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Exercise 1: Tensors and tensor densities

Consider a coordinate change
xµ → x′µ . (1.1)

Recall that tensors can be defined via their transformation properties under
(1.1). More concretely, the components of say a (1, 1) tensor Tµ ν transform
under (1.1) according to

Tµν → T ′µ
ν =

∂x′µ

∂xρ
∂xσ

∂x′ν
T ρσ . (1.2)

A (1, 1) tensor density T̃µν of weight w is defined by the transformation property

T̃µν → T̃ ′µ
ν = |J |w ∂x

′µ

∂xρ
∂xσ

∂x′ν
T̃ ρσ , (1.3)

with J = det
(
∂xµ

∂x′ν

)
(and analogous definitions for tensor densities of different

rank).

(a) Given a tensor Tµν , show that (detTµν)1/2 is a scalar density of weight 1.

(b) Consider now fields of tensors and tensor densities, e.g. Tµ ν(x) etc.. An
infinitesimal transformation (1.1) can be expanded x′µ = xµ− εµ(x)+ . . .. Show
the following infinitesimal transformations for a scalar field Φ(x), the metric
gµν(x) and the associated density (−det gµν)1/2:

δΦ = εµ∂µΦ , (1.4)

δgµν = εγ∂γgµν + (∂µε
γ)gγν + (∂νε

γ)gγµ = ∇µεν +∇νεµ,(1.5)

δ(−det gµν)1/2 = ∂γ(εγ(− det gµν)1/2) . (1.6)

The second equality of (1.5) assumes the metric compatible connection, i.e.
∇γgµν = 0. In order to verify that equality, use the Christoffel symbols Γµνρ =
1
2g
µσ(∂νgρσ + ∂ρgσν − ∂σgνρ).

Hint: A scalar field, for instance, is defined via Φ′(x′) = Φ(x) and δΦ in (1.4)
is given by δΦ(x) ≡ Φ′(x)− Φ(x).

Exercise 2: Equation of motion for a point particle

(a) Consider the variation of the point particle action

S =

∫ τf

τi

dτL
(
xµ(τ),

dxµ

dτ
(τ)

)
, (2.1)

1



under a variation δxµ(τ) of the particle trajectory. Assume that the variation
δx vanishes at τi and τf . Show that Hamilton’s action principle δS = 0 implies
the Euler Lagrange equations

d

dτ

∂L
∂ẋµ

=
∂L
∂xµ

, (2.2)

where ẋµ = dxµ

dτ (τ).

(b) Specify now to the case of a charged particle moving in an electromagnetic
field, albeit in flat space. Such a particle is described by the action

S = −m
∫
P
ds+ q

∫
P
dτAµ(x(τ))

dxµ

dτ
(τ) , (2.3)

where

ds2 = −ηµν dxµ(τ) dxν(τ) , (2.4)

P is the worldline of the particle and the integral along it amounts to an integral
from τi to τf when the worldline is parameterized by τ .

Use (2.2) to show that the equation of motion is

dpµ
dτ

= qFµν
dxν

dτ
, (2.5)

where

pµ = muµ = m
dxµ
ds

, (2.6)

Fµν = ∂µAν − ∂νAµ . (2.7)

(c) Now consider a neutral point particle moving in a curved space-time, i.e.

S = −m
∫
P
ds , ds2 = −gµν(x(τ)) dxµ(τ) dxν(τ) . (2.8)

Show that the equation of motion is the geodesic equation

d2xµ

ds2
+ Γµνρ

dxν

ds

dxρ

ds
= 0 , (2.9)

where the Christoffel symbols Γµνρ were given at the end of exercise 1.
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