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ABSTRACT: The course covers the basic concepts of modern string theory. This
includes covariant and light-cone quantisation of bosonic and fermionic strings,
geometry and topology of string world-sheets, vertex operators and string scattering
amplitudes, world-sheet and space-time supersymmetries, elements of conformal
field theory, Green-Schwarz superstrings, strings in curved backgrounds, low-energy
effective actions, D-brane physics.
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1. Introduction to the course

1.1 Historical remarks

String theory arose at the end of sixties in an attempt to describe the theory of
strong interactions. In 1969 Veneziano found a beautiful formula for the scattering
amplitude of four particles. This amplitude comprised many features that physicists
expected to be found in the theory of strong interactions. It was realized very soon by
Nambu and Susskind that the underlying dynamical object from which the Veneziano
formula can be derived is a relativistic string. The fundamental difference of strings
from the theory of point particles is that strings are extended, one-dimensional,
objects; when string moves through space and time it sweeps two-dimensional surface
called the string “world-sheet”. The strings can be of two types: open — with topology
of an interval and closed — with topology of a circle.

Subsequent investigations revealed however severe difficulties to treat the string
as the theory of strong interactions. These difficulties are

1. Existence of a “critical dimension”.

2. Existence of a massless spin two particle which is absent in the hadronic world.



If one tries to construct the quantum mechanics of relativistic strings one finds
that mathematically consistent theory exists if and only if the dimension of space-
time where string propagates is 26. The number 26 was named the “critical dimen-
sion”. On the one hand, it was pretty remarkable and unexpected to find an example
of physical theory which puts restrictions on space-time where it is defined. On the
other hand, it was certainly not clear why a theory that shared at least some qualita-
tive features with hadronic physics should exist in 26 dimensions only. A subsequent
discovery of QCD (Quantum Chromo Dynamics) as the most appropriate candidate
to describe the theory of strong interactions led to a considerable loss of interest to
string theory.

In 1974, Scherk and Schwarz came up with a proposal to completely alter the
view on string theory. They suggested to consider the massless spin two particle
absent in the hadronic world as the graviton — the quantum of the gravitational
interaction. Indeed, this particle neatly fits the properties of the graviton — string
theory predicts that this particle interacts according to the standard laws of General
Relativity. Gravitational interactions have a natural scale, called the Planck mass,
which is around 10 GeV. This is a huge number in comparison with characteristic
energies of hadronic physics, 100 — 200 MeV. Thus, according to their view, string
theory could provide the unifying description of all the particles and matter forces,
including gravity and it operates on a new fundamental scale.

Even if one accepts that quantum mechanics of relativistic strings can be defined
in the unusual number 26 of the space-time dimensions, another problem arises. Such
string does not contain fermionic degrees of freedom and it predicts the existence of
a particle with the negative mass squared: m? < 0. Such a particle, tachyon, is a
source of instability and its existence indicates that either the theory is ill-defined
or it is formulated around a “wrong” ground state, or as physicists say, around a
“wrong” vacuum. Critical dimension, tachyon and absence of fermions were the
puzzling features the string theory had to face.

The status of string theory changed again with the discovery of supersymmetry.
All universe is made of two fundamental types of particles: bosons and fermions.
Fermions constitute all the matter and bosons mediate interactions of the matter
particles. Supersymmetry is a new type of symmetry between bosons and fermions
(Wess and Zumino 1974). Many physicists hope today that supersymmetry could
provide an underlying principle for unification of all interactions.

The first success in incorporating supersymmetry in string theory was achieved
in 1971 by Ramond, who constructed a string analogue of the Dirac equation (the
spinning string). Shortly afterwards, Neveu and Schwarz constructed a new bosonic
string theory. They realized that the two constructions were different facets of a
single theory - an interacting superstring theory containing Neveu and Schwarz’s



bosons and Ramond’s fermions. The supersymmetry of the two-dimensional string
world sheet was recognized by Gervais and Sakita in 1971. This was advent of the
NSR (Neveu-Ramond-Schwarz) superstring.

In 1972 Schwarz demonstrated the consistency of the superstring theory in 10 di-
mensions. Instead of 26 found for purely bosonic string, the critical dimension for the
NSR string appears to be 10. In 1977 Gliozzi, Scherk and Olive realized that further
conditions should be imposed on the spectrum (the GSO projection mechanism) of
the NSR string which lead to both the so-called space-time supersymmetry (to com-
pare with the world-sheet supersymmetry mentioned above) and to the removal of
tachyon. Thus, superstring theory has at least two advantages in comparison with
bosonic strings: critical dimension 10 < 26 and the absence of tachyon. It also turned
out that the GSO projection can be imposed in two different ways which lead to two
different types of superstrings, called the Type IIA and Type IIB.

String theories have a natural particle limit, when the length of string vanishes.
In this limit superstrings give rise to the low-energy effective theories, known as
supergravities. These theories can be defined in a way completely independent of
string theory: they can be thought of as supersymmetric generalizations of the pure
Einstein gravity. As is known, attempts to quantize gravity in the standard frame-
work of quantum mechanics fail because gravity is a non-renormalizable theory (there
are infinitely many divergent graphs with any number of external legs and with an
arbitrarily high index of divergence, cf. the course on Quantum Field Theory). Su-
persymmetric theories tend to be less divergent than non-supersymmetric ones which
gave initially a hope that supersymmetry could cure the nonrenormalizable infinities
of the quantum gravity. It seems that supergravities themselves are still not capable
to solve the divergency problem!. Quite remarkably, there is a strong evidence that
the divergency problem of quantum (super)gravities is resolved by string theory.

Resolution of the four-fermi interaction. At high energies the weak force is

mediated by a heavy boson.

'For instance, it is unknown if the so-called N = 8 supergravity is finite or not.



To get a better feeling why it happens it is convenient to envoke an analogy
with the theory of weak interactions. Trying to describe the decay of the neutron by
the Fermi-type Lagrangian containing the quartic, point-like, interaction vertex one
finds irremovable ultraviolet divergencies at higher loop orders. Again, the reason
is that the corresponding theory of Fermi-interactions in non-renormalizable. The
solution of this problem lies in a fact that at higher energies (more than 100 GeV),
the pointlike vertex gets resolved and the interaction is mediated by a heavy W-
boson. In the new theory one has qubic vertices and this ultimately makes the
theory renormalizable.

Very similar phenomenon occurs in string theory. Expanding the Einstein-
Hilbert action /—gR one gets more and more complicated point-like vertices which
render the theory non-renormalizable, analogously to the old Fermi theory. In oppo-
site, in string theory all these vertices get dissolved by the exchange of the massive
string states. String states form an infinite tower of particles of arbitrarily high mass
and spin and all of them participate in the interaction process. Resolving the ultra-
violet divergency problem string theory appears to be a natural candidate for the
theory of quantum gravity.

There is a still an important question how to relate the superstring theory defined
in a ten-dimensional space-time with a our conventional four-dimensional physics.
The basic approach to obtain four-dimensional theories is along the old ideas of
Kaluza and Klein and it consists in compactifying of the ten-dimensional theory down
to four dimensions. In this case, the four string coordinates remain uncompactified,
while the other six are curled up and parametrize a compact space of a very small
size (of the order of the Plank length). It appears that the internal space cannot be
completely arbitrary — it must have vanishing Ricchi-curvature.

One of the major obstacles to build a unified theory is the left-right asymmetry
recorded in the present days experiments. A theory in which there is an asymmetry
between the left and the right must contain chiral fermions. Chiral fermions are
usually a source of anomalies, i.e., of breakdown of classical symmetries by quantum
effects. Anomalies render a theory eventually inconsistent. Only in some special,
“rear” cases anomalies cancel (as it happens for instance for a standard generation
of quarks and leptons, cf. the course on the Standard Model). In higher space-time
dimensions it becomes even more non-trivial to achieve cancellation of anomalies.



TypellB
Egx Eg heterotic

TypellA SO(32) heterotic

String theories

Remarkably, in 1983, Alvarez-Gaumé and Witten demonstrated that anomaly can-
celled out in the chiral Type IIB supergravity theory. This was nice, but the cor-
responding theory was still far from phenomenology. Shortly afterwards Green and
Schwarz (1984) showed that cancellation of anomalies in the open superstring the-
ories singles out two gauge groups, namely SO(32) and Eg x Eg. The gauge groups
SO(32) and Eg x Eg are realized in the so-called “heterotic string” which is a hy-
brid of the old d = 26 dimensional bosonic string and the d = 10 superstring. It
was shown that compactifying the theory down to four dimensions one can obtain
several generations of the chiral fermions. It was a first example of a string theory
whose low-energy limit was not in an immediate conflict with all known physics.

One of the important questions is why there exists non a unique but several
consistent string theories. With a recent advent of the string dualities and D-branes
an interesting new picture start to emerge (but still very far from being complete),
according to which different superstring theories provide different descriptions of
the one and the same theory valid in different regimes of the coupling constant
parameters.

Recommended literature:

1. M. Green, J. Schwarz and E. Witten, “Superstring Theory”, volume I and II,
Cambridge University Press, 1987.

2. D. Liist and S. Theisen, “Lectures on string theory”, Lecture Notes in Physics,
Springer Verlag, 1989.

3. 't Hooft, “Introduction to String Theory”, Lecture Notes, 2005.



4. B. Zwiebach, “A first course in string theory”, Cambridge university press,
2004.

5. J. Polchinski, “String theory”, volume I and II, Cambridge university press,
1998.



2. Relativistic particle

Consider relativistic particle of mass m moving in d-dimensional Minkowski space:
N = (=1, +1,+1,...,+1).
S=—-a«a / ds
S0

Note that fsso ds has maximum along straight lines, this explains the sign

Action

W

in front
of the action.

Embedding z* = x#(7):

dxt dz, . dz+ dxv
dr dr Mg ar T
If x# = (er, &) then
dr
ds = 2 _ 552 U — —
s c? — 2, U=

Thus, the action is

T1 ,EQ
S = —ac/ 1 ——dr
c
70

The Lagrangian in the non-relativistic limit

[ 2 7> at?
Z = —ac 1—§d7——ca(1—@>+...——ac+§+...

To get the standard kinetic energy one has to identify
a = mc

In what follows we will work in units in which ¢ = 1.

The action is invariant under reparametrizations of 7:
dxt = ¢(1)0-a"  aslong as &(m) =&(m) =0
Let us show this

0(/—dpit) = ———=(—24"6i,) = ———=0"0-(i)) =



Therefore, we arrive at

35 =—m [ 0,(6y/=5,) = —m|ey/ 5| 25 = 0.

i.e., the action is indeed invariant w.r.t. the local reparametrization transformations.

The most elegant way to quantize a system is to use the Hamiltonian formal-
ism?. Let us therefore try to develop the Hamiltonian (canonical) formalism for the
relativistic particle. The canonical momenta

0L 0

i
= — (/= ") = M
= gn gV ) N
We notice that
PP =pupt =-m’

Thus, we see that the canonical momenta are not independent, rather they obey the
constraint
p=p*+m’>=0 (2.1)

Constraints which follow just from the definition of the canonical momenta without
using equations of motion are called primary constraints. Mass-shell condition for
the point particle is a primary constraint.

In general the number of primary constraints is equal to the number of zero
eigenvalues of the Hessian matrix:

_ Opy rPY
i Qirdir
For the relativistic particle we have only one eigenvector #* with zero eigenvalue
Op,, m Tha”
—7' = —=0, + m———= | " =0
oz \/ Lt 8 (_iuiu)g

The inverse function theorem stats that absence of zero eigenvalues of the Hessian

is a necessary condition to be able to express the velocities ## via the canonical
momenta p*. Dynamical systems with the Hessian of non-maximal rank are called
singular.

Constraints which have vanishing Poisson bracket:

{61,051 =0

2About the Hamiltonian approach to dynamical systems of classical mechanics, the reader may

consult appendix A.



are called the first class constraints. The mass-shell constraint for the relativistic
particle is of the first class.

There is another action for the relativistic particle. It has the following two
characteristic features

e it does not contain square root
e it admits generalization to the massless case

Introduce e(7) the auxiliary field on the world-line.

s=y ), ol (G w) -]

Equations of motion:

d /1
for x# — (—i“) =0
dr \e
1 1
for e(T) - 2—62¢"jru — §m2 =0 = i’+mi’=
The last equation can be solved for e:
1
2 _ 2
e = —ﬁl’
which leads to
d [ m -u}
—_— | ——=X =
dr Ly/—z,zv

which is nothing else as the old eom for z#. Also if we substitute solution for e into
the new action then this action reduces to the old one:

1 T1 /2 T1
S:—/ dT[ T ° mQ] :—m/ drv —2 (2.2)

2 V=12 m 0
Al
» 1 2 1 -2 2
pM = ¢ — p° = _29;' = —m
& e

but this time due to equations of motion for e. Equation of motion for e is purely
algebraic. The Hessian
’r 10 . 1

; — = 7Ty = —
oxrdiv  edir " enW

is of maximal rank.

The constraint p? + m? = 0 does not follow from the definition of the canonical
momentum along, but one has to use equations of motion. Constraints which are
satisfied as consequences of equations of motion are called secondary.

— 10 —



The action has local gauge symmetry which is now

oxt = &t
de = 0, (e)
The first symmetry transformation is generated by the constraint p? 4+ m?:
Syt = n{p* + m* at} = 2mpt = g:i:“ = £t n=ef.
The second transformation for e is easily derived from e? = —#x'? Thus, in our

new formulation we have the set of fields (x,,e) and reparametrization symmetry
which acts on them and leaves the action invariant. This reparametrization freedom
can be used to put e = % which results into the following equation

#,=0

This is not the end however, because there is eom for e which now reads as 2 = —1.
Complete eoms are

. .9

z,=0, Tt =-1

Thus, the relativistic particle moves freely in Minkowski space over time-like geodesics.
Space-like and light-like straight lines are excluded by the constraint 2 = —1.

In the case of the massless particle we can set e = 1 and get eoms
i, =0, i?=0

In both, the massive and massless cases, the constraints are integral of motions: they
are preserved in time due to the dynamical equation Z, = 0.

Finally, we treat the relativistic particle in the so-called first order (the Hamil-
tonian) formalism. To this end we have to represent the initial Lagrangian in the
form

2 = pujf# + a%ost

where p, = %x’” and express in %, the derivatives &* via p*. In doing so we obtain
the phase-space Lagrangian

) e
L =p it — 5(]02 +m?)

We clearly see that the auxiliary field e we introduced in our second formulation
plays here the role of the lagrangian multiplier to the constraint p? +m? = 0. By
using the gauge freedom we can fix the gauge e = W% and the physical Hamiltonian
becomes in this case 1
H=_—(p*+m?
5 (1 )

— 11 -



which is in complete agreement with our previous discussion (We actually have to
identify § = e). This Hamiltonian® should be provided with the constraint p*>+m? = 0
which is the eom for e.

More generally, evolution of a singular system is governed by the Hamiltonian

H = Hcan + Z Xn(bn

Here {¢,} is an irreducible set of primary constraints and H.,, is the canonical

Hamiltonian:
Hcan - pui’u -

Only on the constraint surface ¢, = 0 the Hamiltonian H coincides with H,,. In

our present case
v

T,x
\/ —xux“

and Hamiltonian dynamics of the system is due to the mass-shell condition only. The

H.,=m — (—my/—&,3") =0

choice of the coefficients x,(7) in H is equivalent to the choice of the gauge.

0
H:Hcan+X¢:_(p2+m2)a X= 5=
2m
We get the time-evolution
de® 0 N
dr = g T = o=

Therefore 22 = —2. Choosing § = 1 means that we identify the time variable with
the proper time. This nicely illustrates the general point: in order to write down the
evolution equations in a system with local gauge invariance one has first to identify

the “time” variable.

Other gauge choices are possible. For instance, the static gauge consists in
imposing the condition t = 2! = 7. Equation for p; = p; allows us to determine e:

oL _dt oo 1
oprdr T T

The physical Hamiltonian dual to the world-line time 7 coincides in this case with
the momentum p; conjugate to t: H = p,. It can be found from the eom for e:

Pr=mi=0 = —p+pP+m’=0 = p=pP+m?.

Note that here p'= {p;} with i =2,...,d.

3The gauge e = % is a close analogue of the conformal gauge to be considered for the string
case.

- 12 —



This gauge choice leads to the common Hamiltonian of the relativistic particle

H=+/p>+m?.

This exercise with the relativistic particle also shows how sensitive is the Hamiltonian
to the choice of the gauge. Fixing the gauge e = 1 we get the polynomial Hamiltonian,
while fixing the static gauge the Hamiltonian appears to be a non-linear square root.

Finally, there is another type of gauge known as the light-cone gauge. We intro-
duce the light-cone coordinates

t=at—a" md:x++m_
L, . _ L, . _
pe = 50" +p), pa=5p"—p)
2 2
and denote the other “transverse coordinates” x; and p; with ¢ = 2,...,d —1 as ¥

and p. Then the phase space Lagrangian becomes

. L, € _
L =ipt =i Ay S(-p T+ )

The light-cone gauge consists in choosing z* = 7. From the kinetic term of the
Hamiltonian it is clear that the variable ™ is conjugate to p~ and therefore p~ is
the physical Hamiltonian. It can be easily found from the equation for e:

1

= F(ﬁz +m?)
The gauge-fixed Lagrangian becomes

1
—

I
K
|

L =i pt+ip—p =ip—H

S

The variable p* is canonically conjugate to z~.

Notice that both in the static and in the light-cone gauge the number of physical
degrees of freedom is 2(d — 1). The auxiliary field e was solved in terms of physical
fields. The physical phase space inherits the canonical Poisson bracket.

In the next lecture we extend these different approaches to dynamics of relativis-
tic particles to relativistic strings.

3. Classical relativistic bosonic string

3.1 Nambu-Goto string

Two-dimensional surface traced by string during its time evolution is called world-
sheet. The action for a relativistic string should be a functional of a string trajectory,
i.e. of the world-sheet.

— 13 —



The Nambu-Goto action

oOXHoXV
Sna = —T/dA— —T/d2 \/ det 800‘ OB n;w) (3.1)
This we can write as
XMXM XMX, y N2 2 12

Thus,

Sng =T / d%\/ (XX")?2 - X2X7? = T / A%/ T
Here I' = detl', 3, where

OXH 0X"

Lot = Ggn 97

(3.3)

is the metric induced on the string world-sheet.

What is a local characteristic of the string world-sheet? Consider a point on the
world-sheet and the space of all vectors tangent to the surface is at this point. These
vectors sweep two-dim vector space. The physical propagation of the string requires
that in these two-dim vector space there is a basis built over two vectors one of them
is time-like and another is space-like.

Recall the standard definitions from the theory of special relativity. We have the
invariant interval between two infinitezimal events:

3
—ds? = Nudxtdz” = —dx dx® + Z dz;dx; . (3.4)
i=1

e If ds? > 0 the interval is called time-like. In this case the different events which
happen in the same space-point are always time-separated.

o If ds? < 0 the interval is called space-like. In this case events which happen at
the same time are space-separated.

o If ds?> = 0 the interval is light-like. Vectors v* obeying the condition v? =

N’ = 0 are called light-like or null.
Identify 2° =t = 7. Then
X“Xuz—l—l— < 0 < time — like

X"X] = (X")? > 0 < space — like

— 14 —



This situation should persist in any Lorentz frame. At any point on a string world-
sheet one should always be able to find two vectors: one is time-like and another is
space-like.

Consider S*(\) = ‘95‘;“ + )\GX“ must be space- or time-like as A varies.

SHS, = X2+ 20X X'+ N2 X" = y(\).

Discriminant must be positive then there are two roots and therefore the regions of
A with time- and space-like vectors. Discriminant is

(XX')? - X2X"?>0.

This condition guarantees the causal propagation of string.
Action is invariant under reparametrizations

oXH =¢£20, X", &% =0 on the boundary
Two possibilities:
e Open strings: 0 <o <7

e Closed strings: 0 <o <27

:/ dT/ do
1 0

Equations of motion:

Variation
(;ii _ / dr / do (—a SXP + 5%805)(“) (3.5)
_ / dT/ da( +o, é‘sﬁ) (3.6)
+ /0 dachX“] ;;i 5X"|o= (3.7)
e Open string boundary conditions: 22-(1,0 =) = 22.(1,0 =0) =0

o XM(o+2m) = XH"(0).
Canonical formalism. Momentum

0.L _T(XX’)X’“ — (X')2X*

X+ \/<XX/)2_X2X/2

=

We see that

PrX) =0
PP, +T?°X"? =0

— 15 —



Exercise Show that the Hessian matrix has for each o two zero eigenvalues cor-
responding to X* and X'~
Equations of motion are very complicated:

0 [(XX)X" - (XX 0 [(XX)X# - (X)2x"

< — =0.
or \/(XX’)2 — X2X72 do \/(XX’)2 — X2X72

Ezercise Think how reparametrization invariance can be used to bring this equa-
tion to the simplest form.

3.2 The Polyakov action

Introduce a word-sheet metric h,g(o, 7). Consider the action
T 2 af v
Sp = -3 d“oV —hh®" 0, X" 03 X" 1 (3.10)
Here h = dethqg.
3.2.1 Symmetries

The reparametrization tnvariance

SXH = €20, X"

Shap = E70,hap + han 058" + hgy0a8)

Sh*P = €10, — h*10,£° — hP19,¢”
O(V=h) = 0a("V=h)

The Weyl invariance
The Weyl invariance consists in rescaling the metric

hag — € 28O 5 (3.11)

3.2.2 Equations of motion

First we discuss the equation of motion for the intrinsic metric hog. This discussion
amounts to the introduction of the two-dimensional stress-energy tensor which is a
response of the action to the change of the metric

S, =—T / d*ov/—h T,36n*?

that is
1 05,

T\/—h 6ho?

T =

— 16 —



Thus, eom for h,g is
Tos = 0.

Performing a variation we obtain
1 1
Top = 50 X" 05X}, — L—lhaﬁmﬁav)(#agxu. (3.12)
From here we immediately notice that the stress-energy tensor is traceless

T¢ = T,sh™ =0

This is a direct consequence of the Weyl symmetry.

Due to the equations of motion for the scalar fields X* this tensor is covariantly
conserved:

VT, =0.

