String Theory I

Ludwig-Maximilians-Universität MÜnchen
Dr. Michael Haack

Exercise sheet 1

Due on October 25, 2019

Exercise 1: Tensors and tensor densities

Consider a coordinate change

$$
\begin{equation*}
x^{\mu} \rightarrow x^{\prime \mu} \tag{1.1}
\end{equation*}
$$

Recall that tensors can be defined via their transformation properties under (1.1). More concretely, the components of say a $(1,1)$ tensor $T^{\mu}{ }_{\nu}$ transform under (1.1) according to

$$
\begin{equation*}
T_{\nu}^{\mu} \rightarrow T_{\nu}^{\prime \mu}=\frac{\partial x^{\prime \mu}}{\partial x^{\rho}} \frac{\partial x^{\sigma}}{\partial x^{\prime \nu}} T_{\sigma}^{\rho} . \tag{1.2}
\end{equation*}
$$

A $(1,1)$ tensor density $\tilde{T}^{\mu}{ }_{\nu}$ of weight w is defined by the transformation property

$$
\begin{equation*}
\tilde{T}_{\nu}^{\mu} \rightarrow \tilde{T}_{\nu}^{\prime \mu}=|J|^{w} \frac{\partial x^{\prime \mu}}{\partial x^{\rho}} \frac{\partial x^{\sigma}}{\partial x^{\prime \nu}} \tilde{T}_{\sigma}^{\rho}, \tag{1.3}
\end{equation*}
$$

with $J=\operatorname{det}\left(\frac{\partial x^{\mu}}{\partial x^{\prime \nu}}\right)$ (and analogous definitions for tensor densities of different rank).
(a) Given a tensor $T_{\mu \nu}$, show that $\left(\operatorname{det} T_{\mu \nu}\right)^{1 / 2}$ is a scalar density of weight 1 .
(b) Consider now fields of tensors and tensor densities, e.g. $T^{\mu}{ }_{\nu}(x)$ etc.. An infinitesimal transformation (1.1) can be expanded $x^{\mu}=x^{\mu}-\epsilon^{\mu}(x)+\ldots$. Show the following infinitesimal transformations for a scalar field $\Phi(x)$, the metric $g_{\mu \nu}(x)$ and the associated density $\left(-\operatorname{det} g_{\mu \nu}\right)^{1 / 2}$:

$$
\begin{align*}
\delta \Phi & =\epsilon^{\mu} \partial_{\mu} \Phi \tag{1.4}\\
\delta g_{\mu \nu} & =\epsilon^{\gamma} \partial_{\gamma} g_{\mu \nu}+\left(\partial_{\mu} \epsilon^{\gamma}\right) g_{\gamma \nu}+\left(\partial_{\nu} \epsilon^{\gamma}\right) g_{\gamma \mu}=\nabla_{\mu} \epsilon_{\nu}+\nabla_{\nu} \epsilon_{\mu}, \tag{1.5}\\
\delta\left(-\operatorname{det} g_{\mu \nu}\right)^{1 / 2} & =\partial_{\gamma}\left(\epsilon^{\gamma}\left(-\operatorname{det} g_{\mu \nu}\right)^{1 / 2}\right) \tag{1.6}
\end{align*}
$$

The second equality of (1.5) assumes the metric compatible connection, i.e. $\nabla_{\gamma} g_{\mu \nu}=0$. In order to verify that equality, use the Christoffel symbols $\Gamma_{\nu \rho}^{\mu}=$ $\frac{1}{2} g^{\mu \sigma}\left(\partial_{\nu} g_{\rho \sigma}+\partial_{\rho} g_{\sigma \nu}-\partial_{\sigma} g_{\nu \rho}\right)$.
Hint: A scalar field, for instance, is defined via $\Phi^{\prime}\left(x^{\prime}\right)=\Phi(x)$ and $\delta \Phi$ in (1.4) is given by $\delta \Phi(x) \equiv \Phi^{\prime}(x)-\Phi(x)$.

Exercise 2: Equation of motion for a point particle

(a) Consider the variation of the point particle action

$$
\begin{equation*}
S=\int_{\tau_{i}}^{\tau_{f}} d \tau \mathcal{L}\left(x^{\mu}(\tau), \frac{d x^{\mu}}{d \tau}(\tau)\right) \tag{2.1}
\end{equation*}
$$

under a variation $\delta x^{\mu}(\tau)$ of the particle trajectory. Assume that the variation δx vanishes at τ_{i} and τ_{f}. Show that Hamilton's action principle $\delta S=0$ implies the Euler Lagrange equations

$$
\begin{equation*}
\frac{d}{d \tau} \frac{\partial \mathcal{L}}{\partial \dot{x}^{\mu}}=\frac{\partial \mathcal{L}}{\partial x^{\mu}} \tag{2.2}
\end{equation*}
$$

where $\dot{x}^{\mu}=\frac{d x^{\mu}}{d \tau}(\tau)$.
(b) Specify now to the case of a charged particle moving in an electromagnetic field, albeit in flat space. Such a particle is described by the action

$$
\begin{equation*}
S=-m \int_{\mathcal{P}} d s+q \int_{\mathcal{P}} d \tau A_{\mu}(x(\tau)) \frac{d x^{\mu}}{d \tau}(\tau) \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
d s^{2}=-\eta_{\mu \nu} d x^{\mu}(\tau) d x^{\nu}(\tau), \tag{2.4}
\end{equation*}
$$

\mathcal{P} is the worldline of the particle and the integral along it amounts to an integral from τ_{i} to τ_{f} when the worldline is parameterized by τ.

Use (2.2) to show that the equation of motion is

$$
\begin{equation*}
\frac{d p_{\mu}}{d \tau}=q F_{\mu \nu} \frac{d x^{\nu}}{d \tau} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{align*}
p_{\mu} & =m u_{\mu}=m \frac{d x_{\mu}}{d s} \tag{2.6}\\
F_{\mu \nu} & =\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{2.7}
\end{align*}
$$

(c) Now consider a neutral point particle moving in a curved space-time, i.e.

$$
\begin{equation*}
S=-m \int_{\mathcal{P}} d s, \quad d s^{2}=-g_{\mu \nu}(x(\tau)) d x^{\mu}(\tau) d x^{\nu}(\tau) \tag{2.8}
\end{equation*}
$$

Show that the equation of motion is the geodesic equation

$$
\begin{equation*}
\frac{d^{2} x^{\mu}}{d s^{2}}+\Gamma_{\nu \rho}^{\mu} \frac{d x^{\nu}}{d s} \frac{d x^{\rho}}{d s}=0 \tag{2.9}
\end{equation*}
$$

where the Christoffel symbols $\Gamma_{\nu \rho}^{\mu}$ were given at the end of exercise 1.

For questions:
michael.haack@lmu.de

