any 3 distinct points on the Riemann-sphere to any other 3 distinct points by an $S L(2, \mathbb{C})$ transformation.
(c) Show that the cross-ratio

$$
\begin{equation*}
\left\langle z_{1}, z_{2}, z_{3}, z_{4}\right\rangle \equiv \frac{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{3}-z_{2}\right)} \tag{2.5}
\end{equation*}
$$

is invariant under an $S L(2, \mathbb{C})$ transformation.
For questions:
michael.haack@lmu.de