This can be easily derived as follows. Consider a variation of the action:

A A
_ 2 aB
0S, = /d U(éhaﬁéh + 5XM5XM>
5L

We see that on the equations of motion for X*, i.e. on £ = 0, we have

5Sp = —T/dQO'\/ —h Taﬁéhaﬁ = —QT/dQUV —h Taﬁvagﬁv

where on the r.h.s. we specified the variation to be a diffeomorphism transformation.

The last expression can be integrated by parts and, die to 0.5, = 0, we conclude that
V®Tas = 0. This derivation is similar to the derivation of the charge conservation
law in electrodynamics, the latter being a consequence of the gradient invariance.

Let us show directly that V¥T,z = 0. We have
1
2V T3 = V¥0a X 03X, + 0o XHV 05X, — EVB h’yéan‘LBéXu (3.13)
Since V¥94 X* = 0 is eom for X* we find

1 U U
2V Tap = 0a XMV 05X, — ~0p R0, XH05X, =

1
B XMh OV 505X, — 5aﬁm“awx“aéxu — R0, X" 950X, =

1
s s s s
= 9o X"h0503X ) — 0a X" 05X h* T55 — 5aﬁhw Oy XHO5X, —h° 0, X 0508X,, .
Here the first term cancels with the last one and we find
s 1
2V Typ = —8a X0 X, h*T5 5 — 5aﬁh“"ffaw)(*‘fsr;)(M

Only symmetric part of ho“;l"gﬁ = %ho“;h”’ Oshpg + 0ghps — Ophgs in the indices a, s matters! This translates into symmetry of
3, 6. Finally,

2V T,p = 7%#566%5}15?6&)&‘65}(“ - %aﬁm“awx“atgxﬂ =o. (3.14)
Equations
a B8 _
Y =0, VP T,s =0
are consequences of the Weyl and diffeomorphism symmetry, respectively. These

two are gauge symmetries, and the relations above can be understood as the second
Noether theorem.

- 17 —



3.2.3 Conformal gauge

Consider the conformal Killing equation
§70vhap + hay0sE" + hpy0.87 = Ahag (3.15)

and solve it assuming the conformal gauge

hop = € (_01 (1)) (3.16)

This equation can be split as follows. First we take a = 7 and # = ¢ and using

h,. = 0 we find
h‘r‘raag‘r + haaano =0 — aogT - 87'60 =0
Second, we take o, 3 = 7 and then o, § = 0. We get

gfyavhﬂ' + 2h7’7—8'r€7— == Ah-m—
g’ya’yhaa + 2h0'080'€a == Aho’o’

1.e.

SN0 by + 20.67 = A
N0, hyy + 20,67 = A

Subtracting one from the other we get
0:§" — 0,67 =0.
Thus, the conformal Killing equations reduce in the conformal gauge to

0™ — 0,67 =0
0,6 — 0,67 =0 (3.17)

or equivalently

(0r +05)(§ —&7) =0
(0r = 0,)(§7 +&7) =0 (3.18)

+

By using the world-sheet light-cone coordinates = = 74 ¢ this can be reformulated

as?

8+£7 - 0 - 8,€+ .

4The basic relations are 8, = 0y +0_, 0, = 04 — 0_, O+ = %((97 + 80).
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Thus,

=), & =¢(0)
solve the conformal Killing equations. This is a freedom (reparametrization + Weyl
rescaling) which does not destroy the conformal gauge condition.

The final remark concerns restrictions on ¥ following from the periodicity con-
ditions. Indeed, for the Weyl factor A we have

gTaTCb + gaaagb + 287§T - A(J> 7—) :

The factor A must be periodic in o because the metric h,g is. Since ¢ is periodic
the allowed solutions £+ of the conformal Killing equation are those which lead to
periodic A. One can easily see that this implies that £* must be periodic in o.
3.2.4 Polyakov string in the first order formalism.

In the first order formalism the density £ = L(o, 7) of the Polyakov Lagrangian takes
the form

1 TO
L= BOX" o (PP + 72X X) + z— (Px™) (3.19)

The conformal gauge consists in imposing the following two conditions

’YTT — _1, ry’TG' — 0‘
The gauged-fixed Lagrangian density is
1
L = PO X" = — (PP T2, X7 (3.20)

and the Hamiltonian density is

|
H= o <PMP“ + TQX,;X'M>

The phase-space Lagrangian shows that the variables (P,, X,,) are canonical, i.e. the
corresponding Poisson bracket is

{X"(o,7), X" (0", 7)} ={P"(0,7), P"(c',7)} =0, (3.21)
{X*(o,7),P" (o', 7)} =n"d(c — o). (3.22)

The dynamics of the system in the conformal gauge is governed by the Hamiltonian

I
H= / do H = — / do (P, P+ T2X,X")

Equations of motion

. 1
Xt = {X"H} = ZP". (3.23)

Pt = {P" H} =TX", (3.24)
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which result into
Xr X" —[OXM =0

We see that we have two constraints
Cy=PB,P'+T°X X", Cy=PX" (3.25)

We find the following Poisson brackets

{C1(0),Ci(0")} = 4T%0,C4(0)d(0 — o) + 8T*Cy(0)0,6(0 — '), (3.26)
{Cy(0),Cy(c")} = 8,C1(0)d(0 — 0') +2C1(0)0,0(c — o), (3.27)
{Cs(0),C1(0")} = 0,C1(0)d(0 — ¢') + 2C1(0)Dy6(0 — o), (3.28)
{Cy(0),Cy(0")} = 0,C5(0)d(0 — ') + 2C5(0)0,0(0 — o). (3.29)
Instead of the constraints C; and C5 we can equally consider their linear combi-
nations
1 1 ,
T,, = 8T2(C’1 +2TCy) = 8T2(P +TX ) (3.30)
1 1 ,
T,, - W<Cl - QTCQ) = @(PN - TXN>2 . (331)

Their Poisson algebra becomes

{Ti(0), T i (o)

}
{T-—(0), T--(0")}
{4 (0), T-—(0")}

(a Ty (0)8(0 — o) + 2T, (0)9,8(0 — a')) ,

(8 T (0)d(c —0o')+2T__(0)0,6(c — J’)) ,
(3.32)

Constraints T, and T__ Poisson commute and form two independent Poisson alge-
bras!
Now one can easily find the evolution equations for 7, and 7" _. We have

O Ty = {Th+(0),H} = 0, T+ = (0-—0,)T4+=0-T,1 =0,
o7 _={T (0),H}=-9,T . = (0-+09,)T_=0,T _=0,

Thus, we see that evolution equations imply that
Tyy =Ty (07), T =T__(0o7). (3.33)
The Hamiltonian itself is

2m
H:2T/ dO—(T+++T__),
0

i.e. it is a sum of zero modes of the left- and right-moving constraints.
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3.3 Integrals of motion. Classical Virasoro algebra.

String has an infinite set of integrals of motion (quantities which are conserved in
time due to equations of motion) which are constructed with the help of Ty..

Note that Ty themselves are not the good conserved quantities as they depend
on time! However, if we define the Fourier components

27
L, = QT/ do ™ T__(o,7)
0

then®

dL,,
dr

27
2T/ do <8Teim(T_U)T__(0, )+ ™9 T (o, 7')) (3.34)
027r ) )
= 2T/ do (imezm(T_”)T__(o, 7) — ™9, T__(o, 7'))
0

2
= 2T/ do <imeim(T*U)T,,(0, T)+ (9geim(T*”)T,,(U, 7')) =0
0

Thus, the Fourier components of the stress-energy tensor provide an infinite set of
the conserved constraints. Analogously, we define

2w
Ly, = 2T/ do ™" T, (0,7),
0

which is also an integral of motion. Note that in this derivation we never used the
constraints T,y =0=T__.

The Poisson brackets of the L,, and L,, generators are

{Lm, Ly} = —i(m —n)Lyin,

(Lo L} = —i(m — 1) Lo (3.35)
(Lo, In} = 0
(Lo, Ln} = 4T2/dada'e—im"—m"/{t,(o),T,,(a’)}
= 72T/dodcr/eiimgii"6, 780T7,(0')6(0 —o')+2T__(0)858(c — a/)7 =

. ; . .
- —2T/da —T__(6)0ge WM 4 0e=imIp (5)9,eT "7

= —i(m —n) 2T/daeii(m+")6T,,(u) = —i(m —n)Lyin

This is the so-called Wit algebra. This algebra acts on X*(o,7):

{L,,, X"} =2T /0 Wdo’eim"/_{T__(o’),X“(a)} =

| L
= 5" (X = XM = ™)X (3.36)

When finding the time dynamics of L,, one has to remember that the function L,, has an

explicit time-dependence and, therefore dj;" = 0; Ly, + {Ln, H}.
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Analogously,

27
(L X} = 27 [ 40’ T (o), X0 (o) =
0

- _%eimf’*(}(# + XM = —e™7 9, X" (3.37)

To summarize
{Lpy, XM} = —e™ §_X", {Lp, X"} = =™ 0, X", (3.38)

In particular,
{Ly— Lo, X"} = 0, X" (3.39)

i.e. Lo—L generates rigid o-translations. The transformations we consider transform
a solution
OX* =0

into another solution of this equation. Indeed, we have for instance
9.0 (eimd‘an#) — Mmoo ™ 9,0 XM 4 M9 9,0 XP =0

as the consequence of 0,0_X*" = 0.

(P, X)

Fig. 1. The phase space of string. The Virasoro constraints L,, = 0 = L,
define a time-independent hypersurface on which the dynamics of string
takes place. This hypersurface remains invariant under the action of L,,’s
and L,,’s.

Even more generally, for any periodic function f we define

21
Lf = / dO'f(O'+)T++ .
0
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Then we see that

0= /027r dod_ <f(a+)T++) = 0,L; — /0% d080<f(a+)T++>.

Thus,
2T
0.L; = / da&,( f(a+)T++> —0.
0

To summarize: we see that upon fixing conformal gauge we are still left with
gauge freedom. It corresponds to reparametrizations of the special type (solutions
to the conformal Killing equation):

ot = &(07), o =& (o),
where £* are two arbitrary functions periodic in o.

Finally, for the case of open string we define
L, =°T / do (ei’W*T++ n eimf’*T__> . (3.40)
0
The point is that there appears additional boundary terms which show that the old

L,, and L,, are not separately conserved. With our new definition of L,, we obtain

dL,,

T
S ot / do <z’melm"+T++ ™Y T 4 ime™ T T 4 e“m’aTT__)
T 0

™
= 2T/ do (imesz+T++ 4 ezma+80T++ 4 imesz*T__ _ ezma*aaT__)
0
™
= 2T/ do (imelm"+T++ — Goezm"+T++ +ime™ T__ 4+ 0,e™7 T__
0
(

+ 2Tem(T+m) <T++(7r,7) ~ e—%imT__(w,T)) _oTeimT (T++(O,T) T o,T))
The bulk term vanishes as before and we left with the boundary term

dL,,

= T (Tys(m ) = T, 7)) = 2T (T4 (0,7) = T (0,7))

Due to the open string boundary conditions X" (m,7) = 0 = X"*(0,7) we obviously
have

T++(7T’ 7—) = T——(Wv 7—) ) T++(0> T) = T——(0> T)

Therefore, the boundary term vanishes and, therefore, L,, are conserved quantities
in the open string case.
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3.3.1 Solutions of the equations of motion

Here we are going to discuss the solutions of the string equations off motion
OX* =0

which arises upon fixing the conformal gauge.

o Closed strings. We have

XH(o, 1) =X (1 +0)+ Xp(r—0)

where
1 Ph i 1
I . _ - . - —in(t—0)
Xp(r—o0)= 2xﬂ + _47TT(T o)+ N7r %ﬁ% naﬁje (3.41)
"
X = —xH —’“ —in(r+0) 3.42
T +o0) 5% ~|—47TT(7‘—|- \/FZ (3.42)
Since X*(o,7) are real then (a*, p#) are real as well and
= (i) at, = (ap)!
Let us define the zero modes as
1
ol =ah = .
e
Oscillators obey the Poisson relations
{O‘lntfu O‘aym} = {O_‘Hm’ @Z} = _imém-i-nnm/v
fat,al} =0 (3.43)
{0} = 0.
The Virasoro constraints become
1 & R
=3 Z Ay Oy L, = 5 Z Oy Oy - (3.44)

e Open strings Solution of the wave equation with the open string boundary
conditions is

X*(o,7) =a" + —7' + — T cosno . (3.45)

\/7r_T Z —a”e
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Oscillators obey the Poisson algebra
{ad, an} = —imopan™
{at,p"} = . (3.46)

If we define the zero mode as aff = \/%p“ then the generators of the open
string classical Virasoro algebra are realized as

1
L= > b o (3.47)

The hermiticity property of the non-zero modes are o, = (o).

3.3.2 Poincaré symmetry. String tension.

The Noether currents of the Poincaré symmetry

P = =TV —hh*’95X,, (3.48)
JH = —TV—=hh*?(X,05X, — X,05X,) (3.49)

Here P, is a current corresponding to translational invariance X* — X* + a, where
a is an arbitrary constant, and J*” is a current corresponding to Lorentz rotations
XH* — AEXY where A is a (constant) matrix comprising the parameters of the
Lorentz transformation. We see that

J = X, PS — X, P2

Both currents are conserved due to equations of motion of X# and their 7-components
integrated over o define the conserved charges (for the open string case integration

2 2
pr = / doP", JH = / doJ" .
0 0

Imposing the conformal gauge and using the fundamental brackets for (X, P) one

rans from 0 to )

finds the following Poisson algebra

{(P". P} =0
{P", J?} =t PP — P P° (3.50)
{JH JPTY = e JVO 4t JHe — P JHT e JVP

Substituting solution for X* one finds

21
P“:T/ do X" = p",
0
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i.e. the total mass momentum of string coincides with p*.

The total angular momentum of closed string in the conformal gauge is is defined as
2
JW’zzi/i do(XFXY — XVXH), (3.51)
0

Substituting the oscillator expansion we get

JH = ghp” — aVpt +SH + SHv 7
———

o

where
SH — Z %(O/‘nar’; —a”,ak), (3.52)
n=1
SH = —j Z %(dﬁn@; —a’,ak). (3.53)
n=1

For the case of open string expressions are the same (again integration runs from 0 to
T) except S* is absent. Here (# is the angular momentum of string and S + SH
is its internal spin.

Let us show that both P* and J*” are invariant under the action of the Virasoro
algebra. We have

{Lin, P*} ={Lp,p"} =0 (3.54)

as L,, does not contain x#. Let us separate the zero mode part® of L,,

1
Ly, = ooy, + 5 Z by

n#0,m
We first compute
1
{L, 0"} = {afamp, 2"'p” — a"p!'} = Umplp’, 2t'p” — 2"p"'} =
VAarT
= alah —alag . (3.55)
Second, since S* = — Zk#) %Oz‘i RO we have

1 1
Z {éafnfnanm _EalikaZ} =0 )
n,k#0;n#m

7
p EEIPY 2N 7 RN TR Ry gy U
E{O‘oo‘mpv kafkak}—am% G,
k0

6We assume here that m # 0.
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therefore, {L,,, (" + S*'} = 0. Thus, Poincaré symmetry descends on the space of
physical states. Physical states will be classified in terms of representations of the
Poincaré group of d-dimensional Minkowski space.

An important invariant of the Poincaré group is the square of the momentum P, P*.
Indeed,
{P,P" P} ={P,P" J*} =0.

It coincides with the mass: M? = —P,P*. Of course, P? is also invariant w.r.t. to
the action of L,, and L,,. Consider now one of the constraints, Ly = 0. Separating
the zero mode

1 = 1 > 1

we have

pup! + 81T Z apa_, =0.

n=1

From here we deduce the mass
oo
M? = —p? = 87rTZana_n.
n=1
Mass is created due to internal excitations of string! From this expression it is not

obvious that M? is non-negative.

Another invariant of the Poincaré group is

1 2
J? = 3 Jap P + WPaJa*PﬁJm

Checking Poincaré invariance of this expression is straightforward, as an intermediate step we note the relations

{J", P JP?} = n"7gtP P, —nt? g’ P,

(P, Jo3 TP} = —45"°P,.
The terms J,g JP and P, Jo* PP Jg separately Poisson commute with JHV.

Consider an open string which has Pl = pi = 0foralli=1,...,d— 1. By using reparametrization invariance fix the static
gauge X0 = 7. The angular moment £ of this string is zero. Also P, J(")‘PﬁJﬁA = 0 and, therefore,

1 ..
2
J? = 5thJ”,

where 7,7 =1,...d — 1. We have

o0
1 u} O
2 _ 1 J J i 7 J J i
J° = 75 Z m a’ oy, —ol o, al o, — ol o
n,m=1
o > 1
= Z — (apam)(apan) = (apan,)(anam) < Z (agam)(ap,an).

n,m=1 "M n,m=1 """
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It follows from the Schwarz inequality that

2
(aam)(ahan) = (e am)|® < (afan)(@),am) < nm(a)an)(@),om) .

Therefore,
o0 o0
1

fe <]
1
2
PSS @han)eham) = 3 anan Y ama-m

n,m=1 n=-—oo m=—00

4

= M
(2nT)?2
because in the open string case

o0
]\/I2 =T Z apa_, = 27T Z gy .

n=-—oo n>0

Thus, for an open string motion we found inequality

Here the parameter

27T

is called a slope of the Regge trajectory. The function J = o’ M? is a straight line in the (M2, J) plane whose slope is o

Consider a closed (pulsating) string solution

x = RcosocosT, y=Rsinocost, t=RT.
We see that o0 5
P'=27RT = T = =_=
4 2R~ 2wR’

i.e. tension is energy per unit length.

3.4 Strings in physical gauge

As we have seen upon fixing conformal gauge we are still left with the gauge freedom.
It corresponds to reparametrizations of the special type (solutions to the conformal
Killing equation):

ot = &(07), o =& (o),
where £+ are two arbitrary functions (periodic in ). This freedom can be further
fixed leaving only physical excitations. This is achieved by imposing the so-called
light-cone gauge.

3.4.1 First order formalism
Introduce the light-cone coordinates in the d-dimensional Minkowski space
1

V2

Consider the Polyakov action and introduce the light-cone momenta conjugate to
the light-cone coordinates

X* (X0 £ x97h), Xt i=1,...,d—2.

po=Y  p-Ot
0X* 0X?

(3.56)
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Express now the velocities via the corresponding momenta

1 L 1

Xi: P.—T TUX/i Xt —
T77T< + v ) ? TfyTT

(=P =T~ X").
Note that the light-cone indices are raised and lowered according to the rule
P_=-P", P, =—-P".
Now we can construct the phase-space Lagrangian in the light-cone coordinates:
L=PX +P, Xt 4+ P X" +rest.

After explicit computation we find

.. . . 1 ) .
L=PX'+P X"+P X + ST ( —2P_P, + PP +T?°X/X" — 2T2X’—X’+>
’YTT

TO

v

fyTT

+

<PiX’i Y P X"y P+X’+> . (3.57)

The phase-space light-cone gauge consists in imposing the following two conditions

1. Closed string

t = iT P* = const = ier. (3.58)
2T
2. Open string
p* 1
Xt ="—"1, P* = const = —p*. (3.59)
u m

This gauge choice is done to remove completely the gauge degrees of freedom (recall
that in the conformal gauge we still had a gauge freedom left which was generated
by solutions of the conformal Killing equation).

We further consider the closed string case in detail. We will derive and solve all
the constraints followed from the Lagrangian (3.57) in several steps.

1. Varying the Lagrangian w.r.t. 477 and imposing the light-cone gauge allows
one to solve for P~:

™

P__er

(PiPi + T2X5X’i> . (3.60)

Thus, equation of motion for 477 allows one to determine P~.
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2. Varying w.r.t. 777 leads to determination of X':

1 .27 .
1— n __ 14
X" =-—-PX"= FPiX . (3.61)

If we integrate the last equation over ¢ we obtain

9 21 )
X—(21) — X~(0) = = / doPX" . (3.62)
P Jo
The closed string periodicity condition requires the fulfillment of the following
constraint

2
= / doPX" =0, (3.63)
0

This is the only constraint which remains unsolved and it is known as the level
matching condition. We will impose it on physical states of the theory.

3. Now we can determine the world-sheet metric v*°. Equation of motion for P,

1S
0L v P A

- E o T,VTT 77’7’ ?

which with our gauge choice gives

0

,YTT — _1 .
4. Equation of motion for X~ gives
_40 oL _dpt oL 0L
S dtsx-  0X- dt2m 60X 6X-

which gives
0, (L:P_> =0 = 0,7°=0.
g
For the closed string case this implies that 477 = 777(7) is an arbitrary function
of 7. The presence of this function signals a residual symmetry. Indeed, on the
solutions of the level-matching constraint ¥V = 0 the ratio f% can be shifted by
an arbitrary function f(7) of 7 without affecting the Lagrangian.

5. Varying w.r.t P_ we find an evolution equation for X :

oL - P, i T
oP_ T~ 0 Tpt

0

(PBP' +T*XX").
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Thus, the variable X~ is not physical and can be solved from the following two
equations we found above

X~ = Tijﬁ(PiP" +T2XIX) (3.64)
_ 27 ;
X = TRX (3.65)

These two equations can be rewritten as

21T ,
0. X" = T (0. X7). (3.66)
p
It is worth noting that two equations (3.64), (3.65) are compatible. Indeed, the
o-derivative of the first equation must be equal the T-derivative of the second
one. One can see that this is indeed so due to equations of motion for physical

fields.

Now we are ready to construct the gauge-fixed Lagrangian. Substituting solutions
of all the constraints and the gauge conditions into eq.(3.57) we obtain the density

copxi- Lyt P po (7) (PX”‘ - iX") (3.67)
’ 27Tp 2T 7 ’ 2m ' '
Thus, the Lagrangian itself is
2m 2m L
L= / dof = —pti~ +/ do PX'—H —~"(1)V. (3.68)
0 0

Vo
defines Poisson structure

Here x~ denotes the zero (constant) mode of the variable X~ and the Hamiltonian
1s
1 21

H=_—
2T J,

do (R-Pi + T2X5X“’) .

We also see that 47 (7) plays the role of the Lagrangian multiplier to the level-
matching constraint V. Without loss of generality we will choose 77 = 0 which
corresponds the conformal gauge condition discussed above.

From the gauge-fixed Lagrangian we conclude that our physical variables are (P}, X;),
wherei =1,...,d—2, and also (z~, p") and they have the following Poisson brackets

{Xo,7), X (o, 7)} = {P(0,7), P (c/,7)} =0,
{Xo,7),P'(c',7)} = 06(0c — o), (3.69)
{pta"}=1.
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The physical Hamiltonian and the Poisson brackets look the same as the ones in the
conformal gauge, however, the important difference is that now they involve 2(d — 2)
physical fields only plus two additional degrees of freedom (z~,p™). First, from
eq.(3.65) we find that the zero mode of X~ evolves as

It is this 7-independent mode 2~ which is conjugate to p*. Second, equations

2nT
pt

0+ X = (0 X")? (3.70)

n

can be solved for the longitudinal oscillators a;,, &, with n # 0 by substituting an

expansion

_ - . D ( Ly o ime | o inot
X (r,0) =2~ + T+ 5 —(ane T4 a e ) (3.71)
2nT N ATT mrd n

o, = — Lk 0, (3.72)
p m=—oo
VT <= . ,

a; = 7_1 > oal,a,, n#0. (3.73)
p m=—o00o

These formulae give a complete solution for X .

Thus, the light-cone gauge allows for the explicit solution of the Virasoro constraints.
The variables (P;, X;) are physical excitations while X* P* were removed by the
light-cone gauge choice and by solving the constraints. The variable P~ plays the
role of the Hamiltonian for physical excitations! Equations of motion for physical
fields are the same as before

X —X"=0, i=1,...,d—2.

The variables (P, X;), where i = 1,...,d — 2, are called transversal, while X+ P*
are longitudinal. The only constraint which we were not able to solve explicitly is
the level-matching constraint ¥V = 0. It is easy to check that

(X{V}y=0,X"  {P.V}=0,P, (3.74)
i.e. V generates the rigid o-rotations. We also have the evolution equations

) 1 . . ) . )
{X' H} = 7P = 0.0, {P'H} =T9>X" = 0,P". (3.75)
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One can also see that the 7- and o-flows generated by H and V respectively commute
with each other because

(H,V} =0.

Imposition of the light-cone gauge is possible because in the conformal gauge the
field X satisfies the wave equation: (01X = 0. The corresponding solution for X
is

p—i-

X (r,0) =a" +5 e M+ d+e_i""+> : (3.76)

T i (0

Our gauge choice (3.58) is taken to be compatible with the form (3.76). Effectively,
it means taken equal to zero all oscillators

and also 27 =0 or

One may wonder why one cannot completely remove X, i.e. to choose a gauge
Xt = 0. To understand this point one has to remember that the infinitesimal
conformal transformations are of the form

XX+ a,e" 0_X, XX+ a,e" 0.X,

where a,, a, are arbitrary constants. In other words these transformations can be
written as

X—=>X+E&(07), X =X+ (oM,

where £+ are arbitrary functions obeying only one requirement: they must be periodic
in o. These functions can be used to remove all oscillator modes and the zero mode
2" but they cannot remove

ptT = %(7’—0)4—%(7’—1—0)

because the functions 7 — o and 7 + ¢ are not periodic in o.

String in the light-cone gauge can be treated in the standard framework of the Hamiltonian reduction. The Hamiltonian
H = Lo + L is invariant under the symmetry algebra on the surface Ly, = 0 = Loy,

{H,Lm} =imLm, {H, Em} = imLm .
The symmetry algebra itself is

{Ln,Lm} = —i(m — n)Ln+7n, s {En, me} = —i(m — n)Z‘n-%—m .
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Orbits of the Virasoro algebra

+
Gauge condition for X

)y

Constrained surface
L =L =0

Phase space (P,X)

Fig. 2. The physical phase space is obtained by solving the Virasoro con-
straints L,, = 0 = L,, and reducing the action of the Virasoro algebra on
the constrained surface by imposing the light-cone gauge.
One would like to reduce the dynamics of the system over the action of the symmetry algebra. In the framework of the
Hamiltonian reduction conditions
Ly =0= fwn

correspond to fixing the moment map. The reduced phase space P is defined as a quotient space

solutions of L,, =0 = L,

isotropy subalgebra

where the isotropy subalgebra is a subalgebra of the Virasoro algebra which leaves the surface Ly, = 0 = L, invariant. In our present
situation this subalgebra coincides with the algebra itself and, therefore,

solutions of L,, =0 = sz

action of Virasoro

The action of the Virasoro algebra is factored out by imposing the light-cone gauge, which simultaneously leads to solving the Virasoro

constraints. The transversal coordinates introduced above provide the description of the reduced phase space.

Mass of the string in the light-cone gauge is computed as follows (recall that mass
is a quadratic Casimir of the Poincaré group). Since we have found that p~ = 2;r—+TH
we get for the mass

M? = —pp'=—(p") +2ptp” = —(p')* + 47TH. (3.77)

The physical Hamiltonian is

Thus, we obtain

S
R
:
~
I
(]
—~
Q
: .
\Qﬁ
3
_l’_
L
: -~
|
‘ ~
3
~

M? = 47Ty~ (aha’, + a (3.79)
n=1

This clearly shows positivity of M?, a property which was not obvious in the confor-

mal gauge.
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Finally, we can write the level-matching condition in terms of transversal oscillators.
We find

1 ~i =i i i
V= oT ; (oznoz_n - oznoz_n> =0. (3.80)

Thus, the level-matching condition tells that the left- and right-moving oscillators
contribute the same amount of energy.

3.4.2 Poisson structure of the light-cone theory

Using the Poisson brackets of physical fields we can now establish the Poisson rela-
tions between all quantities of interest. We first summarize the basic Poisson relations
for the closed string case

N 3 . 3 . B
{+]p p pyo x aj, Oy
pt 0 0 0 0 1 0 0
- _p _p 2wl 2mil 0~
p 0 0 0 ot T pt T, pr Ty,
P 0 0 0 — oY 0 0 0
i pt 1J 39 5m al,
x 0 oF ) 0 0 i o
x| —1 f}—+ 0 0 0 0 ?—T
i 2miT o i 8496, NSy _ oN4AnT
o, — nay, — T 0 1m0 Opym, N0,
— 2miT — al, Qi -\ 4nT 7 — —
o, pt nao, 0 T opt T pt ¢ pt may ym {an ) am}

Tab. 1. Poisson brackets of the light-cone modes. The variable p~ is
essentially the Hamiltonian: p~ = 27er£+ . The brackets involving &
variables are the same.

These relations are easy to derive. For instance,

L H P
e T

Also, one has to remember that the variable «, contains the zero mode

vl = . . ‘ol
= 2000 + ... = —=+ ...
pt ° pt

- H _
{p~,z }:{QFTF,x }=—27TH

and, therefore,
i - Lo 5 L
{x7an}:F{x7pja£L}:Fan'

The most complicated bracket is {a;,, o, }.
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Let us outline the computation of this bracket.

it V J ol WV

_ _ play, T i i play, T 3§ 3

{am on} = { Tt D Gkt > o), o] } =
p PT k#m,0 p PT i#n,0
piafn pjazl VrT piain j § VrT piail j j T i i § 3§

{ T+ + }+ + { + Z an—lal}_ + T+ Z O"rrL—l()‘l}-"_ ( +)2{ Z Om—k Yk Z C(nflal}

p p p p 1%#n,0 p p 1#m,0 p k#m,0 1#n,0

pipt Nz 27T ; i
—im———"0p4m —2i(m —n)———=p'a, +—— | —i(m —n) a, NI (3.81)
(rT)2 (2" T (pt)2 ,#mzﬂ o Mt
first bracket second and third brackets forth bracket
Thus, we are getting
i, 0 oo
— — . PP 27T . i i
{am,an}:72m76n+ﬂl+7 —i(m — n) z a _ap |,
v Oy, 2 ) ntm—k%
(p1) (pt) ke — oo
. i
where due to oc(% = \/% we combined the second and a third terms into one sum. If m + n # 0 then the first term vanishes and we
P

can rewrite the last formula as

_ _ VarT . _
{a,,a,} = e 7z(m7n)am+n
If n = —m then in eq.(3.81) contribution from the second and the third term vanishes and we get

o ) 2
o p'p* 27T i i 47T [ V7T p* i
= —im———> —21 = —-2im——— .
{am,a_,,} zm(p+)2 + )2 im g al o im s ot [ T + g D‘ko‘—k]

k£0 P
Therefore,
{ag,al, } = _zim“jTT <¢f f: a;;azk>
k=—oc0
It is therefore natural to define N
0y = T S afels.

k=—oc

With this definition we obtained a universal formula (valid for all indices m and n):

4T
pt

{ag o, } = —i(m —n)o,,

Also we conclude that with this definition

p =VrT(ag +aq).

Thus, one finds the following result

47T

s (—i(m —n)a,,,)

{o, a0} =

If we introduce N

Ln= -2 o
47T
we therefore find

{Ln, L} = —i(n —m)Lyim

which is the classical Virasoro algebra! Thus, in the light-cone gauge the Virasoro
algebra is carried over by the longitudinal oscillators a, .
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3.4.3 Lorentz symmetry

The light-cone gauge manifestly breaks the d-dimensional Lorentz invariance of the
theory. We have the generators of the Lorentz algebra which in terms of transversal
oscillators become realized non-linearly. For instance, the generator

1 =1
JT =apT —axpt —i Z - (O/_na; —a_,q n —1 Z ﬁ — d:nd;)
n=1 n=1

=

is not anymore quadratic in oscillators because p~ and o~ are non-trivial function
of the transversal oscillators.

In spite of rather non-linear realization one can check that all the Poisson re-
lations involving J'~ are still satisfied (this is also consequence of the fact that
{Lp, J*} =0={L,,, J*} , which means that the Poisson bracket of J* admits a
reduction on the constraint surface L,, = 0 = L,,). In particular, from the Poincaré
algebra we must have

{J=, 777} =0.

Let us check this explicitly. First we have

07y = {'p” a7l alpT —a TP} =
={z'p ,2?p Y —{z7p" 2l p } - {a"p ,aT P} + {z7p", 2T P’}

By using the Poisson brackets from Table 1 we obtain

) . i J ) ) - ) T .
{7,007} = P p xd — p—p_zZ —p'a’ P +az p 8 +pjzlp— —z " p 87 .
pt pt pt pt

first bracket second bracket third bracket

and the forth bracket vanishes. Thus,

{9y =o0.

Consider the Poisson bracket of the internal spin components

. 1 . .
1= -1 — T - J - —
{87,877y == > {ol a0l an}=
nm
n,m=£0
_ 1 i ol od —
=— > — {al,.d Yagan, +{elantaral a0l Yal Lo +{ay an el el =
n,m=0 "M
. a”a AnT -1 . 1 . . n—m . =
— st nTon i J - i J - i -
=5t 3 £ el el an t tat el e b el el an
n P m n nm
n#£0 m,n#£0

Here the first first sum is zero (proved by changing n for —n). In the second and the third summonds one makes the change of
summation indices, n — n + m and m — m + n respectively. After this change these terms cancel exactly against the last one.
However, there are terms which are still left, these are the terms in the second and third summonds containing zero modes, i.e. terms
for which —n + m = 0 and also the term of the last summond for which m +n = 0 . Thus,

L i 10 Var
{s'7,87 "} = —— — p'al —pla 1—n n t2i—— O‘O Z 7ana_ﬂ . (3.82)
n#0 n n;é()

i i — . — %y Q — - Y
{07,877y =~ Z —{z'p” —z"p,al ja =i Z — ainp +L +z' — T "04],”04.,1 nainan —p ]7” :r
n#0 "V‘A P n#£0 " P p
————
from A from B
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Thus, we arrive at

L L p- 1. i 10 L B
{7,897y + {87, } = —2117—Jr Z ;a;ag e Z — plaj_n —plal, o, . (3.83)
n#0

Now summing up equations (3.82) and (3.83) we obtain

4/ 7T _ aa +&a
pt 0T 2

1. .
Z 7o¢:lain. (3.84)

n#0 n

{007,897y 4 {87, T+ {S" T, 5 =

At first glance this expression is non-zero and it can not be compensated by the contribution of left-moving modes

o o i arT o al +a; 1,
{67,874+ {5,y + {8,587}y =i T a - 0 5 > ;a;a{n. (3.85)
p n#£0
However, we have to invoke the level-matching constraint which simply tells that oy = &5 and makes both egs.(3.84) and (3.85)
separately vanish. Thus, we have indeed shown that the most non-trivial relation {J’if, ij} = 0 is indeed satisfied.

4. Quantization of bosonic string

4.1 Remarks on canonical quantization

According to the standard principles of quantum mechanics canonical quantization
consists in replacing the Poisson brackets of the fundamental phase space variables

by commutators
1
{ ) - E[ 9 ]7

where A is the Plank constant. Thus, we consider now X(o,7) and P(o,7) as the
quantum mechanical operators which obey the following commutation relations’

[X*(o,7), X" (o', 7)] = [P*(0,7), P’ (c’,7)] =0,
[X*(o,7), P"(c',7)] = in" (0 — o'), (4.1)

These commutation relations induce the commutation relations on the Fourier coef-
ficients

[O‘ﬁw O‘ryz] = [O_‘fm O_‘Z] = hmom ",
[, o] =0, (4.2)

n

[, p"] = ik

For the case of open string the modes @, are absent. In what follows we will work
in units in which A = 1, so that the commutation relations read as

[chn, aryL] = [O_‘lrjw @lrlz] = MOminn"”,
[, 0] =0, (4.3)

[z, p"] = int" .

"Here the indices u, v run from 0 to d — 1.
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. 1 _ 1 =
To restore h, one has to simply rescale the modes as o — o Q=

Let us take m > 0 and rescale a,, = \/Lmozm. Then using the hermiticity property
the commutation relations can be rewritten as

[a# aTV] = 77“”5n,m

n> Ym
[C_lg, &;rr,:] = 77/“/571,m

which are the standard commutation relations of two infinite sets of independent
quantum harmonic oscillators.

Introduce the number operator for m’s mode
Ny =1ab oy, e
Then we see that for m > 0

[Nmy am] = —Mmoy,,

[Now, ] = ma_y, .
From here we conclude that
e Modes with m > 0 should be identified with the lowering operators
e Modes with m < 0 should be identified with the raising operators

Construction of the representation of the canonical commutation relations is com-
pleted by introducing the ground state which satisfies the following properties

Oﬂm|py> = 07
Pt =" ). (4.4)

The whole infinite-dimensional (Hilbert) space of states is obtained by acting on the
ground state with creation operators.

This construction brings us to the major problem of canonical quantization.
Consider for m positive the following commutator

an]

m? —m

[ w1 =mn™ = —m.

Thus, we induce from here (let even a ground state carries zero momentum p*)
(0[[am, (am)'10) = (Olay, (a5,)'10) = 1[(an)'0)[|* = —m < 0.

Thus, Minkowskian type of the target-space metric leads to the existence in the
Hilbert space the states with negative norm. States with negative norm are some-
times called “ghosts” and they do not allow for probability interpretation of the
corresponding quantum-mechanical system.
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One can correctly anticipate that the problem with negative norm states arose
because we did not take into account the Virasoro constraints. The covariant ap-
proach to quantization consists in defining the subspace of physical states in the
original Hilbert space which obey the Virasoro constraints. One can further show
that in a special dimension of space-time (d = 26) the negative norm states decouple
from the physical Hilbert space.

In the classical theory we have the constraints L,, = 0 = L,,. However, in
quantum theory expressions for L,, and L,, are quadratic in oscillators and might
involve operators (quantum oscillators) which do not commute with each other! From
all L,, a constraint which suffers from ordering ambiguity is Ly as

oo

1
Lo=3 > aka_,, (4.5)

n=—oo

and oscillators o and o, do not commute with each other. The standard way
to deal with this ambiguity in quantum field theory is to use the normal ordering
prescription

1
L, = 5 Z L Oy (4.6)

n=—oo

The normal ordering prescription means that

DOy e Qi Qg Oy, Qg Ol

~ Vo
all creation all annihilation

P T
/

in the operators are ordered in such a fashion that all annihilation operators are
put on the right from all the creation operators. The order of the creation (or
annihilation) operators between themselves does not matter because these operators
commute between themselves and therefore their expression does not have ordering
ambiguity. In particular, for Ly we have

1 oo
Lo = 504% + nz:l ol an, —a, (4.7)

where we include a so far unknown normal ordering constant a. As to the zero modes,
the normal-ordering prescription here is

cpta” = aVpt.

Since the ground state obeys p*|p) = p*|p) it can be regarded as the usual quantum-

mechanical eigenstate of the momentum operator p* = —ia% which is in the mo-
w

mentum representation has the form of the plane-wave

[p) = €™ 0),
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where on the r.h.s. p* is not an operator and |0) denotes the zero-momentum ground
state. Plane-waves are not square-integrable functions but they form a basis of a
generalized Hilbert space and they are assumed to be normalized as

(plp') =d(p—1').

4.1.1 Virasoro algebra

Let us now investigate the algebra of the operators L,, in the quantum case. We
first assume that the normal ordering constant a = 0. We start by computing

o0

oo
_ 1 R 4 g1 iz _ iz
lad, L] = 5 E [ apan py i =5 g (m5m+pan,p + ma55m+n_p) =mal ., .

p=—00 p=—00

Then we have

oo

1
[Lim, L] = 5 Z [ ab oyt L] -

p=—00

We write down the normal ordering explicitly (to simplify the notation we write the
Lorentz summation index on the same level)

0
1
[LmaLn] - 5 Z [Oﬂam p? + Z Qm— pag’L
Pt
10
=3 Py by, (M — p)abar, L,
= p=¢—n

+ Z m — p m p+nau +pam P n+p .
——
p=q—n
In the underbraced terms we make a change of summation index p = ¢ — n and get

0

1 n
L) = 53 (- pegalien,+ 3 (- malthen,
p=—00 g=—00

e}

+Zm p m+npp+z q_n m+n qa5>

q=n+1

Without loss of generality we assume that n > 0. then we have

0
1
[LmaLn] = 5( Z (m ) Q, m+n p+z q 51+nfq

=—00
p not ordered!

+Z(m—n m+npp+z A qozf;>.

p=n-+1
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Using ooy ing = Qi gQl + @Omindli = iy g4 + qd0y 4, where d is the
dimension of the Minkowskian space-time where string propagates. Thus, the algebra

relation is

1 « d .
[Lon, L] = 3 Z (m—mn):abay, ., ,: +§(5n+m Z(q2 —ng).
p=—00 q=1
Since
- 1 g 1
2 _ _
;q —gn(n—I—l)(Qn—Fl), ;q—ﬁn(n—kl).

one finds the final result

d
(L, L) = (m —n)Lpon + Em(m2 — Ddmin

which is the famous Virasoro algebra. We see that it is different from the classical
Virasoro (Wit) algebra by the presence of the central term.

In a more general setting the algebra is written as

[Liny L] = (m — n) Lyyyn + ém(m2 — Ddmin,

where the constant term c is known as the central charge.

If we introduce a normal ordering constant a by shifting the definition of L,, as
L, — Ly, — 0 then the linear term in m in the central term changes

c
[Lpn, Ly) = (m —n) Ly + (Em + (2a — ﬁ) >6m+n.

We see that the central term has an invariant meaning and cannot be removed for
all L,, by adjusting the normal ordering constant a.

Finally, we comment on the relation to semiclassics. If we restore the Plank the
algebra relations take the form

[Lon, Ln] = B(m —n) Ly + R Em(m2 — 1)0pmn -
We see that one can define the Poisson bracket

1
{Lp, Ly} = hm h[Lm,L | = —i(m —n)Lyin,

which coincides with the Wit algebra. The central term obviously vanishes in the
semi-classical limit.
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4.1.2 Virasoro constraints in quantum theory

At first sight it seems that the natural analog of the classical equations L, = 0 = L,
in quantum theory is to require that a physical state should be annihilated by all
Virasoro generators:

Lo|®) =0=L,|®), neZ.

Due to the normal-ordering ambiguity in the definition of Ly in quantum theory the
classical conditions Ly = 0 = Ly are replaced now by

(LO_CL)|CI)> =0, (Eo—d)|q)> =0, (48)

where in fact the normal-orderings constants a and @ must be equal to each other® and
Lo, Ly are understood as the normal-ordered generators. It is easy to see, however,
that eqs.(4.8) cannot be consistently imposed for all m. Indeed, if eqs.(4.8) would
be satisfied for all m we would have

d
(L, L_)|®) = 2nLo|®) + En(n2 —1)|®),

1.e.

d
0= <2na + En(n2 - 1)) |®)  for any n.

This is obviously not possible to satisfy unless |®) = 0. The physical reason for
impossibility to impose in quantum theory the same set of constraints as in the
classical one is an anomaly. Because of the anomaly term the first-class Virasoro
constrains of the classical theory turn upon quantization into the constraints of the
second class!

From the experience with the quantum electrodynamics one can try to impose only
“half” of the constraints, i.e.

(Lo —a)|®) =0,
L®) =0, n>0. (4.9)

The conjugate state then obeys (®|L_,, = 0 for n > 0 and we see that (®|L,|P) for
all n # 0, i.e. expectation values of L, vanish for all nonnegative n.

Let us recall that the mass operator is obtained from the constraint Lo — a = 0, We
have

M2:—p2:47rT(—a+N), N:Zaﬁnan,u-
n=1

8This follows from the constraint (Lo — Lo)|®) = 0.

— 43 —



Here N is the number operator. It turns out that all eigenvalues of the number
operator N are non-negative. Indeed,

N = Z(—a_n H+Zo¢_n n)

We see the “-” sign coming from the time-like oscillators. However, the time-like
oscillators themselves provide only non-negative contribution to N, because for any
m > 0

o0

[N7 a(lm] = - Z[agn&n7 a_ Z Oéfn n? 7m = magm

n=1
since commutator of two time-like oscillators Contrlbutes with the negative sign.
Thus, time-like creation operators contribute positively to V.

Virasoro primaries, descendents and physical states

Let us introduce the following useful definitions.

1. States which are annihilated by all positively moded Virasoro operators and
are eigenstates of the operator Ly with an eigenvalue a are called Virasoro
primaries. Number a is called a weight of the Virasoro primary.

2. A Virasoro descendent of a given primary is a state that can be written as a
finite linear combination of products of negatively moded Virasoro operators
acting on the primary state.

3. A state which is both primary and descendent is called a null state.
If |®@) is a primary state then L_;|®) is its descendent. If N|®) = Ng|®) then
NL,1’@> == (Nq> + 1)L,1‘®>

There are two basis descendents with the number Ng + 2, namely L_,|®) and
L_1L_4|®). The counting of descendents changes at Ng + 3. Here the candidate
descendents are

L_3|®), L_oL_1|®), L_L_,|®), L*|P).

The second and the third states are not identical because the Virasoro operators do
not commute. However, due to the Virasoro algebra there is one relation between
the above states

Ll y=[Ly,L o)+ L sL_y=L_g+L L.

Thus, there are only three descendents with number Ng + 3.
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In general, for any fixed level Ng 4+ n, one can choose an independent basis of
descendents of the form

k
Lo Ly, Ly|®), where ny>ny>...>m and Y n;=n.(4.10)

=1

It is a conventional ordering of the Virasoro operators. Note that the number of
descendents in this basis is equal to a number of partitions of integer n.

For any given primary, there can be a linear combination of descendents (4.10)
which vanishes. The vanishing of such combinations happens not due to the Virasoro
algebra relations but rather due to specific properties of the primary state |®). For
instance, one can realize that for the zero-momentum ground (primary) state |0) the
descendent L_1|0) vanishes identically.

An important property of the descendents is that they are all orthogonal to any
primary. Indeed, a descendent |des) can be written as L_,,|x) for some n; > 0 and
some state |x). Then for any primary state

(des|prime) = (x|Ly,|prime) =0,

since a primary |prime) is annihilated by all positively moded oscillators.

Null states, which are both primary and descendents, correspond to pure gauge
degrees of freedom. Any null state has a vanishing norm and it is orthogonal to any
primary and to any descendent. If we alter a primary state by adding a null state,
then the new primary state has the same inner products with all primary states as the
original one. Adding null states to primaries cannot change any physical expectation
value. This motivates the following definition of a physical state:

A physical state is an equivalence class of a primary
state with the weight a = 1 modulo the null states.

The choice a = 1 will be motivated by studying the quantization of strings in the
physical (light-cone) gauge. Note that here we talk about equivalent classes precisely
because of the ambiguity created by the null states. Primary states which differ by a
null state are physically indistinguishable. In the next section studying the spectrum
of open string we will see that the null states are indeed responsible for the gauge
degrees of freedom.

4.1.3 The spectrum

The classical strings cannot provide a reasonable particle physics because the masses
of string states take continuous values. Only the ground state is massless in the
classical open string theory but because it carries no spin we are not able to identify
it with photon. Quantization procedure — this is what alters the nature of the classical
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string spectrum and makes it discrete. Simultaneously, states to be identified with
photon emerge in the quantum spectrum because of the downward shift of the M?
producing thereby the massless states with a proper spin labels.

Consider open strings. The Hamiltonian is
H=Ly—1=dp*+N—1.

The basis vectors of the Hilbert space are

co 25

) =TT T (et 1),

n=1 pu=0

are non-negative integers. Generic state |¢)) is not physical. A physical state is a
state which obeys the Virasoro constraints (4.9) and is not a descendent.

Let us look for some examples of physical states. The first one is the ground state
|p). The only non-trivial constraint is

(Lo — a)lp) = (o/p* —a)|p) = 0.

Since p*> = —M? we get that the on-shell condition for this state is M? = —2%. Later
on studying the light-cone quantization we find that the normal-ordering constant
a must be equal to one. Thus, the mass-squared of the ground state is negative:
M? = —5. The corresponding hypothetic particle moving faster than light is called
tachyon.

The next state to consider is (,a";|p). We have
(Lo = 1)Gua’y[p) = (o'p” + N = 1)¢ua’y|p) = a/p*¢ua’y|p) = 0

from which we deduce the on-shell condition p? = 0, i.e. the corresponding particle
is massless. Further condition gives

LlCHO/_Ll\M = (a1 + a_jag + - - )C“O/_Ll\m =V 20/@17“|p> =0.

Thus, for a physical state the momentum p* and the polarization vector (* must be
related as (,p" = 0 which is nothing else as the Lorentz gauge condition. All higher
Virasoro modes L,,, n > 2 are automatically annihilate the state. We, however, have
not described the physical state completely. The massless vector particle which is
photon must have d —2 independent polarizations while the Lorentz gauge lives d — 1
polarizations only. We should now recall that physical states are defined modulo the
null states.

Consider a state (x is any constant)

K

d) = 5 bealp) = FppeZalp) P =0.

— 46 —



This state has the same form as before with (, = kp, (longitudinally polarized
photons). It is physical, because (,p* = kp* = 0. On the other hand, it is null as it
appears to be a descendent of L_;. Thus, the states

Cu and Cu + KDy

should be identified. The reason for this identification can be understood as follows.
If (,p* = 0 then (¢, + kp,)p" = 0 as well, because p* = 0. As the result, this
identification reduces the number of independent polarizations to d — 2, as it should
be for a massless photon. Indeed, for any vector ¢, obeying (,p* = 0, one can use
the shift freedom ¢, — ¢, + xp, to put, e.g., one of the components of ¢, to zero.

4.1.4 Propagators

Here we introduce the concept of propagator or, equivalently, the two-point Green
function.

Consider first the right-moving fields of the closed string. Their propagator is
defined as

(Xr(1,0)Xp(7',0")) = T(Xg(r,0)Xp(7',0"))— : Xg(r,0)XR(7',0) 1, (4.11)
where T means time-ordering prescription. Thus,

Xgr(1,0)XRg(7",0"), for 7>71",

T(X Xg(r', o)) =
( r(7:0) R(T’a)) {XR(T,,O',)XR(T,U), for T < 7.

’
For 7 > 7' we have

(Xp(r,0)XRp(r' ")) =

1 pH 1 1 . 1 pY i 1 ’ ’
= —gM 4 r—o)+ 7&“6_%”(7—_5) g ey M e_”n(T —a’)
2 47rT( ) VarT go [ 2 47TT( ) VaArT Tgo m "

1 ; -1 p¥ % 1 . ’ -
7‘1;&671,%(7'70‘) Zz¥ 4 - + oM e—zm(r —o') .
VarT wgo n " 2 T ( ) Z mom

i

L H
— 7IM+7P (r—0o)+
2 4T

Most of the terms cancelled and we are left with

1 1
Xp(r,0)X T/,Ul = —atp’(r - o)+ —ptaV(r— 0o
(XR(n o) Xr(r a) = ——ahp" (e = o)+ —pa" (r — o)
— ekt — o) — et (r—a)
87T 87T
1 1 . . ’ ’
- T —(abal —:akar, :)eiln(rig)eilm(r -,
L 20 m#0 M
Thus,
1 1 1 . . r_ 1
(Xp(r,)XR(r' 6" = — " )(r — o) = — 3 —— ok, ol e (T mimrT =)
I T

n>0m<o "M
Substituting the commutators we obtain

i MY (r o) — nt Z iei'm('rfa)efi'm('r/fo')

Xpr(r,0)Xgp(r', o = —
(Xr(T,0)XR(7",07)) ot T

m<o ™

. ol ot m
P nHv 1 [ it =a")
= e Ut or m\ eilr—o)

8m 4m mso ™M e

. !’ !
— _LTIHV(T_G)_ n* In 1_&
8nT 4nT ei(r—a) |~
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Thus, for 7 > 7/ one obtains the propagators®

(Xg(1,0)Xg(T',0")) = " Inz— " In(z — 2)
RAL TGRS 8T ArT ’
(Xp(r. o)X (o)) = 1tz Lz %)
LA TR 87T ArT ’
Nz
(Xg(r,0)X (7, 0") = _8777TT Inz,
where we made an identification
5y = ei(T—O') : 37 = 6’i(T+0’)

Computation for the case of open string is similar. For 7 > 7/ we have
=1
(X (1,0)X(1',0")) = —i—=7+ — g —e "M cosno cosno’
n
n=1

Performing the sum one finds

%

_47TT |:10g <ei7 . e—i(o—ol)ei7/> + IOg <6iT . ei(o‘—o")eiﬂ">

+log <6¢T _ e—i(a+o’)ew) +log <ez‘7— _ 6i(o+0')eiq—’>] '

(X(r,0)X(',0")) =

4.1.5 Vertex operators. Tachyon scattering amplitude

Here we approach for the first time the question about string interactions. It is
important to realize that the situation here is different to what one usually accounters
in QFT. The interaction of strings cannot be introduced by adding non-linear terms
to the string Lagrangian; in the latter case one would obtain non-linear interacting
theory but still of a single string.

out Out

split string

on a mass-shell
Insertion
\Y

of a local operatc
emmiting a partic

In In

Fig. 3. Open (closed) strings interact by means of joining and splitting.
Emission of a point particle on mass-shell is represented by insertion of a
local vertex operator.

9Rigorous justification of these formulae requires an introduction of an IR regularization, because
correlation functions of the massless field in two-dimensions suffer from IR divergencies.
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String interactions are introduced by allowing a topology of a wold-sheet to change.
If a split string is on-shell it can be thought as an infinite collection of particles
which form its spectrum. In the limiting case of single emitted particle the process
of scattering can be viewed as application to an initial state |In) of a local vertex
operator V' = V(7,0) which depends on the emitted state and transforms |In) into
the outgoing state |Out):

|Out) = V|In) .

Thus, to any physical state |®) from the spectrum one can put in correspondence a
local vertex operator V.

Conformal operators

Operator A(7) is called conformal with the conformal dimension A if'
dr\2
A = (55) A,
Under infinitezimal variation 7 — 7/ = 7 4 €(7) one gets

dA de
SA(T) = —e— — AA—
(7) “dr dr
With € = —ie"™"
[Lon, A(T)] = €™ (=i, + mA)A(T)
If the operator A is expandable as A(T) = >_ A,,e™™, for its Fourier modes the last
relation implies

[Lm, AN] = (m(A - 1) - n)An-i-m

Thus, if A has conformal weight A = 1 then it’s zero mode commutes with all L,,.
Therefore, Ay maps physical states into physical states:

|©) = Ao|®).
An alternative way to understand this is to notice that for A = 1 we have

. o 7 .
[Lun, A(7)] = €77 (=i, + mA)|ast A(T) = =i (™7 A(7))
or
i.e. the r.hus. is the total derivative. Thus, Ay = [ drA(7) will transform as

(L, Ao] = —i/dTag(eimTA(T)) ,

T

10This transformation law can be written as
A(T’)(d’r')A = A(T)(dT)A .

For A =1 this implies that A(7)dr is a one-form.
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where the expression on the r.h.s. is specified by the periodicity /boundary properties
of A(T).
Explicit example of a vertex operator

Consider the following operator acting in the Hilbert space of open string

H ©
kpal inT o kpon e—inT

1 oo . M 1
V(k,7,0) = evar 2=t OO i@ g ) o = 7 ns cosne

At o = 0 this simplifies to

1 Zoo kHaL—Lnein-r ik " M _ 1 Zoo kuaﬁe—inr
V(k,7) = g7 Sam e ik Bpn) o S

J/

PR

' v g

V_ Vo Vi

This operator is “almost” normal-ordered and can be concisely written as
Vik,7)=V_WV,

Here only zero modes entering V[ are not normal-ordered. Indeed, according to our
conventions : ptz” := z¥p*, the operator p* should be always on the right from z#
which is not the case for V4.

The normal-ordering of V;, can be achieved with the help of the Baker-Campbell-
Hausdorff formula!!

1
cAeB — ATB+3IAB

Thus, we have

. kg pt . Lk pH . .k pH
. ezk#x“ezi‘;T T elkl‘x“eliﬁT T _ ezkuz“+z ZT 77—2;Tkuky[x“,p”]

Recalling that [z#, p”| = in*” we therefore find that

k

M k., pH
. . P - 1.2 ; sRkpp - L2

ikyxh i1 k4T | _ikyxt i—E——T1 | kT, .
e =T et = Vo

=e e T T i=e¢
Thus, we obtain completely normal-ordered vertex operator
V=TV vy Vv
We would like to investigate the transformation properties of this operator under

conformal transformations. To this end we need to compute by using the Leibnitz
rule

e Lo, V] = (L, Vo] Vo : Vi Vo[ Lt Vo 1)V + Vet Vot [ L, Vi

" Suppose you forgot an exact coefficient in front of the commutator term. Write the operator

identity in the form e4e? = eATB+el4.B] with the forgotten coefficient o. Rescale A and B with a

small parameter € to get e“de? = ecA+eB+etalA,B] Now expand both sides up to order €2 keeping

the order of operators. You will find that fulfilment of the operator relation at order €? will require

to fix o = 1.
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Assuming for definiteness that m > 0 it is not difficult to find!?

(Lo, V] = W[ (kum_p) + (kam_p)v_}
V] (Oém/f)
[Lpmy: Vo i = Vo \/7T_T
[Lin, Vi = 2\/— Z T [V+ (koun—p) + (ko V+} Z Vi (kQupp) -

p=—00

Here the first commutator is of particular importance because it still contains the
terms which are not normal-ordered. Indeed, it can be written in the form

1 = .
L, V| = — e (kayy—p)V_ :
L Vi = o 3 €7 (k)
p=1,p#m
1 1 m—1

Further we get

— v ilm—p)T
(ko —p, V_] e V.
vl
This leads to
1 o0
wipT
(L, V-] = e E e (kou,—p) V-
s
p=1,p#m
1 ) 2 m—1 '
+ —e""V_(kap) + — E eV,
VT 2T
p=1
—_————
(m—1)etmTV_
12Thc calculation is as follows:
1 = 1t
(L, V-]= > o pamp, Vol = 5 S let L Vilam ot o ., Vo
The two terms on the r.h.s. are computed separately, for instance
1t u 1 m=1 ﬁzp 1k Vp eipT 1 o m—1 ) 5 K, )
- JViolan = ™ oy = ,a_ ] — TV_an
2, 2 o Velan, = 5 3 laqpe R P I an

oo

1 i
ePTV_ (kP ag,_ .
AT 2 (Fam—p.n)

The other terms are computed in a similar way.
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Plugging everything together we find

—ia'k?T = eipT
e Lo VI= Y —— (k) V- VoVs
p=1,p#m T |
eim'r eim'r )
+ News : V_Vo(kag)Vy :+\/ﬁ Vo lkag, Vo]V« +a'k*(m — 1)e™ - V_VV,
1 > oibT
- V_VoVi(kam) + T V VoV (ki) -
p=1

Vv J/

g

Here the underlined terms are nicely combined with a single sum®® with the range of
summation variable p form —oo to 400 and if we further take into account that

k2

[]{3040, %] = ﬁ

Vo

we will get

[L V] imt i/ k2T f: e_ipT
= € e
ms . /—ﬂ_T

+ o/k2(m + 1)eim’r€ia'k27 . V_va_’_/

\%

. V_%V+(kap) .

It remains to note that

—i0,V = dK*V + i Z

p=—00

ef’LpT

VT

VoV Vi(kay)

With the account of this formula we obtain
(L, V] = e"’”( — 10, + a’k2m>V

and, therefore, we conclude that the operator V' has the following conformal dimen-
sion A:
A=dk*.

In particular, for k? = é the conformal dimension A = 1 and the vertex operator

we discuss corresponds to emission of the tachyon with the mass m? = —é.

We also see that on the zero-momentum ground state

V(k,0)]0) = V_e™ " |0) .

13Tt is convenient to shift the summation variable p for p — p — m.
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As we will discuss later on, one can perform an analytic continuation 7 — —¢7 under
which the exponent entering the vertex operator V_ will transform as €™ — e”. Then
in the limit 7 — —oo we see that V_ — 1 and in the Fuclidean picture

lim V(k,0)|0) = e*»="|0),

T——00

i.e. at 7 — —o0 this vertex operator creates a particle with the momentum £,.

Normal-ordering the product of exponents

Y. where X and Y are two operators with the

Consider the normal product : eX :: e
propagator (XY'). Clearly one gets

x v i:X”::Ym:'

et el =
n! m)

n,m=0

To apply the Wick theorem we first calculate the number of ways we can pick up k

X’s from X", which is obviously -~ . Analogously, the number of ways to pick

R(n—k)!"
up k£ Y’s from Y™ is k,(lek), Now we have to pair (i.e. to form propagators) k fields
X with k fields Y

The are k! ways to pair all the terms in the last expression. Thus, application of the
Wick theorem gives

oo min(n,m)

Xn—kym—k n! m)!
ceX ey = : : E (XY =
R D DD D i — &) wim = )

n,m=0 k=0
B i min(n,m) ank Ym,k <Xy>k _i(XY>k i ank mek
o A — k) [ | — k) — k)
o~ = (n—k)! (m—k) k —~ K it (n—k)! (m—k)
Thus, we find
X Y (XY)+X+Y .

et e =re
It is now easy to see that the last formula can be generalized for the case of several
vertex operators as follows

H sl i= el (KiXy) L e X (4.12)

Two-point function of tachyon vertex operators

Consider the two-point correlation function

(V(k1, 1)V (ka, 7)) = (O[V (K1, 1)V (K2, 72)|0)
= el MnH kT (0] V (k1) 2 V(R T) 1 [0)
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where we assume that 7 > 7. By using the formula (4.12) we find

log(6i71*6”2)<0’ V(b1 1)V (ka, 72) 1 |0).

<V<k1’ T1>V<k2, T2)> = eia/k%71+ia’k§7-2€ kflr’;g

The vacuum expectation value of the normal-ordered expression on the right hand
side reduces to the contribution of the zero modes only and we get

<V(k’1, Tl)V(kQ, 7_2)> _ eia’k%TlJria’k%TzeQa’hkz log(e’™1 —ei72) <O|6Z(k§t+k§)m“’0> )

5(161 +k2)

Thus, the two-point function is non-zero only if ky = k = —ko. In this case we get

eia’k2 (T1472)

(V(k,m)V(=k, 1)) =

(ein _ ei72)2a’k2 :

We thus find that

eiA(Tl +T2)

(eiﬁ _ eiTg)2A )

<V(k, Tl)V(—k}, 7'2)> ==

Four-tachyon scattering amplitude

Here we compute the scattering amplitude of four tachyonic particles. This is the
famous Veneziano amplitude which subsequently led to discovery of string theory.
The amplitude is defines as

AI /Oo dT <k4‘V(k3,T>V(l€2,O)’kl>

Here (k4| is understood in an unusual way (ks| = (0|e?*i%. Using the definition of
the tachyonic vertex operators and the formula (4.12) one finds

V(ks, 7)V (K, 0) = €87 V(kg, 7) =2 V(ky,0) :
= KT kR (XU (X)L Y (g )V (K, 0) -

Recalling the open string propagator at o = ¢’ = 0:

(X (7)X(0)) = _Z; tog (¢ —1)

Thus we find

oo
i k2 / AT _ SOLH LM o
A= / dr e k37—62a (k2ks3) log(e'™—1) <k4|ez(k2 +EE)z, ez2a kgpuT|k1>
0

Further simplification gives
4

A= ia'k3T (it 1 20/ (kaks) 2ia’ (kski)T ;

/0 dr e (e ) e 5 ( ; k;)
0o 4

_ / dr eiOé,k’gTeQiOl/(kl-‘rk‘Q)kgT(l _ 6—’i7)204,(k2k3) 5( Z kz)
0 =1
00 ) 4

_ —ita' k3T —2i0/ (k3ka)T 1— —i7\2a/ (k2k3) ) .

/0 dre e (I1—e™) o( ; k;)
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Recall that for tachyons on shell we have k2 = é Performing now the Wick rotation
7 — —i7 and changing the integration variable 7 for x = e~ we find

1
_ 20’ k3ky 2a’ koks
A= / dz z (1—2) :
0

where for the sake of simplicity we omitted the J-function which encodes the con-
servation law of the momenta. Introducing the Mandelstam variables s = (k1 + ks)?
and t = (ky + k3)? the last formula can be cast in the form

F(a/s —1)I'(a't — 1)
F(a/(s+1t)—2)

1
A= / dz z°*72(1 — 2)¥*2 =
0

In fact this function is known as the Euler beta-function. One of the interesting
properties of the representation of A in terms of the Euler beta-function is that the
latter is explicitly symmetric under the interchange of s and ¢. Search of amplitudes
with this symmetry property led Veneziano in 1960’s to this amplitude which was
the starting point of modern string theory.

It is interesting to analyze the Veneziano formula in more detail. The I'-function has
poles at non-positive integers with residues

- 1
T(x)%u— as r— —n, n>0.
n! z+4+n
Thus, when o/s — 1 —mn, n=0,1,... the amplitude behaves as
1" 1 ot —1
Aty 5D (o't~ 1)

n! os—1+nl(a/t —1—n)
Here the dependents of the variable ¢ is polynomial because for n > 0 we have

F(O/t_l) :F(w+n):(w+n_1)...(w+1)w

L(a't—1—mn) ['(w)

= (at —2)(a't = 3)- - (dt —n — 1) = P,(at),

i.e. the r.h.s. is a polynomial of degree n. Thus, the scattering amplitude can be
essentially written as

A(s, 1) = i (=" Pula’t) Polat) = 1.

n n—1+a's’

n=0

In scattering theory resonances (or simply poles) of the scattering amplitude are
interpreted as an exchange by intermediate particles whose masses are obtained from
the condition of having poles. In our case we see that the poles arise due to exchange

by hypothetical particles whose masses are quantized as
9 1

" «Q
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It also follows from the scattering theory that appearance of a polynomial of degree
n as the residue of the amplitude signals that the exchanged particles of the mass
M? carry spin up to the maximal value Jy,.c = n. Our later analysis of string in the
physical gauge will reveal that the exchanged particles delivering the resonances of
the Veneziano amplitude are those from the spectrum of open string!

Operator Product Fxpansion

Consideration of the Veneziano amplitude shows that the object of primary in-
terest in string perturbation theory is a correletation function of local operators

(O3 (71) 04y (22) .. Osy, (7))

where O;(z) is a local operator. Here x = (7,0) is a point on the two-dimensional
world-sheet. It is important to understand the behavior of the correlation function
when two operators are taken to approach each other. The technique to describe this
limit in known as the Operator product Expansion or OPE for short. The Operator
Product Expansion states that a product of two local operators can be approximated
to arbitrary accuracy by a sum of local operators

Oi(x)0;(y) = > Chi(x —y,0,)Ox(y) .

Let us take as a local operator the stress tensor and try to work out the corre-
sponding OPE. Introduce the short-hand notation 7' = T, and X* = X}. Consider
the component T _ of the stress tensor normalized as

1 1

r=T_=—": 0_X"o_X, = — 0-X[0-Xpp: .
o o

7_/_0/)‘

We will also use the concise notation z = e7=9) and w = e

In what follows we consider the product of two stress tensors evaluated at two dif-
ferent points

T(r,0)T(t',0") = % P 0_XHM(2)04 X u(2) 1 0-X"(w)04+ X, (w) :

and try to expand it over a basis of local operators. By using the Wick theorem, we get

T(r0)T(+,0') = 3+ 0 XH(2)0_ X,(2)0 X" ()0 Xy(w)
{0 XPE)O- X" W) 0 X,(2)0- X (w) :
n %@_ XH(2)0 X" (w)) (0 X (2)0- X, (w)) .
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We can now rewrite the r.h.s. by using the propagators introduces above
1
T(r,0)T(r',0') = ok 0_X"(2)0_X,(2)0-X"(w)0- X, (w) :

+ %8{83<X“(2)Xy(w)> 1 0-Xpu(2)0- X, (w) :

4 %aﬁaﬂX“(z)X”(w» 07 9% (X, (2) X, (w)) .

A little computation gives

T(r,0)T(,0') = % 0L XM(2)0_X,u(2)0_ X" (w)d_ X () :

2 zw
5 1 0-X"(2)0-X,(w) :

Cd(z—w)
77’“/77“” 22w?
T (z —w)*’
It is further convenient to redefine the stress tensor as follows
T(r,0)
7() =
so that
1 14
T (2)T (w) = = ek 0_X"(2)0_X,,(2)0_X"(w)0_X, (w) :
2 1
- 1 0_XHM(2)0_X :
o' 2w (Z o w)g (Z) N(w)
w1
T (z —w)*
Since 1,8 9y 1702 920 0
z z ,
- =55~ 50) =205~ 5)5: ~ s
we have % = i% and, therefore, the last formula can be written as
1
T(2)T (w) == o 0, X"(2)0,X,,(2)0p X" (W) 0 X, (w) :
2 1 kP 1
— 0, X* o X : = .
o (z —w)? 0- X" (2)9u Xy(w) : + 2 (z—w)!

Expanding the r.h.s. around the point w = z, we will find the following most singular
2z — w contribution

d/2 2 ) + 1

(z—w)4+(z—w)2 z—w

T(2) T (w) = 0, T (W) +... (4.13)

The first term here reflects the appearance of the conformal anomaly (a purely quan-
tum mechanical effect). In the general setting the coefficient of this term is ¢/2,
where c¢ is the central charge. The coefficients 2 of the second term coincides with
the conformal dimension of 7.
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4.2 Quantization in the physical gauge

Quantization of strings in the physical (light-cone) gauge is perhaps the most straight-
forward way to obtain a restriction on the space-time dimension as well as to under-
stand the spectrum of physical excitations.

Using the Poisson brackets and the basic quantization rules we can easily get the
table of the basic commutator relations of the light-cone string theory.

+ - j - -

[ ) ] p b p] x? X Odn o,
pt 0 0 0 0 1 0 0

- _GE e 21T J B
P 0 0 0 Iy sz e mag, oG,
P 0 0 0 10" 0 0 0

) p_Z iJ 3498, ol
x 0 s i) 0 0 e Ut
x= | =1 it 0 0 0 0 U

i 2rT o i ) VarT o i
a, a0 —iT 0 10" 0t Ny,

— 2T — -y e VAarT i - -
@, p—+nozn 0 o Zp—f o Zp_i T T pt mo, 4 m [an ) am]

Tab. 2. Canonical structure of the light-cone modes. The variable
p~ is essentially the Hamiltonian: p~ = 27er£Jr . The commutators
involving & variables are the same.

We would like to point out the following commutator

VarT

no .
n+m
p+

[l a;] =

One of the most important commutators of the light-cone theory is [a,,, . ]. It can
be computed precisely in the same way as [L,,, L,] of the previous section. We find
the same result as before except we have now only d — 2 transversal fields which
contribute to the central charge term with the factor d — 2 instead of d

VArT B AT d— 2 9
p+ (m — n)ozmﬂl + W?m(m

The normal ordering ambiguity

- (4.14)

[O‘r_ma;] =

_ _ 47T
o, — o, — p—+a5n70

leads to the change as

_ VArT _ AT rd — 2 d—2
[Oém, an] = p"" (m — n)am+n + W <Tm3 + 2am — Tm) 5m+n .
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4.2.1 Lorentz symmetry and critical dimension

Studying the classical string in the light-cone gauge we realized that the generators
J= of the Lorentz symmetry become rather complicated functions of transversal
oscillators

o0 oo
i— i — 2 i — - 1 2 ~i =— ~— =i
e] =Trp —T p —1 E (a_nan — Oé_nOén) — 1 E (a_nan - Oé_nOén) .

We would like to ask a question whether we can use this expression in quantum
theory regarding «v,, and a,, as operators to define the quantum Lorentz generators?
Due to the unusual canonical structure of the light-cone theory it is not obvious that
consistent Lorentz generators should exist.

In quantum theory we want to realize a unitary representation of the Poincaré
group and therefore, we require the Lorentz generators to be hermitian, i.e.

(JW)T = JW

where we treat J* as an operator acting in the Hilbert space. Also the Lorentz
generators must be normal-ordered to have the well-defined action on the vacuum
state. Consider the following ansatz for the Lorentz generators J'~, which are the
most intricate generators to be defined in quantum theory,

(.

R O R S T — i L I
J 25(3717 +pa)—ap —l;ﬁ(@n(%n —Oz,nan) —Z;E(anan —afnan).

v~

0=
One can see that these generators are hermitian and normal-ordered so they can
be considered as candidates to realize the Lorentz algebra symmetry. The latter

requirement is equivalent to

[J'7, 7] =0.
This is an equation we would like to prove.

First we discuss the orbital part. We have

0,07 = @' +p 2") —2Tpt, L@TpT +pTad) — 27 p)

= ' ,27p7] = L(@p' - o'pl) b
+ fl='pT.p 2] = L'’ —a'p) i

2Pl = — 4P 8 — oy B

(7t — a7 pt)
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Here by arrow we indicated the explicit expression for the corresponding commutator. Reducing similar terms we get

R R L L e R R 1 R A L

. . . . pT X1 0 il
7,877+ (ST, 7] = 2= —al o) +
1 = . . . . . .
- - i i - - i
S i B R it S B
n=1
Here and below we use the concise notation a[_naib] = aina!n — a]_na;.

(4.15)

Now we are in a position to study the most difficult commutator [Sif, SI— ]. We will do further analysis in several steps.

1. First we consider the following commutator

(4.16)

oo
o ) 1. _ . B
[s* oy ] = _ZZ ;[a’:nan —ainail,ayn]
n
> 14 47T i _ _ _ _ 47T .
= —zz ; — e na:nin n tal [an,am] [ain,am]a; T "O‘—n&izﬁ»m
n=1
A
Therefore,
i _ NATT X 1= : _ ; _ _ ; _
[S’L ya ] —q p Z ; 7nazn_nan +al_n(n7m)am+n+(n+m)amino¢; naina:H_m
n=1
f(m)
i,
m
This further gives
. VarT == U . . X [
[ E— . i - i — - i - i
" ",a, ] = —i " Z al Qi T OOy Fo, a0 —O Oy
p =1 N — N —
A B
VAT & mD _ i fm)
+ ¢ oF n;l; Ay — Xy Oy 727’"1 ay, -

The terms in the first line of the last

that
i- - NVarT Y i - - i
57 an ] = L S ol an +ap_ el
p n=1 N——— N——
A B
AT 2 ml f(m)
+ i — o' a [ al —i——al
S el e
Since we have
m 0 m—1
- k3 — i —
Ym—n%n = Z A Ym—k = Z An Ym—n
n= k=m-—1 n=0
we see that
m M m m—1
i — i o I3 — i
D o, tag_ o, = Uy D ey,
n=1 n=1 n=0
m—1
= aj o, —aga,, + Z [an,am_n]
n=1
Using the fact that Z::;_ll (m —n) = %m(m — 1) we obtain
; arT : 4T & m- ; |
i— — . i — i . i — i
(57 o | = i (e, —agal) +i e S el ag e,
n=1

3~

47T m(m — 1) _ f(m) o
(p1)? 2 m

Thus, under the action of the Virasoro operators «,, the spin components S%~ transform in a nontrivial manner
the r.h.s. of eq.(4.17) is normal-ordered.

— 60 —

equation can be partially cancelled upon changing the summation index and we find

(4.17)

. Note that



2. Analogously, we compute (m > 0)

o . .
oo —a_ al
—n%n—m —m—-n%n

. 47T . . 4T &
i— — . - i i — .
[S"hal,, ] = 17( “m®0 — Qi@ ) — i o >

=13

n=1

47T m(m — 1) _ f(m) o
@H)? 2 m ) T

In fact these formula is also obtained from eq.(4.17) by simply substituting m — —m.

3. The next step consists in finding the commutator

("7l 1 =
0 as i#j

AnT & ml ; . ;U
_ ; J J i
= pt Z " Yn®—m T Yon—m%n

n=1
4. Finally we compute the commutator
AT & m o
S, ad ] =i oF Z - &ina“in-#n al L«
n=1

Substituting all our findings into the commutator [S?~, 7] we obtain

. . VAT 220 1! . . . . . . A
i— j— — i J i — i — ] — i
[S aSJ ] = P+ Z ; _a]_naO an""aj_nal)an +a—na0 ail _a—na()afm
n=1
i 47T n—1 f(n) o
n=1 (p+)2 2 n2
4T 1 . _ _ i i j j i _
- ~ ol (@l e, —om_pah) — (@t ad_—ad ad)ag,
m,n=1
i - - iy g - i J i
+ (O‘fnan—m - a—n—man)a’nL - a_m(a77Lam+n - c“m—no‘n)

We first analyze the last two lines of the equation above, which we write as follows

Y = AT § 1Ho(j ot . —(ai ot —ad al Yo
;D+ et n —m-—n " m+tn —n-"n—m —_m—-—n_n m
A A
+ ainavtfmagn - aj—ma;lfnaib - O‘:n—mailo‘?r.n _O‘:m(ainagn«#n _aZn—naiL)
N———— [ —
B B

Upon changing the summation variables the A-terms can be partially cancelled, the same is for the B-terms. We therefore obtain

i

n n
E lozi o o+ g ia_ ol «
—n n—m m —m m—n n

)y

rii VaArT o
pt m=1" m=1"
AnT == 0O . . . .
i = 3 — J
n,m=1

One can recognize that in the second line of the equation above the first and the last terms are not normal-ordered. We consider the

first sum, which is not normal-ordered, and try to bring it to the normal-ordered form:

= 1 i - — 1 " = 1 i -
Z A - %n%m = Z s Om Oy Z 7a—m—n[an‘a7n]
n,m=1 n,m=1 " n,m=1"
) oo
1 AT
_ J — i
= B mm-nYmn T DD S
n,m=1 P n,m=1
oo oo
1 . . AnT
_ J - i J
= > -l _Lanen+t ot > (k=1Dal jaj,
k=2

n,m=1"

where in the last sum we made a substitution K = m 4+ n and then summed over m, n with the condition m + n = k kept fixed; this

resulted in the factor k — 1. Analogously, we achieve the normal-ordering of the second sum

oo oo oo

1 _ i 1 1y _ . VarT i .
E ga a_nain+n = § ;a_naimain+n+ T E (kfl)a_kai.
1 n,m=1 p k=2
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Thus, our commutator takes the form

L. 47‘,T oo n 1 n
ij i j - - j i
= pt > - oS n—m mt 2 E=mYm—n%n
n=1 m=1 m=1
4rT & 1 . . . . .
J -0 i - J J - i -
+ pt+ Z ; A OOy T, o, —al o, o, —al o, m4n
n,m=1
A B A B
47T & i
— )2 z(n—l)a[ ail]
n=1

i AT & X 1Y . . . .U
ij i J - - j i
= m > > n Y n%nemm to_pom non
P n=1m=1
TT oo n=l 10 ) - o o
+ Z P ain—na—mazb + alnamai—m
Pt im0
47T [i
a o]
7 2. (n—Dal o
()2 =1
From here we find
.. VarT =2 n 1 . . PR . . . .
O — K J " - J J — % i - 7
I pt Z Z n a_papa, o joapo, —al o ay +oa_o0g o
n=1m=1
arT 2 [l n—m [d . AnT & ) .
_ Z Jl _ Z( -1) [i Jl
[ el n [ o S
®H? = <m:1 n n T 2 nfn
$(n—1)

Thus, the commutator of the internal spin components we are interested in acquires the form

4T
pt

oo
J —at J i i — o J
Z —aljoga, tal joga, oo, —a XX

n=1

[s°7,877] =

El

W o to ddal —ad o
a*ﬂraoa’ﬂ +a77La0a’VL a—n&() @

sl 47T . .
Z (p:)22(n71)7$) a[lnai].

n=1

The final step consists in commuting the factor oy on the left to compare with eq.(4.15).
We thus find
—n-n

i 2VrTay ~=1 |
[, 5 ]:2—p+ Ozﬁa[ ol +
n=1

1 17, o ,
+ 57 g |0y —a%ual)p’ — (ol oy — aZe)p

— ]
)2 2n > al, ol

> [ 4xT n i
_Z f(n) [

n=1

Finally, adding this expression to eq.(4.15) we arrive at
i— j— — _ 1 > 1 i ]
[J7, 7] = 2<p - 2\/7rTaO>—+Z—a,naZl +
p n=1 n

AT = ((1d —2 1 d—21\ @ _
R 2 o 2o T] ) el + (ew - aw)

n=1
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As for the case of classical string the first term here vanishes due to the level matching
condition ay = @yg, while the second sum is an anomaly which appears due to non-
commutativity of the oscillators in quantum theory. Thus, for general values of a
and d the theory is not Lorentz invariant: the quantum effects destroy the Lorentz
invariance which was present at the classical level. However, for special values

the anomaly term vanishes and the Lorentz invariance is restored!

4.2.2 The spectrum

In the light-cone gauge the spectrum is generated by acting with transversal oscilla-
tors on the vacuum state. We first discuss the spectrum of open strings.

The mass operator is the light-cone gauge for open strings is

where, as was discussed in the previous chapter, the normal-ordering constant a
should be equal to 1 in order to guarantee the Lorentz invariance of the light-cone
theory.

The ground state |p’) carries no oscillators and it has a mass
oM p') = —|p")y = oM*=-1.

This is a tachyon.

The first excited state is o', |p’). Tt is a d — 2 component vector which transforms
irreducibly under the transverse group SO(24). We see that

o' M? (a1 |p")) = (1 — a)a’,|p) =0,

i.e. this vector is massless.
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level |o/mass? rep of SO(24) little | rep of little

group group
0| -1 0) SO(1,24) 1
~—
1
1 0 ) SO(24) 24
N——
24
2 | +1 alL|0) ool |0) SO(25) 324,
—— N——
24 299,+1

31 42 |40y al,al 0) ol od 0f,]0)] SO(25) |2900, + 300,
N——

[\ J/ J/

24 276,4+299:+1 25765+24

Tab. 3. The spectrum of open bosonic string up to level 3.

In general, the Lorentz invariance requires that physical states transform irreducibly
under the little Lorentz group which is

e SO(d — 2) for massless particles
e SO(d — 1) for massive particles (for tachyon SO(1,d — 2))

For tachyon the little Lorentz group is non-compact. Unitary representations of
non-compact groups are either trivial (i.e. one-dimensional) or infinite-dimensional.
Tachyon realizes the one-dimensional representation.

Further analysis reveals that all states corresponding to higher levels are massive
and that being the tensors of SO(24) they combine at any given mass level to repre-
sentations of SO(25), the latter is the little Lorentz group for massive states. This
is highly non-trivial implication of the Lorentz invariance and it occurs only in the
critical dimension and for a = 1!

At level n the mass of the corresponding states is o/ M? = n — 1. Among them there
is always a symmetric traceless tensor of rank n. This is a state with maximal spin
Jmax = n and, therefore, we have Jy. = n = o’M? + 1. In general states obey the
inequality

J<a'M?+1.
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The values of J and M? are quantized and the last inequality implies that the states

lie on the Regge trajectories.

level|a’'mass? rep of SO(24) little rep of little
group group
0| -4 10) SO(1,24) 1
~~
1
1 0 o' & ]0) SO(24) 299, + 276, + 1
299,+276,+1
al,dl o) alyal kel o) 20150, + 32175
2995+;76a+1 2995—5—1?‘:29954—1
2 +4 SO(25)

a’,al,abj0) ool at,0)

(24) ><(\2,99+1) (299+1,) x(24)

52026 + 324, + 300, + 1

Tab. 4. The spectrum of closed bosonic string up to level 2.

Now we discuss the spectrum of closed strings. The mass operator for closed

strings is

M= 2(3 a0l + 3 G~ 2)
n=1 n=1

In addition one has to impose the level-matching condition

oo o0
_ i i ~i i
V= E al o — E al,a, =0,
n=1 n=1

which simply means that the excitation (level) number of a-oscillators should be

equal to the excitation number of a-oscillators.

The ground state is a tachyon which is scalar particle with o/ M? = —4. The

first excited state a’,a’,|0) is massless. It can be decomposed into irreducible
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representations of the transversal (and simultaneously little) Lorentz group SO(24)
as follows

o . . 1 ... 1 ...
o 24 24

276 2‘9,9 sin‘grlet
The massless excitation of spin two transforming in representation 299 of SO(24)
was proposed to be identified with a graviton, the quantum of the gravitational

interaction. To make this identification one has to relate the string scale o/ with the
Planck scale G = My 2 where G is the Newton constant and Mp is the Planck mass:

!/ —2
o = Mp~.

Since the masses of the massive string modes are proportional to 1/’ = M3, these
string excitations are extremely heavy due to the large value of M3 and, by this
reason, they do not show up at the energy scales of the Standard Model.

As in the opens string case the higher massive states of closed string are combined
at a given mass level into representations of the little Lorentz group SO(25). The
relation between maximal spin and the mass is now

/
Tmax = %M2+2.

4.3 BRST quantization

The path integral approach proved to be a very useful tool for quantizing the theories
with local (gauge) symmetries. The starting point is the Polyakov action and a new
BRST (Becchi-Rouet-Stora-Tyutin) symmetry. We know that the induced metric
I'ag = 0,X"03X, and the intrinsic metric h,s are related classically through the
condition T3 = 0. However, quantum-mechanically this is not the case.

The basic idea is to define the path integral using the Polykov action and inte-
grate over

haﬁ, XH

being considered as independent variables:
7 = /Dhaﬁ(a, T)DX* (0o, T)eiSP[X’h}

Due to the gauge invariance the last integral is ill-defined. This occurs because we
integrate infinitely many times over physically equivalent, i.e. related to each other
by gauge transformations, configurations. This can be understood looking at a much
simpler example of the two-dimensional integral

+o0o +o0 )
Z :/ / dedy e @)°
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It is divergent since the integrand depends on x — y only. Also one sees that the
group of translations
r— T+ a, y—y+ta

leaves the measure invariant.

Orbits x—y=const

x+y=0

gauge slice
intersect each orbit
at one point

Fig. 4. Divergence caused by a presence of the translational symmetry. One
integrates over the orbits of the gauge group while both the measure and
the integrand are translation invariant.

Let us split the coordinates (z,y) as

r—Yy y—x x—l—y r+y
e =50 5)r ()
oty

2

%.},_%:0 shift by (a,a), a=

g g

This suggests to introduce new coordinates “along” the gauge orbit and “orthogonal”
to it:
(m,y)—>(u,v) U=x—-Y, U:$+y,

ie. x = %Y and y = “5%. Then the integral takes the form
1 +oo “+o0o 5 “+o0o +00
Z:§/ (/ e‘“du)dvzg/ d(a:—i—y):ﬁ/ da
—o0 —oo g g —o0 —o0o

VT volume

This example illustrates the basic idea to define the path integral — one has to divide
the original Z by the infinite volume of a symmetry group. Thus, our discussion
suggests that a proper definition of the path integral in string theory should be

Z = ——— [ Dhyg(o,7)DX*(0, T Sp[Xoh]
VDlﬂ?VWeyl / 7 ) (0:7)e

where we divided over the infinite volumes of the reparametrization and Weyl groups.
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Let us illustrate this procedure on our simplified example. The integral can be rewritten by using the é-function:

+oo 4+ oo 2 = = +oo +oo 2
z:/ da/ e~ qrdy 26(x + y) =/ da/ e dz.

—oo —oo —oo — oo
Here insertion of the §-function can be regarded as the gauge-fixing condition; it selects a single representative from each gauge orbit.

‘What happens if we change the gauge fixing condition? Suppose we take another slice “orthogonal” to the gauge orbits. Let s will be
a free one-dimensional parameter on this slice

s:  f(zx,y) =0 = (z(s),y(s))

Chose now new coordinates
’ ’
(z,y) = (=", y") +(a,a)
N——

along s
Then N n N n
oo oo 2 oo oo ’ N2
zZ :/ / e~ (@=Y) dzdy :/ / e~ (@ =y dsdalJ|,
— oo — 0o — oo — 0o
where z — y = 2’ — 3’ and
(=,
g 2=y
9(s, a)
is the Jacobian. Since z = ' + a and y = y’ + a we have
9z Iz oz
9z Oz 9z q oz 15} o)
T= 8 8 )= 8 )=5 -5 =5 )
s =1 2] b3} 2}
s Oa ds s S s
Along s
o of oz of oy af oz’ af oy’
" oz 0s Byasiﬁz Os Oy Os ’
’
which allows for a solution aa—y = 9 apq 02 = a—f, and, therefore,
s dx ds oy
1] 9 9
7= 2wy =2
Js ox oy

The integral can be now written as

+ + 200 arH
Z:/ Ooda,/ oods e_(ml_y/) ’iﬁ» f’,
— oo — oo ox’ oy’

Here the integral over s is one-dimensional, the functions ' and y’ are the functions of s and it is independent of a. One can convert
this one-dimensional integral into a two-dimensional one by substituting the §-function with the gauge condition

+oo ! _u\2HOf af - +oo (w—y)20f | Of
d (z y') s —:/ dzdy & R (x—vy) [ iy
/—oo @ oz’ + oy’ —co zdy 8(f(=, v))e ox + oy

The infinite volume arising upon integrating over a can be factored out and taking into account that

of Caf  of
—la=o= —+ —

da oz oy la—o

we obtain the final and finite expression

+oo =0f o (z—qy)2
Ztwie = [ dady 8(f(@y) E0 TV
— oo Oa a=0

Here *%’ o is known as the Faddeev-Popov determinant.

The first problem in realizing this approach for string theory is to find a mea-
sure for functional integration that preserves all symmetries of the classical theory
(reparametrizations + Weyl symmetry).

(0h,6h) = [ d*oVhh PR’ 6hyy6hss

(0X,6X) = [ 2oVhh*P6X15X,
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These scalar products define natural reparametrization-invariant and Poincaré in-
variant measures, however none of them is Weyl invariant.

Let us first assume the simplifying situation when all metric on a world-sheet M
with a given topology are conformally equivalent (i.e. they are related to each other
by diffeomorphism and Weyl rescalings; this is the case when operator PT does not
have zero modes). In this case by using reparametrizations we can bring the metric
to the form

hag = €2¢ga5,

where gop is a fiducial (reference) metric. Under reparametrizations and the Weyl
rescalings the variation of the metric can be decomposed as

~ ~ 1
Ohag = (P&)ap +2Mhoag, A=A+ 5%5” ,
where P is the following operator

(P&)ap = Vals + Vpla — V& hag,

which maps vectors into traceless symmetric tensors. Then the integration measure
can be written as follows

O(PE, )

9(€, A)
—_——

Jacobian

Dh = D(PE)D(R) = D(E)D(A)

Y

where in the last formula we changed the variables
(P&, A) — (€,A)

for the price of getting a non-trivial Jacobian. Here D(&) is the measure which gives
upon integration an wnfinite volume of the diffeomorphism group and

~ (P O(P. (P
ope, )| |75 %R - S ‘ — |detP|
AA dA OA
(¢, A) % 5 o 1
In fact, we have
5(P§)a5(0) Y v v !
S = (Yt 8V — sV )30 = o)

Thus,

|detP| — /DbDC efi%Z‘]'d?aon-/\/E bﬂﬁ(o) (ngoﬂ»(gzvﬂ—haﬁvw)05(070./)67(0/) '
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Here ¢ is called a ghost field, while b,3 is traceless and symmetric, it is called
antighost field. The ghost ¢® corresponds to infinitezimal reparametrizations while
bas corresponds to variations perpendicular to the gauge orbits. Both the ghost and
the antighost fields are real. The last formula can be now written as

|detP| = /Dch ¢ rar J d2oVh bapVae?

Thus, the total action is given now by the sum of the Polyakov action and the ghost
action:

T
S = —E/dQU’yaﬁ <8aX“8gXN + 4ibgvva07)
There are several subtle issues we have not touched so far

e Conformal anomaly, i.e. possible dependence of the thrown away volume of
the diffeomorphism group on the Weyl (scale) degree of freedom ¢.

e Reparametrizations which satisfy P¢ = 0, i.e. conformal Killing vectors. We
see that equations of motion for ¢* are just conformal Killing equations. There-
fore, in order not to overcount the configurations which are related by a con-
formal transformation one has to exclude integration over the zero modes of ¢*
ghosts.

e So far we assumed that all symmetric traceless deformations of the metric can
be generated by reparametrizations. This is however not the case if P! has zero
modes. These zero modes correspond to zero modes of the b ghosts.

We can define the stress-energy tensor of the ghost fields
6Sgn =T / 2oV —h T 5h,p .
Performing the variation one finds

TC%B - Z‘<b0¢’7vﬁc’y + bﬁ’yvac’y - C'yv»ybaﬁ - haﬁbygv’ycé) .

Here the last term vanishes on shell. In the deriving this expression we also used
the tracelessness of b,3. One can verify that this tensor is covariantly conserved
V¥ os = 0.

In the world-sheet light-cone coordinates o* the non-vanishing components of
the stress-tensor are

Ty =i(204 10yt + (01by 1)),
T - =i(2b__0_c + (0-b__)c7).
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Equations of motion are
0_byy =0,0__ =0,
dyc” =0_c" =
This equations are supplemented by
e by periodicity condition for the closed closed string case
b(o +2m) = b(0), clo+2m) =c(o);
e by boundary conditions for the open string case
by (o) =0b__(0), ct(o) =c (o) for o=0,m,
which follow by requiring the vanishing of the boundary terms arising upon
deriving equations of motion.

Note that for the closed string case b, and ¢ are left-moving waves, while b__ and
¢~ are the right-moving ones. The canonical anti-commutation relations are

{b++(07 7—)’ C+(OJ7 7—)} = 27T5(U - OJ) )
{b__(o,7),¢ (0/,7)} = 276(0 — o).
For the closed string case the Fourier mode expansions look as

+oo

ct(o,1) = Z e mrto)

n=—oo

ZTLTO'
E Cnt )7

n=—oo

bys(o,7) Z bue )

n=—oo

b__(o,7) Z b,e”™=9)

n=—oo

For the anti-commutation relations this becomes

{bma Cn} = 5m+n )
{bma bn} - {Cma Cn} =0

and the same for the barred oscillators. The Virasoro generators are

LEh = Z (m—mn) : bpinCnp
E,g,}; = Z (M —1n) : bgnCen :
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The ghosts and anti-ghosts are conformal fields. Indeed, it is easy to compute
(L& b,) = (m = )bpn, (LB 0] = —(2m 4+ n)cpmpn -

Comparing this with the transformation rule of the modes of a conformal operator
of dimension A
[Lim, An] = (m(A —1)— n)Am+n

we conclude that b and ¢ are indeed the conformal fields of the conformal dimension
A =2 and A = —1 respectively.

Using the explicit expressions for the ghost generators L&" it is not difficult to
compute the algebra

[Lgh Lih] = (m - n)L%il+n + Cgh(m)6m+n )
where the central charge appears to be

1
A (m) = E(Zm — 26m?).

Now if we introduce the total Virasoro generator as
Ly =LY+ L& — a0
then it will satisfy the Virasoro algebra
[Lin, Ln) = (m — 1) Ly + ¢(m)0min
with

1
= —(m?— —(2m — 26m?) + 2am .
12(m m)+12(m 6m?) + 2am

We see that the total central charge vanishes for d = 26 and a« = 1. We again

C

found the same values for the critical dimension and the normal-ordering constant
as followed from the light-cone approach! Here these conditions on the theory follow
from the requirement of vanishing of the total central charge.

BRS'T operator

The concept of the BRST operator is very general. In fact, the BRST operator can
be associated to any Lie algebra and it is a useful tool to compute the Lie algebra
cohomologies.

Consider a Lie algebra with generators K; satisfying the relations

(K, Kj] = fEK .

Introduce ghost and anti-ghost fields ¢! and b; satisfying the anti-commutation rela-
tions

{c',b;} =0}, i=1,...,dimK

- 72 —



Introduce the ghost number operator U:
U=> cb.

The eigenvalues of this operator are integers ranging from 0 up to dimK.
The BRST operator is defined as
Q=CcK; - 3flcdby. (4.18)

First we compute a commutator

QU] = ['K; — L fEc by, by
= ™, b} Ki — " fE{ by Ybr, — 3 e I {br, " Yo,
Thus, the BRST operator has the following commutator with U:

U,Ql =Q

and as the result it increases the ghost number by one:

UQlx) = (QU +Q)|x) = (Ngn + 1)Q|x) -

Second, compute the anticommutator

{Q7 Q} = {ClK’L - % z@czcjbka CSKS - %fgmcmcn p}
= KK, — CEKK; — % i’;-cicj{bk, K — %f&ncmcn{ci, b, } K;
+ zl; z'ljfrz;m{czcjbmcmcn p} .
It is easy to find
kb, b, = Afh D de,

Therefore, the expression we are interested in reduces to

{Q,Q} = AP [Ki, Kj) — 3 fi Ky, — 3 fEd I Ky + fLfh,. A ™,

v

Due to the algebra relation [K;, K] = f/; Kj the first three terms in the last expression

cancel out and we are left with
{Q,Q} = [ fh.c'dc™b,.

Due to the anti-commuting property of the ghosts the last expression can be rewritten
as

{Q.Q} = S(fEfh + frid Do 4 i I L) ™Dy
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The expression in the bracket vanishes because this is the Jacobi identity written for
structure constants of the Lie algebra

k k k
ijflfm + fmiflfj + jmflfi =0.
Thus, we found that the BRST operator is nilpotent, i.e. it its square is zero

Q*=3{Q.Q}=0.

This is the fundamental property of the BRST operator. We also assume that @) is
hermitian, i.e. Qf = Q.

Let H* will be a Hilbert space of states with fixed ghost number U = k. An element
|x) € H* is called BRST-invariant if

Qx =0 (4.19)

Clearly, any state of the form Q|\), where |)\) is any state with the ghost number!'
k — 1, is BRST-invariant because

QQIN) = Q%)) = 0.

The state Q|\) has zero norm because

AQTQIN) = (AIQ*A) = 0.

The most important BRST-invariant states are those which can not be written in
the form |y) = Q|A\). We will regard two solutions of equation (4.19) equivalent if

X)) = Ix) = QN

for some .

In fact, we recognize that the BRST-operator mimics all the properties of the de-Rahm operator d which acts on the space of external
(differential) forms on a manifold M. Indeed, it has a property that d?> = 0. A differential form w is called closed if dw = 0 and it is
called ezxact if there is another form 6 such that w = df. The factor-space of all closed forms over all exact forms of a given degree n

H (M) closed forms
" exact forms

is called n-th cohomology group of the manifold M. In our present case the operator Q takes values in the Lie algebra and it defines

cohomologies with values in an given representation of the Lie algebra.

Furthermore, the states with zero ghost charge are of special importance. Such
a state must be annihilated by all b;. For such states the BRST operator reduces to

Qlx) = ¢ Kilx) = 0.

14 As we found the BRST-operator increases the ghost number by one.
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Thus, Q|x) = 0 is equivalent to the condition that K;|x) = 0, i.e. it is invariant under
the action of the Lie algebra. On the other hand, this state cannot be represented as
|x) = Q|A) for some |)\) because the ghost number of |A) should be equal —1 which
is impossible.

Let us apply this general construction to the string case. The Lie algebra in this
case is the Virasoro algebra and we supply it with the ghosts c,, and ant-ghosts b,,.
The BRST operator is now

+oo [e%s}
1
Q= E LX e — 5 E (m—n):cmC_pnbpmin : —acy,

where a is the normal-ordering ambiguity constant for Ly. It turns out that this
expression can be written as

+o00
Q= Z : (L)_(m + %Lg_hm — aémp) Con

The ghost-number operator is
+00
U= Z S C_mbp

We would like to investigate the fulfilment of the relation Q% = 0 in quantum theory.
We find

—+00

0? — %{Q, Q) = Z <[Lm, L, — (m— n)Lm+n>c_mc_n.

n,Mm=—00

Here L,, = LX + L8 — ad,, is a total Virasoro operator. Thus, @Q* = 0 for d = 26
and a = 1 as the consequence of vanishing of the total central charge!

Inverse statement is also true: from 2 = 0 it follows that the central charge of
the Virasoro algebra vanishes. Indeed, we first note that

From here
[LWM Q] - [{Qv bm}? Q} - (Qbm + me)Q - Q(Qbm + me) - [bm7 Q2] =0

as Q? = 0. Therefore, we see that

[Lma Ln] = [Lmv {Qa an = {[Lma Q]v bn}

+ {Q> [me bn]} = (m - n){Q> bm+n} = (m - n)bm+n-
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One can check that these objects are charges which correspond to new conserved
currents

TP = 2cH(TX, + 4T

J+ = C+b++ .

There is new and more fundamental fermionic symmetry present — it is BRST
symmetry. Let A be a grassman (anticomuting) parameter. The BRST transforma-
tion is defined as

Y = [2Q,Y]
It is given by
SXH = AeTO . X" + Ae” O_XH,
dct = \ctoct,
0byy = 20NT |
0T, =0.

The ghost number operator

1 00
U = §(Cob0 — boCo) —f- Z(C—nbn — b—ncn)

n=1

Here ¢,, b, for n > 0 are annihilation operators.
Zero-modes require special treatment. We have
co=0b=0, {co,bo} =1
There is a two-dimensional representation of this relations:
al =11,  wWlD=11)
col 1) =0, bol 1) = 0.
The ghost numbers are U} = —1/2 and U; = 1/2.

Physical states should have the ghost number —1/2. They are annihilated by by.
Indeed, consider

Culx) =bnlx) =0, n>0 and bylx) =0.

The condition of the BRST invariance reduces to
0=@Q[x) = (CO(LO RS c—"L”> -
n>0
We thus reproduced the conditions for a physical state obtained in the old covariant

quantization approach. Physical states of bosonic string are cohomology classes of
the BRST operator with the ghost number —1/2.
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5. Geometry and topology of string world-sheet

5.1 From Lorentzian to Euclidean world-sheets

String world-sheets and the target space both have Lorentzian signature. The con-
nection to the theory of Riemann surfaces can be made by performing the Wick
rotation of both world-sheet and the target space metrics. In particular, for the
world-sheet time 7 this means 7 — —i¢7. Thus, on the string-world sheet this Eu-
clidean continuation corresponds to

ocf=17+0— —i(t+io). (5.1)

A word of caution is needed here: One cannot really prove that the theory of the
Lorentzian world-sheets is equivalent to the theory of the Euclidean ones. However,
treating the world-sheets as Euclidean provides by itself a consistent theory of inter-
acting strings. The Euclidean version can be then used to learn as much as possible
about its Lorentzian counterpart.

We start with considering a single closed string whose world-sheet has topology
of a cylinder. Formula (5.1) suggests to introduce the complex coordinates

w=7T-+10, W=7T—10.

The Euclidean closed string covers only a finite interval of o on the complex plane
0 < o < 27 and, therefore, only a strip of the 2dim plane.

0 —

Fig. 5. Mapping the cylinder (7, 0) to a strip (w, w) on the complex w-plane.

[

One can further map the strip to the whole complex plane by using the conformal

map

z=e" =,

Lines of constant 7 are mapped into circles on the z plane and the operation of time
translation 7 — 7 4+ a becomes the dilatation

z —e%z.

A procedure of identifying dilatations with the Hamiltonian and circles about the
origin with equal-time surfaces is called sometimes radial quantization. Mapping
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from the cylinder to the plane cannot change the physical content of the theory
if the theory is conformally invariant, which is the case of string theory in critical
dimension.

We note that the plane is a non-compact manifold. However, one can compactify
it by adding a point at infinity. The corresponding compact surface arising in this
way is the Riemann sphere. A metric on a plane can be transformed to a metric on
a sphere by a suitable choice of the conformal prefactor. For instance one can pick

up the metric
4dzdz

(L+]z?)?
The formula z = cot gei‘z’ defines a stereographic projection of the sphere onto the

plane and under this projection the metric takes the form

ds? = d6? + sin? 0de?

ds? =

i.e. it is the standard round metric on a sphere.

=

north pole(outgoing string)

z-plane south polgincoming strin

Fig. 6. Stereographic projection of a sphere onto z-plane. Asymptotic
incoming and outgoing strings are mapped to the south and the north poles
of the sphere respectively.

Since cot 5 = 0 and cot(0) = oo the incoming and outgoing strings are mapped to
the south and the north poles of the sphere respectively.

The example above can be generalized to general world-sheets corresponding
to interacting strings. The crucial observation is that conformal invariance allows
to consider compact world-sheets instead of surfaces with boundaries corresponding
mcoming and outgoing strings. The string boundaries are mapped to punctures on a
compact Riemann surface.

Under the Euclidean continuation the basic equation [JX = 0 transforms into
8235)( = 0

with a general solution

X(z,2)=X(2)+ X(2),
i.e. the left and right-moving excitation correspond now to analytic and anti-analytic
fields on the complex z-plane.
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5.2 Riemann surfaces

On a two-dimensional real manifold M the metric can be locally (i.e. in a given
coordinate chart) defined by the line element

ds® = hyyda?® + 2hiodzdy + hoody?
Introducing the complex coordinates
z=x+1y, Z=x—1y
the line element can be written as
ds? = 2e?|dz + pdz|?

with the following identifications

hi1r — hog + 2ih
e = L(h oo + 2 /hihos — W) = R LT
hiy + hag + 2+/hi1hay — hiy

If hyy = hyo and hys = 0 then p = 0 and the metric takes in this coordinate chart
the form
ds? = 2e?|dz|* = 2¢?(dx® + dy?) .

The corresponding coordinate system is called isothermal or conformal and the co-
ordinates (x,y) define a conformal map of a coordinate chart of a manifold to the
Euclidean plane.

A theorem of Gauss

For any real two-dimensional orientable surface with a positive definite metric there
always exists a system of isothermal coordinates (the theorem of Gauss). It is unique
up to conformal transformations. First, assume that we have already found a system
of isothermal coordinates, i.e. the metric is locally in the form

ds? = 2e%|dz|*.
Performing the coordinate transformation with an analytic function of z:
z— f(2)

we get
ds? — ds® = 2¢?|f(2)|?|dz|?,

i.e. we get a conformally equivalent metric and, therefore, a new system of the
isothermal coordinates.
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coordinate chart

Fig. 6. Covering the Riemann surface with coordinate patches. Every patch
is homeomorphic to an open domain of the Euclidean plane.

Second, in order to prove that isothermal coordinates exist, consider the so-called
Beltrami equation

ow ( 7)011)

— =ulz,z)—.

0z "0,
Suppose we solve this equation, then

Ow|?
|dw|? = |0,w + O:w|?* = |0,w|*|dz + pudz|* = |2—de52
e
Thus,
269
d52 = ﬁ\dwﬁ = )\|dw|2,

i.e. w defines a system of isothermal coordinates. It is a mathematical theorem that
for a sufficiently small coordinate patch and a differentiable metric a solution of the
Beltrami equation with 0,w # 0 always exists.

If two metrics are related by a diffeomorphism and a Weyl rescaling they are said
to define the same conformal structure. If a manifold M is covered by a system of
conformal (isothermal) coordinate patches U,, then on the overlaps the metrics are
conformally related, i.e. the transition functions on the overlaps U, NUp are analytic
and the complex coordinates are globally defined. A system of analytic coordinate
patches is called a complex structure and it is the same as a conformal structure.

A two-dimensional topological manifold endowed with a complex structure is
called a Riemann surface. Thus, a Riemann surface is a complex manifold.

Another way to understand that Riemann surface is a complex manifold is to
note that in two dimensions the metric provides a globally-defined integrable complex
structure

[aﬁ == \/Eha'yewg

such that I? = —1. The conformal structure is conformally-invariant and globally
well-defined. The existence of an integrable complex structure is necessary and suf-
ficient for an even-dimensional manifold to be complex.
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Recall the fundamental result from the theory of two-dimensional (real) manifolds.
Any compact orientable connected two-dimensional manifold is homeomorphic to
a sphere with handles. The number of handles, g, is called the genus, a topolog-
ical invariant. Thus, every compact Riemann surface, being a compact orientable
connected one-dimensional manifold, has an associated genus.

Gauss-Bonnet theorem

Let M is a compact orientable two-dimensional manifold of genus g with a metric
hag. Then

1
o /M VhR = x(M) =2 —2g (5.2)

is a topological invariant and it coincides with the Euler characteristic
X(M) =2—-2g.
Here we briefly discuss one way to prove the Gauss-Bonnet theorem. Recall that

in two dimensions the Riemann tensor has only one independent component which
is the scalar curvature:

R
Raprs = 7 (hayliss = hashs,)

Let us choose a system of isothermal coordinates. In this coordinate system the line
element is ds?> = 2e?dzdZz and, therefore, the metric has two components h,s = hz, =
e?. The Riemann tensor simplifies to

Rzizé = _hziRzé = __<hz2)2R = €¢a(§¢ .
The scalar curvature is
R=-2e00¢ = VhR=-400¢=—-N¢,

where A is two-dimensional Laplacian (the Euclidean analogue of the [J operator).
It is also useful to rewrite the integration measure in the complex coordinates

d:v/\dy:%dz/\di,

i.e. we get

0%¢
020Z

2
VhR &z = —4 dx/\dy:—2fia¢dz/\d2:2z'<d a)d 99

9207 “9: ) “as
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The last formula can be understood in the sense of calculus of exterior differential
forms Of = 8—’; and Of = 2L. In particular, the de Rahm operator d = dx ~ + dy2 o9
can be written as

0 0
d=90+0= dz&—l—dz&

Also one has 00 = 00 = 0. Therefore, we can rewrite our formula as
VhR = 2id(d¢) .

This shows that VAR is locally a total derivative and therefore, we see again that
eq.(5.2) cannot change under smooth variations of the metric, i.e. it is a topological
invariant.

On a compact Riemann surface M we consider an abelian differential §2, which is
a meromorphic differential form. It means that in a given coordinate patch (U, z,)
it can be written in the form Q = f,dz,, where f, is a meromorphic function®?.
We can also suppose that the coordinate patches are chosen in such a way that
every U, contains at most one pole or one zero of €). In a patch U, the metric is

ds? = 2e%|dz,|?. Thus, on the intersections of the patches U, N Uz we have

Jal|?
s
Thus, there exists a globally defined function

ePa

X

e¢0¢
80 —=
| fal?

This function is smooth except for singularities at zeros and poles of 2. Since log | f,

on U, forall o.
k
is harmonic outside zeros and poles of €2 we have

VhR = 2id(81og p) .

Let M, = M — UDy,, where D; . are small disks around the singularities of €.
Then, by Stokes’s theorem we have

/ \/_R—Zzhm (810gg0):—2izk:1£% dlogp.

0Dy, .

To evaluate the integrals over the circles we note that at a zero or pole of €2 the

function ¢ is of the form ¢ = 1/|z|*™ with a smooth function v without zeros and

m is the order of zero or pole (m < 0 in the latter case). Therefore,

d
= —mlim & _ —2mim, .

‘Zm
¥4

lim dlogp = hm dlog |z

<=0 Jop, . =0 z|=e =0 )|z =e

15A function f(2) is called meromorphic if it does not have any other singularities except poles.
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Summing up we obtain

/ VhR = —47 deg (),
M

where deg () is defined as the difference of the number of zeros and the number of
poles of €2:
deg () = # zeros — # poles.

It is now the Poincaré-Hopf theorem that states that deg() = 2g — 2, where g is the
genus of the Riemann surface. Thus, the Gauss-Bonnet theorem follows from the
Poincaré-Hopf theorem.

Finally we note that due to the identity

B — pevp P _ pady By

the Euler characteristic can be rewritten in the form!®

1 a
X<M> = 8_7T //;A € 5676Raﬂ75 .

gl g2
9,* 9,

g=0
(=T =0

Fig. 7. If there are two surfaces of genera g; and go then by removing from
each surface a half-sphere we can glue the resulting surfaces into a surface
of genus g1 + g2 and the Riemann sphere of genus zero.

To illustrate the Gauss-Bonnet theorem, we compute the topological invariant
eq.(5.2) for a sphere. We will take a model of a sphere which represent it as the
complex plane (including the point at infinity) with the metric

4dzdz

ds? = ————
R TENFRE

= 2¢%dzdz,

16This is a non-trivial characteristic class of the tangent bundle to M known as the Euler class.
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i.e the conformal factor ¢ and the action of Laplacian on it are

8
=1n2—2In(1 2 —Np=——"——.
¢ =1In n(1+ [z]%) = ¢ 1+ |22
Therefore,
l/dd\/ﬁR—l/OOQ dr—S 9
47 Jc ey Cdrm o T(1+T2)2_ ’

which is indeed the Euler characteristic for sphere, a compact orientable manifold
with genus g = 0. It is also known that on a torus, a manifold of genus g = 1, there
exists the globally defined flat metric. Therefore, the Euler characteristic of torus
is x = 0. In fact, the Euler characteristic x(g) for a Riemann surface of arbitrary
genus ¢g can be found by using the recurrent formula

x(g1 + g2) = x(91) + x(92) — x(0) = x(g1) + x(g2) — 2

and the fact that x(1) = 0. This again leads to the formula y(g) = 2 — 2g.

5.3 Moduli space

The moduli space of all the metrics is the same as the moduli space of Riemann
surfaces and it is defined as the space of all metrics devided by diffeomorphisms and
Weyl rescalings

all metrics

My

- diffeomorphisms x Weyl rescalings -

The moduli space is finite-dimensional and it is parametrized by a finite number of
complex parameters 7; called moduli. The dimension of the moduli space is another
topological invariant and it depends on the genus g only.

Complex geometry

Since we have a system of well-defined complex coordinates on a Riemann surface
we can consider general tensors

| S )

in particular, V*0, and V*9; are vector fields and V,dz and V;dz are one-forms. All
these tensors are one component objects. The metric h.; and h** can be used to
convert all z indices into z-indices. Tensors with one type of indices (for example,

z indices) are called holomorphic. Holomorphic tensors which depend on z variable
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only are called analytic. A holomorphic tensor with p lower and ¢ upper indices has,
by definition, the rank n = p — ¢:

VvV * ,  .(2% <«  holomorphic tensor of rank n = p — ¢;

p

szzz(z) P analytic tensor;

Under analytic coordinate transformations z — f(z) a holomorphic tensor of rank n
transforms as follows

viea) = (L) Vi, .

Denote by V(™ the space of all holomorphic tensors of rank n. This space can be
supplied with the scalar product

(1/1(”)“/2(”)) _ /d22\/ﬁ (hZZ)n <V1(n)>*vg(ﬂ)’ ‘/1(n)7 ‘/2(") c ™

and the associated norm ||V (™||? = (V"*|V (™). This scalar product is Weyl-invariant
for n =1 only.

In the analytical coordinate system the Christoffel connection has only two non-
vanishing components

[?=09, [2=06¢.

This connection allows to define two covariant derivatives

vy Lyt ymTm(y 2) = (0 — nde)T™ (2, 2)

z

Vig: VW oveb o vr 70 (2 2) = h*VTM (2, 2) = 20T (2, %) .

These two differential operators defined on holomorphic tensors of a fixed rank n
commute with the analytic coordinate transformations z — f(z). One can compute
an adjoint of v and find that

The elements of the complex geometry we introduced above allows one to obtain
some information about the moduli space. Consider an arbitrary infinitesimal change
of the metric

5ha/g = Aha/g + VQVB + VﬁVa + Z (57’1‘3]1&3 .
~ Y 5 o7

Weyl diff

moduli
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The last term here reflects the dependence of the metric on moduli which cannot be
compensated by diffeomorphisms and Weyl rescalings. We can split this variation
into trace and traceless parts

Shirace — (A +VV, + %W Z 5@%%) has

0 1 0
raceless é
5N = Vi + VsV — has TV, + §i :5”‘(3_@.%5 — Shash” %hwé) _

Operator P

We see that we can always shift the Weyl rescaling parameter A as

0

1
A—=A-VV, - §m§ > Oi—has

so that the trace part of the variation will transform as
5hg§ce = Ahag .

In the complex coordinates we have h.., = hzz = 0 and therefore rewriting the
variation formulae in these coordinates we find

5hz2 = Ah227
Oho. = 2VIOV, +) 674,
Operator P

where p'_, = 0. h.. = h.zp’*. We see, in particular, that an infinitesimal change of

h.s can always be written as a Weyl rescaling. Also the covariant derivative M

introduced above should be naturally identified with the operator P. Finally, we
note that decomposition into sum of two terms

Oha. =2VIIV. 4+ "or'yl

is not orthogonal w.r.t. to the scalar product we introduced above. Denote by ¢! a
).
Z .

basis of the orthogonal complement of V
(6. VEIV) = —(ViylVe)  forany V. e VO,
The last equation is equivalent to

V’(Zz)gzﬁiz =0 — o¢L. = 0.

Thus, the kernel (or, in other words, the space of zero modes) of the operator P! =
Vé) consists of global analytic tensors of the second rank. Such tensors are of special
importance and they are called quadratic differentials. Thus, the dimension of the
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moduli space is equal to the number of lineally independent quadratic differentials
on a given Riemann surface of genus g. The theory of quadratic differentials was
developed by Kurt Strebel (I will add more on Strebel theory in due course).

The kernel of the operator v is spanned by vectors from V1):
VOV, =h0Vi=0 = 0V°=0.

The globally defined vector fields which span a kernel of v are called conformal
Killing vectors. They generate conformal Killing group (or the group of conformal
isometries, i.e. globally defined diffeomorphisms which can be completely absorbed
by the Weyl rescalings).

Riemann-Roch theorem

An important question of how many moduli for a Riemann surface of genus ¢ exists

is answered by the Riemann-Roch theorem. Define the index of V" as the number of

z

(1) The Riemann-

its zero modes minus the number of zero modes of its adjoint V
Roch theorem states that

1
indvV{™ = dim kerV{"™ — dim kerVi, 1y =—(2n+1)(g—1) = 5(271 + 1)y, -
For n = 1 we therefore have
#complex moduli — #conformal Killing vectors = 3g — 3
One can find the number of conformal Killing vectors for a compact Riemann

surface in an independent way. These are globally defined analytic vector fields whose
norm is finite

IV||? = / Vhh ViV < 0.
My

Here V* = V,,2". For the case of sphere with metric ds? = (1‘%51'2"15)2 one finds that
there exists three independent conformal Killing vectors
0., 20, , 220, .
Indeed, for the norm we have
8t _
APy P S § S
- 0 Tr<1+7"2)4r a S _
3 k=

where k = 0,1,2 for the three vector fields in question. We see that if £ > 3 the
integral becomes divergent, therefore, for instance, the field 230, has an infinite norm,
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i.e. it is not normalizable. The three conformal Killing vectors are well behaved at
oo as can be seen by making conformal transformation w = 1/z under which

—w?0, , — WOy, — Oy -

The limit 2 — oo corresponds now to w — 0 and we see that these fields are well-
behaved at this point!”. The three conformal Killing vectors we found correspond to
the Virasoro generators Ly and Li; and they span (over the complex field) the Lie
algebra sl(2,C). Therefore, sl(2,C) is the Lie algebra of analytic globally defined
maps of the Riemann sphere onto itself.

Thus, the Riemann sphere has three conformal Killing vectors and, according to
the Riemann-Roch theorem, no moduli. That means that all metrics on the sphere
are conformally equivalent, or, in other words, there is a unique Riemann surface of
genus zero.

One can count the number of conformal Killing vectors for higher genus Riemann
surfaces as well. To this end one has to use the Ricci identity

n)

1
bV = VOV, = SaR.

n
Let V) e kervg ) Then we have
0 = (Vgn)v(n)lv(zn)v(n)> — *(V(n)\V(zn_H)Vg")V("’)) _
1 n z n n 1 n z n n
= LT TV - Ly, v v
1

n n— z 1 1 n z n n
= -5 My + 5 - §(V< NV ey VIV

- %[<vi”>v<”)lv(z")v(">> + (Vi Vv, v - %"R(Vm)'v(n))} :
Therefore, for any vector from the kernel of v the following equality is valid

1
(VIV@w iy ™) 4 (v, v v, v —§nR(V(”) vy =0.

non—negative non—negative

Consider the case of a torus ¢ = 1. On a torus there is a globally defined flat metric
ds? = dzdz which gives R = 0. Therefore, the equality above leads to two equations

i.e. V(™ = const and, therefore, dim kerV = 1. Thus, there is a unique generator
of conformal isometries, it corresponds to the rigid U(1) x U(1) rotations of the torus.
The Riemann-Roch theorem gives for g = 1

#complex moduli — #conformal Killing vectors =3 -3 =0,

~~
=1

17 According to our general discussion of Riemann surfaces the sphere requires at least two coor-
dinate patches to make an atlas. Transformation from one patch to another is analytic and is given
by w=1/z.
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i.e. the torus is characterized by one complex modulus 7.

For g > 2 there is theorem that states that the corresponding manifold always admits
a metric with constant negative curvature. For n # 0 this means that —%nR > () and,
therefore, dim kerV{ , = 0. The Riemann surfaces with g > 2 have no conformal
isometries and by the Riemann-Roch theorem that means that the number of complex
moduli n =1 1is 3g — 3.

For n = 0 we have dim kerVio) = 1, because the corresponding kernel is spanned by
constants. The Riemann-Roch theorem implies then that

dim keerl) — dim kerViO) =2n+1)(g—-1)=g—-1,
-1 -0

i.e. dim keerl) = ¢g. The kernel of Vfl) is spanned by one forms

V’(zl)wz = hP0w, =0 — Ow.=0.

Thus we arrive at another important consequence of the Riemann-Roch theorem:
on a Riemann surface of the genus g there exists precisely g linearly independent
(globally defined) analytic one-forms. These analytic differential forms are called
abelian differentials of the first kind.

The information we obtained by using the Riemann-Roch theorem is summarized
in the Table below.

g dim kerv " dim keern 1)
0 2n+1 0
1 1 1
> 1 1 for n=0 g
0 for n>0 (2n+1)(g — 1)

Moduli space of tori

Here we would like to look more closely at the moduli space which describes confor-
mally non-equivalent tori — the Riemann surfaces of the genus g = 1. The torus can
be obtained by performing the following identification on the complex plane

Z=z4+nA +mly, n,m ez, A, A € C.

The parameters A o are subject to conformal transformations z — Az and, therefore,
only their ratio 7 = i—f is scale-invariant. By using this freedom (the U(1)-rotation
+ real rescaling) one can always bring the parallelogram defining the torus upon
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gluing the opposite sides to the canonical form depicted on Fig.9, which corresponds
to Im7 > 0.

I | , P
I . | P
I . (.-
I I g
I h B .-
I

Y

Fig. 8. Defining the torus by factorizing the complex z-plane.

The parameter 7 takes values in the upper half-plane which is called Teichmiiller
space. The parameter 7 itself is named the modular or Teichmiiller parameter. The
Teichmiiller parameter is not yet a parameter describing the moduli space.

v T+l

0 1

Fig. 9. Canonical representation of the torus by parameter 7 taking values
in the Techmiiller space which is identified with the upper half-plane.

The reason is that there are global diffeomorphisms which are not smoothly connected
to the identity; they leave the torus invariant but they act non-trivially on the
Teichmiiller parameter. They correspond to the so-called Dehn twists

e )\ — A, Ao — A\ + Ay, which gives 7 — 7 + 1;

e )\ — A\ + Ao, Ay — Ay, which gives 7 — TLH;

It turns out that these two transformations generate the group SL(2,7Z). It is a group
ab
cd)’
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where a,b,c,d € Z and ad — bc = 1. The action on the modular parameter 7 is in
the form of the fractional-linear transformation

,  ar+b
T—T = .
cT +d

One can check that these transformations preserve the area of the parallelogram.
Since two SL(2,Z)-matrices

“(ta)  -(0a)

act on 7 in the same way, the modular group of the torus is PSL(2,Z) = SL(2,Z)/Zo.

loo

Fixed points of S and ST

-1 -1/2 0 1/2 1

Fig. 8. Fundamental domain M —; of the Teichimiiller space describing the
moduli space of conformally non-equivalent tori.

The moduli space of conformally non-equivalent tori is then the quotient of the
Teichmiiller space of the modular group

Teichmiiller space

M,y =

modular group

One usually uses the following generators of the modular group

T: 7—717+1, S: T— ——.
-

Any element of SL(2,7Z) is a composition of a certain number of S and T' generators:

SSTSTTTST...SST
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Any point in the upper-half plane is related by a modular transformation to a point
in the so-called fundamental domain F = M —; of the modular group. It can be
chosen as

1 1
./\/lg:1:{—§§R67§0,|7‘|221U0<Re7‘<§,|7'|2>1}.

The modular group does not act freely on the upper-half plane because some of the
modular transformations have fixed points. The point 7 = ¢ is the fixed point of S:
T — —% and 7 = €3 = —% + z‘/Tg is the fixed point of ST. The existence of the
fixed points implies that M,—; is not a smooth manifold, rather it has singularities

of the orbifold type.

Since it does not matter which fundamental region to choose in order to integrate
over in the one-loop path integral the integrand the corresponding string amplitude
should be invariant under modular transformations. The requirement of the modular
invariance is one of the most important principles of string theory. In particular, it
leads to strong restrictions on the possible gauge groups for the heterotic string.

6. Classical fermionic superstring

Introduction of the world-sheet fermionic degrees of freedom requires understanding
of how spinors on curved manifolds (world-sheets) are defined. The discussion in the

next paragraph is general and can be applied to a manifold of an arbitrary dimension
d.

6.1 Spinors in General Relativity

It is not straightforward to introduce spinors in General Relativity. If we have a

tensor field T;ll;;’ of rank (p,q) on a manifold M then under general coordinate

transformations of the coordinates z* on M: z' — z'(27), this field transforms as

follows
iy ) Ox'™ oz'kr Qxh Oxa Tiin ()
h--dq  Qxh dxie Ozt Qglla " Irda T
Here tensor indices are acted with the matrices % which form a group GL(d,R).

This is a group of all invertible real d x d matrices. This group does not have spinor
representations.
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Tangent plane at a point x

Fig. 9. Vielbien e is a collection of d orthogonal vectors forming a basis
of the tangent space at any point x on the d-dimenional manifold. In string
theory M with d = 2 is the string world-sheet and z = (o, 7).

On the other hand, spinors are objects which transform under the spinor repre-
sentations of the Lorentz group. The Lorentz group in d-dimensions is SO(d — 1,1)
and it is not GL(d,R). At each point of the manifold there is an inertial frame. In
this inertial frame the Lorentz transformations are well defined. One can think that
the Lorentz transformations act in the flat Minkowski space tangent to the manifold
M at any given point z. In the tangent plane we introduce a basis e (z), a = 1,...,d
of orthonormal vectors:

(e”, €") = h*eqely =",

where 7 is the flat Minkowski metric. In fact, €2 is an invertible d x d z-dependent
matrix which is called wvielbein. The index « is called “curved” and its acted by
the general coordinate transformations (diffeomorphisms) as the usual vector index,
while the index a is called “flat” and its acted by the local (i.e. z-dependent) Lorentz
transformations as we will see in a moment. The inverse matrix is e and it obeys
eler = dp. Because of this relation, we also have that

nabeZe% = hop

There is no a preferred choice of the basis in the tangent space and one orthonormal
set of tangent vectors can be transformed into the other by means of local Lorentz
transformations

a a b
e — N%ep, .

Introduction of the vielbein in favour of the metric introduces additional degrees

of freedom. Indeed, the vielbein being d x d-matrix has d? components, while the

d(d+1)
2

require that the theory we consider has the local Lorentz symmetry, then there are

metric hos has only components in d dimensions. On the other hand, if we
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@ local Lorentz transformations which should allow to remove the additional

(unphysical) components of the vielbein:

dd—1)  d(d+1)

- =
~~~ 2 2
vielbein SN——— S——
local Lorentz metric

Thus, the vielbein brings new degrees of freedom, but they can be removed by a
new symmetry which is the local Lorentz transformations. On the other hand, the
vielbein allows one to introduce coupling of the gravitational degrees of freedom with
spinors.

Spinor representations

(Pseudo-)orthogonal groups (SO(d — 1,1)) SO(d) in addition to the usual tensor
representations have also spinor representations. These are not single-valued but
rather double-valued representations of SO(d).

Consider, for instance, the group SO(3). This group has the so-called universal
covering group which is SU(2). The relation between them is as follows

SO(3) — SU(2)/Zs .

The group SO(3) is not simply connected, while SU(2) is. Here

z=={(o1) (3 5))

is the center of SU(2), i.e. a set of matrices from SU(2) which commute with all other
SU(2)-matrices. Due to existence of the discrete center Zs representations of SU(2)
split into two different classes of integer and half-integer spin. Only representations
with integer spin are those of (single-valid) SO(3). Representations of SU(2) with
half-integer spin are spinor (double-valid) representations of SO(3). Indeed, rotation
by the angle ¢ around the axes given by a fixed 3dim unit vector n = (ny,ng, ng),
n? = 1, corresponds the transformation

i cos $ —ingsing  — (ing + ng)sin g
9(¢,n) = exp ( - —¢ni0i> = 2 .3 TR
2 (—iny + ng) sin 5 COS 5 + 1Nz sin 5

where o; are three Pauli matrices. One can easily verify that g(¢,n) € SU(2).
Rotation by the angle ¢ = 27 is an identity transformation in SO(3) but it is not
the identity in SU(2). Indeed, one can see that

9(o +2m,n) = —g(¢,n),
9(¢+4dm,n) = g(é,n).

- 94 —



Another example is provided by the Lorentz group of the 4dim Minkowski space-
time, which is O(3,1). The spinor representation of O(3,1) is realized on the space
C*, which is called a space of 4-component spinors.'® This representation looks as

1
g(w) = exp (57“bwab> ,
where 7% is the anti-symmetric product of the 4dim y-matrices and wg, = —wp, are

parameters of the Lorentz transformation. It is important to note that in general

dimension d the spinor has 2 [%] complex components.

The spinor 1) = ¢T~? is called the Dirac conjugate of ¢. Its importance is explained
by the fact that the quantity 11 = 117 is an invariant of O(3,1).

In any dimension one can define the charge conjugation matrix C. Indeed, the
Clifford algebra of v-matrices transforms into itself under operation of transposition

(A = {05 () =20,

therefore by irreducibility of the corresponding representation of the Clifford algebra
there should exists a matrix C' which intertwines the original and the transposed
representation of the algebra, namely:

(v)' = -Cy' 07t

Matrix C'is called the charge conjugation matriz.

Sometimes (depending on the dimension and signature od space-time) it is possible
to define the notion of Majorana spinor. Majorana conjugate spinor is, by definition,
Y*C. The Majorana spinor is then the spinor for which the Dirac conjugate is equal
to the Majorana conjugate:

Pl =i

Spinor algebra in two dimensions

8The group O(3,1) is not connected and it has four connected components, which however are
not simply connected. The component which contains an identity coincides with SO(3,1), which
are the transformations preserving orientation of the vierbein. The transformations which preserve
the direction of time are called orthochronous and they form the subgroup SO™(3,1). The quotient
group O(3,1)/SO™(3,1) is the Klein four-group Zs x Zy, which is the semidirect product of SO™ (3, 1)
with an element of the discrete group {1, P,T, PT}, where P and T are the space inversion and
time reversal operators

P = diag(1,—-1,-1,-1), T = diag(—1,1,1,1).

The covering (or spin) group of SO™(3,1) coincides with SL(2,C). One can show that SO"(3,1) =
SL(2,C)/{I,—I} = PSL(2,C). Thus, SL(2,C) is the double-cover of SO*(3,1).
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The two-dimensional Dirac matrices p*, a = 0,1 obey the algebra

-1 0
a b ab ab
—9 - .

A particular basis foe the Clifford algebra is given by
0 1 0 1
0_ 1_
A=) ()

We also define a matrix p
1 0
S 0.1 _
p=pp —(0 _1>

being a 2dim analogue of the 4dim matrix 7°. The charge conjugation matrix can be
taken to be C = p°. The Majorana spinor is then 17p? = ¥!C = ¢!p°, i.e. ¥ = ¢*
which simple means that the spinor is real. Thus, in 2dim Majorana spinor is just a
spinor with real components.

Finally, with the help of the vielbein (“zweibein” in 2dim) one can define the

“curved” p-matrices:
(0% o _a

P =CupP -
They satisfy the following algebra
{0, 0"} = 2h°7.

Spinors in 2dim have various interesting properties. One of them is the so-called
spin-flip identity. If we have two Majorana spinors 9, and 5, then the following
identity is valid

Unp™t e ptrahy = (=1)"ap e MMy

It is proved as follows.

Y1t ptahy = (hrp™ - prahg)t = = (p") - (p™) (%) ey
= (=1)"PCp O - Cp™ C7 %y = (—1)"hop™ -+ - p* "1y .

Another identity is

P papa = 0. (6.1)

Indeed, one has from the Clifford algebra that p,p® = 2 and, therefore

P°papa = —p“papp + 2ps = —2ps + 2p5 = 0.
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Finally, we discuss the completeness condition for the p-matrices. The matrices p?,
p and the identity matrix I form a basis in the space of all 2 x 2-matrices. Any
2 X 2-matrix M can be expanded as

M = qap® + qp +qlL.
The coefficients of this expansion are found as follows

¢ = 5Te(Mp?), q=1Tr(Mp), q=

N[ —=

Tr(M).
Plugging this back we obtain

2M = Tr(Mp,)p®* + Te(Mp)p + Tr(M)I
or, more explicitly,

QMOZB - MW; [(pa)dwpgﬁ + lachﬁaﬂ + 56W5a6] .

Since M is an arbitrary matrix from here we derive the following completeness rela-
tion
(pa)évpgﬁ + ﬁéyﬁaﬁ + 5575(1,3 = 25047(5@; .

Spin connection

We would like to introduce a new local symmetry which is the Lorentz symmetry.
However, we have to guarantee that the the theory we are after should be invariant
w.r.t. these local transformations. As for the case of any local gauge invariance,
the local Lorentz invariance can be achieved by introducing q gauge field w? ,(z) for
SO(d — 1,d). Here a,b are SO(d — 1, d)-indices and « is the “curved” vector index.
Under the local Lorentz transformations with the matrix A this field transforms as

follows
Wo — Awa A7t — O, ANE.

The gauge field of the local Lorentz symmetry is usually called the spin connection.
The spin connection plays the same role for the “flat” indices as the Christoffel
connection plays for the “curved” ones. We have the following substitution of the
basic objects in the theory

(has(@),Tis(2)) = (ea(a).wt (o)) -

Introduction of the spin connection should not change the gravitational content of
the theory. This means that the spin connection should not be a new independent
field, rather it should be determined in terms of vielbein. The simplest and elegant
way to do it is to notice that we have the covariant derivatives

D.V*® = 9,V® +T0,v°
DoV = 0,V +wi ,V°
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The “flat” and “curved” indices of the vector are related as V¢ = e2V*. This way of
transforming “flat” to “curved” indices should be valid for any tensor, in particular,
one has to have

D V* =e4DV7.
This is possible only if
Doely = Dael — Thgels + wl el = 0.

This equation can be solved for w, expressing it through the vielbein:

1 1 1
W = 565‘1(8&6% — (%eg) - 5661’(8&6% — Ogey) — 56’\‘1671)(8,\676 — Oy€xc)es .

o

Since the connection is completely expressed via the dynamical vielbein and, by this
means, is not an independent field, it is called sometimes composite.

Spin manifolds

On which manifolds one can introduce spinors? This is rather non-trivial ques-
tion. Vielbein can always be introduces locally in a coordinate patch U,. It is quite
rare that the vielbein can be also globally defined. In the latter case such manifolds
are called parallelizable. Examples of parallelizable manifolds are Lie groups. On the
other hand, two-sphere is not parallelizable because there is no globally defined vec-
tor field (not talking about the vielbein) which vanishes nowhere. Thus, the vielbein
is defined locally and in the intersection of the coordinate patches U, N Ug one has

@) () = Aap)()e@) ().

Here A(ag)(2) is the local Lorentz transformation (i.e. a matrix from SO(d — 1,1))
which is called the transition function. In the region of triple intersection U, N Ug N
U, = U,y the transition functions should satisfy the following condition

Aap)NpyAe) = 1.

Now if we introduce locally a spinor field 1,y then passing from one coordinate patch
to another one the field must transform according to

V) () = Mapythis) (z) -

Here A(aﬁ) is the SO(d — 1,1) matrix in the spinor representation. For spinorial
transition functions A it also makes sense to require that in the triple intersection
region the following relation is satisfied

AapyM Aoy = £1. (6.2)

However, since the spinor representation is double-valued, instead of A one can
equally use —A. Thus, to define spinors on a non-parallelizable manifold one has
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to pick up the signs for A () such that relation (6.2) is satisfied. When it is possible,
the corresponding manifold M is said to admit the spin structure and it is called the
spin manifold. Note that M may admit several inequivalent spin structures.

String theory contains world-sheet fermions and therefore it can be defined on
spin-manifolds. It turns out that in 2 and 3dim any orientable manifold is the spin
manifold. It is not so in 4dim and higher. Finally, we state without proof that on a
Riemann surface of genus g there are 229 inequivalent spin structures.

6.2 Superstring action and its symmetrices

The superstring action is based on two multiplest of 2dim supersymmetry. The first
one is the matter multiplet

(X“, " F”) .
Here X* is a bosonic field of the Polyakov string, 1/* is the Majorana spinor in 2dim
and F* is the real scalar, which is an auxiliary field to guarantee the equality of
the bososnic and fermionic degrees of freedom off-shell (i.e. without usage of the
equations of motion). Also the target space-time index p is just a label so that for
1w=0,...,d—1we have d matter multiplets. the second multiplet is the supergravity
multiplet

<e‘;, Xas A) )
Here x, is the gravitino, i.e. the Majorana spinor which is also a vector of the 2dim
world-sheet. The field A is an auxiliary scalar field which is needed to guarantee the
equality of the bososnic and fermionic degrees of freedom off-shell. We note that the
kinetic term for the gravitino in any dimension is Yo7**?Dsx, and it is absent in
two dimensions (because there are only two p -matrices while the anti-symmetrized
product v*%7 requires at least three to exist). Finally we introduce e = |dete?| = Vh.

The superstring action is a generalization of the bosonic Polyakov action to in-
clude the include the world-sheet fermionic degrees of freedom in the supersymmetric
way. It has the following structure

1 o CTu o - o i _
S = g d*oe (h B0 X 0P X, + 2i0H p*00thy — iXap” P (85)(# — nglﬁu)) .
This action has five local symmetries

1. Local supersymmetry. Let € is the Majorana spinor. We consider it as the
infinitezimal parameter of local supersymmetry transformations

i

S XM = qgpt deed = 2Ep“xa,
X .
bt = 5" (0aX" = SXat" ), SeXe = 2Dge.
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Here D, e = 0,€ — %waﬁe and w, is the connection with torsion:

?

Wo = wa(e) + 4)_<aﬁpﬁXﬁ )

where wy(€) = —Zeqqe” el is the standard composite spin connection (it has
only one-non-trivial component in 2dim).

2. Weyl invariance. Let A be a bosonic local parameter A = A(o, 7). The Weyl
transformations are

SAXE =0 Sael = Ae?
1 1
oAt = —51\@/)“, OAXa = EAXQ-

3. Super Weyl invariance. Let 1 be the Majorana spinor. Under the super Weyl
transformations only the gravitino transforms as

577Xa = Pall -
The invarince of the action easily follows from the identity p“pgps = 0.

4. Local Lorentz symmetry. Let ¢ be a bosonic local parameter ¢ = ¢(o, 7). The
local Lorentz transformations are

X" =0, See? = leel
1 1
ot = 55519“, 0eXa = §€ﬁxa-

5. Reparametrizations. Let £ be a bosonic vector parameter £ = £*(o, 7). The
reparametrizations (diffeomorphisms) are

0 Xt = P9 X 1 deel = &7 0pel + 406",
5§¢“ = gﬁaﬁ¢u 5 5€Xo¢ = gﬁaQXa + Xﬁaagﬂ .

6.3 Superconformal gauge and supermoduli

The gravitino field is the reducible representation of the Lorentz group. To decom-
pose it into irreducible representations one can use the following trick:

1 1 1 1
Xa = 0ixs = (55 - 5%/}‘7) X+ 5Pap"Xs = 59" Paxs T5000"Xs
——

Xa

Here x, part is called p-traceless because, due to the identity p“pgp, = 0 we get
P Xa = P€SXa = pP*Xa = 0. Indeed the gravitino x, transforms under local Lorentz

— 100 —



transformations as the spin-vector:!?

1
0eXa = —Lexp + 5{PXa-

Condition p*x, = 0 remains invariant under these transformations, i.e. p®d;x, = 0.
Decomposition of the gravitino into the p-trace and p-traceless part is decomposition
into two irreducible representations of the Lorentz group corresponding to helicities
+3/2 and +1/2 respectively. This decomposition is orthogonal w.r.t. the scalar

product (¢[¢)) = [ d20¢*¢,.

The local supersymmetry transformation for the gravitino filed can be also de-
composed into the traceless- and the trace-parts:

deXa = 2D,e = 2(I1€), + papﬂDge
N—_——
trace part

Here we defined the operator
1
(Ile)y, = §pﬁpaDﬁe, = p%(lle)y = 0.

Locally one can show that there always exists a spinor s such that Y, = p°poDsk.
Comparing this with the supersymmetry transformation for y, we conclude that
can always be eliminated (locally!) by a supersymmetry variation. The possibility
to eliminate x globally depends on the existence of a globally defined spinor € which

solves the equation
(Ile)y = 7o

for arbitrary 7, satisfying the condition p*7,=0. Global solvability of the last ex-
pression relies on the absence of zero modes of the operator II': (II'7) = —2D%7,.
This equation is the supercousin of the bosonic equation

(P&)ap = tap

whose global solvability relies on the absence of zero modes of PT. According to our
discussion of the bosonic case it makes sense to call

dim ker Pt = moduli

dim kerII" = supermoduli

and also
dim ker P = conformal Killing vectors
dim kerIl = conformal Killing spinors .
The element €,> = 1,6 is the following matrix €,> = ( _01 (1)) (_01 é) = < _01 _01 ) .
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By using reparametrizations and local Lorentz transformations the zweibein can
be brought to the form €2 = €?§? which is locally always possible. The gauge

eg = 6¢537 Xa = pa)\

is called superconformal gauge. In classical theory the Weyl symmetry and super
Weyl symmetry can be used to eliminate the remaining gravitational degrees of
freedom ¢ and A. In quantum theory it will be possible in critical dimension only.

6.4 Action in the superconformal gauge

In the superconformal gauge the action becomes rather simple

1

8

S = d2a<8aX“8aX“ ¥ 2@';5“;%&%) . (6.3)

The world-sheet indices are now raised and lowered with the help of the flat world-
sheet metric n? and p® = §%p?. This action is invariant w.r.t. local reprametrizations
and supersymmetry transformations which satisfy the requirement

PE=0, Me=0.

We would like to check directly that the action (6.3) is invariant under the super-
symmetry transformations

5.XP = igph
1
St = 3 0aX"e
- 1
Ot = —§€pa8aX“

provided the parameter € satisfies the following equation
P’ padse = 0. (6.4)
To check the invariance we perform the variation
5.8 = —% / d20<28aX“00‘(iE¢“) + i p*0u (P05 X 1€) — Epa(%X“pﬁﬁgwu> .
Now we integrate by parts the first term and write out the second term more explicitly

1 —
5.5 = —— d20< — 200X @y, + i) p*p’ 0a05X €
87.‘- N~

nes

+ i@“po‘pﬂagXuﬁae — Epa(?aX“pﬂampu) .
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Now we apply the spin-flip identity in the second and the third term and get

5.5 = _8i7r d%( — 2i0X" &, + e, 0X"
+ 100" p 95X, — Epﬂpa('?gX“(’)awu> .
Finally, we integrate the last term by parts and get
58 = —% / d®o 2i0,&p° p" "X, .

This vanishes as the consequence of eq.(6.4).

We can write equation (6.4) more explicitly

P’ podse = (popo(% + P1P031>€ = ( — p°p%00 + Poplal)e = <ao + 551)6 =0,
pﬁplage = <p0p180 + Plplal)G = <poplao + plplal)e = (ﬁ@o + 81)6 =0.

Since p? = 1 the second equation is obtained from the first by multiplying with p
and by this reason it is redundant. To analyze the first equation it is convenient to
denote the components of any spinor as follows

() ()
We thus see that the first equation reduces to
(O + Oh)er = 0rey =0, (O — O1)e- =0_e_ =0
One cab define the spinors with upper indices by using the following convention

W=y, =y,

With this convention we obtain that components of the Majorana spinor which is a
parameter of the supersymmetry transformations satisfy the equations

+ j:(

dye =0 =0 = £ = et (oh).

g

This equations should be contracted with the equations defining the conformal Killing
vectors, i.e. reparametrizations which do not destroy the conformal gauge choice:

O =06 =0 = =€),

On-shell closer of the supersymmetry algebra
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Consider first the commutator of two supersymmetry variations applied to a bosonic
field X*:

[561, 562]X“ = i51562¢u — i51562¢u = %(glpaﬁg — €2pa61) (%X’“‘ = Z‘glpaﬁgﬁaXM s

where the last formula stems from the spin-flip property. We see that the commutator
of two super-symmetry transformations generates a diffeomorphism transformation

[0ey, 0y | XH = EX0 XH

with the parameter £¢ = i€;p%€. In fact, this is not an arbitrary diffeomorohism,
rather it is a conformal transformation, because £% is nothing else as a conformal
Killing vector! Thus, bilinear combinations made of conformal spinors

Consider now the commutator of two supersymmetry variations applied to a
fermion ¢*:

1 1 7 7
[0c,, 0ey )" = 5804(561)(”)0&62 - 5804(562)(“)0%1 = §3a(€1¢“)0a€2 - §aa(€2¢“)f)a€1

Therefore,

e Bl = S(Dart)per — 5 (OuEar? )% +

+ L @0u) e — %(ezaawu)pael (6.5)

N = D] =

Constraints

In the original (gauge-unfixed) theory we have a world-sheet metric (vielbein) and
the gravitino field. They are removed upon imposition of the superconformal gauge.
However, before we fix the gauge, the metric and the gravitino have their equations
of motion which become the constraints on the other fields of the theory after fixing
the gauge. The stress tensor in now defined as

2m 08
Tws = ———F€aa -
af e 665 aa
We can also define the supercurrent as response of the action for variation of the

gravitino field
2m 08
Go=—i———.
e ox“
Analogously to what was in the bosonic case the stress tensor T, will generate
conformal transformations, while the new object GG, appears to be a generator of the

supersymmetries. Equations of motion

Tos=0=G,
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are constraints on the dynamics of our system. Using the action we find

1 1 iz '
Tos = iaaxuaﬁxu - Znaﬁa'yxﬂa’yXu + praaﬂwﬂ * prﬁaawu

1
G = Zpﬂpad]uaﬂXu

Note that G, is p-traceless, i.e.
PG, =0.

This equation is an analog of T'¢ = 0. Finally, by using equations of motion one can
show that the stress tensor and the supercurrent are conserved

PTag =0,  9°Go=0

These conservation laws lead to existence of infinite number of conserved charges. To
analyze the algebra of contraints in more detail it is convenient to use the world-sheet
light-cone coordinates o*. In the light-cone coordinates the action becomes

1

" or

S d20<8+X6_X (et + ¢_a+¢_)) .

Equations of motion are

0,0_X"=0, O_yYt =0, " =0.
Solving equations of motion for fermions we get

Ui =i(oT), Pl =4 (7).

This, it appears that two components of the Majorana fermion are left- and right-
moving fields on the world-sheet.

The components of the stress-tensor 7', - = 0 = 7_,, while the other components
are

1 1
Ty = 53+X3+X + §¢+a+w+,
T = %axax v %w,a,w, .

The components of the supercurrent are

1

Gy = §¢+3+X,
1

G_ = §¢_a_x.

The conservation laws look in the light-cone coordinates as

8_G+ - 8+G_ - 0, 8_T++ - 8+T__ — O .

— 105 —



Now we note that in addition to the conserved charges generated by the stress tensor:

Qe = /da (o) Tes(o,7)

we will have the conserved charges generated by the supercurrent
G = /da (05)Gx(0,7).

6.5 Boundary conditions

Varying the action to derive the equations of motion we will get the following bound-
ary term

/ A0, (14805, —vv_).

For the case of closed string, to make this term vanishing one has to impose the
following condition

(V00 = w00 )(0) = (¥4804 — v 00_) (o +27) = 0.
Since the fermions ¢/, and ¥ _ are independent this equation implies that

Vi(o) = 24 (0 +27),
V_(0) = £ (o + 21).

The following terminology is standard

e Periodic boundary conditions in ¢ are called Ramond boundary conditions and
they are denoted by the letter “R”.

e Anti-periodic boundary conditions in ¢ are called Nevew-Schwarz boundary
conditions and they are denoted by the letter “NS”.

Universally, all fermionic quantities on the world-sheet have the following boundary
conditions

Y(o +27) = ¥y (0),
where 6 = 0 in the R-sector and § = 1/2 in the NS sector.

Boundary conditions for @, and v _ can be chosen independently, which gives in
total four possibilities

(R,R), (NS,NS), (R,NS), (NS,R)

The boundary conditions for the two components of the supersymmetry parameter
should be chosen in such a way as to make the variation § X* = iey* periodic.
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As we will see the states in the R sector give the space-time fermions, while the
states in the NS sector are the space-time bosons. This further gives that (R,R) and
(NS,NS) sectors are space-time bosons while (R,NS) and (NS,R) are fermions.

For the open string case we have that

Yy0hy —P_0tp-

must vanish at ¢ = 0 and o = 7. If we assume that ¢, = ar)_ at the end point of
string, then

(a* — )by =

which allows for & = £1. Thus, at each end of the string we should have ¢, = 4.
We can always agree to choose 1, (0,7) = ¢_(0,7) as it is a matter of convention,
then on the other hand of the string we have two possibilities

¢+<7T7 T) = w— (7T7 T) (Ramond) ’
Y (m,7) = —_(m,7) (Neveu — Schwarz) .
6.6 Superconformal algebra

In order to compute the Poisson bracket between the components of the stress tensor
and the supercurrent we need the fundamental Poisson bracket for the fermions. The
Dirac action leads to the following bracket

(Wt (0), 4" (o)} = —2mid(o — o)t
{W* (o), v" (0"} = —2mid (o — ")t .

Using these brackets together with brackets between the bosonic fields one find the
following Poisson algebra of the constraints

{T44(0), Thi(0')} = —27T<2T++(0,)3,+3,T++ )5 (0 —0a'),
(T i(0), G (o)} = —27(2G. () +0C(0))olo — o),
(G4(0),Go(0')} = —inTys(0)8(0 — o)

This is the so-called N' = 1 superconfomal algebra in 2dim. Here N = 1 refers to
the fact that supersymmetry transformations are performed with the help of one
Majorana spinor.

The action of the supercurrent on the bosonic and fermionic fields generate supersym-
metry transformations (bosonic field transforms into fermionic one and vice-versa):

{G4(0), X*(0")} = —7 ¢4(0)3(0 — '),
[G4(0),0#(0")} = —im 04X (0)5(0 — o)
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One can also check that the world-sheet fermion transforms under conformal trans-
formations as the conformal field with weigh 1/2.

Consider closed strings. Using the mode expansion

Vio,7) = ) ble )

reZ+0
1/},<O', 7_) _ Z bﬁ,efir(’rfcr)7
reZ+0
where # = 0 in the R-sector and 0 = % in the NS-sector, we obtain the Poisson

algebra of oscillators

{00, 07} = —in"" 6,45,

TS

{B“ BV} = _in#V5T+S7

{br, 00} = 0.
The reality of the Majorana spinor implies that
B =b,, ) =

Introducing the modes of the stress tensor and the supercurrent

1 2 ] 1 2w ]

L, =— doe ™ "™T__ | Gn = —/ doe "G _.

2w Jo T Jo
Notice that the supercurrent GG_ satisfies the same boundary condition as the fermion
1_. Substituting the mode expansion we get

Ly, = % Z Oy Ot + % Z <’I“ + %)b—rbm-l—r )

ne”L T

G, = Z O _pbrip .

nel

These generators generate the classical super-Virasoro algebra
{Lm7 Ln} = _Z(m - n)Lm+n ’

1
{Lpn,G.} = —i <§m — n) Goir s
{G’I"a GS} — —27:.[/7‘_;’_5 .

7. Quantum fermionic string

Canonical quantization is again performed by substituting the Poisson bracket for
the (anti)-commutator: { , },, — T[, ]. Therefore, the anti-commutators for the
quantum fermionic fields are

{¢5(0), 94 (o)
{v(0), 9" (o)

} = 276(0 — o)t
}=271d(0 — ")t .
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Anti-commutators of the modes are
{b¢f7 bg} = nHV5r+S .

We again see that we can split oscillators into creation and annihilation operators
according to the sign of their index, namely

e Oscillators with r» > 0 are annihilation operators |,
e Oscillators with r» < 0 are creation operators .

However, the modes with » = 0 which occur in the Ramond sector only require
special care. Indeed, in the bosonic modes «f and af correspond to the center of
mass momentum of the string. Analogously, by and bl are distinguished from all the

other modes, in particular, they form the Clifford algebra
{bg, b6} ="
and analogously for bj,.

The super-Virasoro generators are again defined as normal ordered expressions

L, = %Z SO Qi —I—% Z (7“ + %) S b

nez r

G, = Z a_pnbpip .

neL

Only the generator Ly is ambiguous doe to the undetermined normal ordering con-
stant. Ignoring this constant for the moment we obtain the following answer for the
quantum super-Virasoro algebra

d
[Lin, L) = (m —n) Ly + gm(m2 — 2W)0man

L, Gr] = <%m — n) Gmair,

(G, G = 2Ly, + g(yﬂ . %)(ms-

Here w = 0 for the R-sector and w = % for the NS-sector. Both the R- and NS-
algebras formally agree except the linear terms in anomalies. The linear term can
be changed by shifting the Ly generator. Indeed, one can see that if one shifts
LY — LE+ 1% then both algebras have formally the same structure with w = . Still
the R- and NS-algebras are very different. For instance, in the NS-sector the five
generators Ly, Lo, L_1, Gy /2, G_1/2 form a closed superalgebra known as OSp(1/2). In
the R-sector just adding to the generators Ly, Lo, L_; the generator GGy one generates
the whole infinite-dimensional algebra.
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The oscillator ground state is defined in both sectors as
ak]0) =b0) =0, m,r > 0.

Here the dependence on the center of mass momentum is suppressed. In the Ramond
sector one also has the zero mode b. The level number operator is

where
N =" oo,
m=1
N® = N rb_,b,.
reZ+60>0

Note that the zero mode in the Ramond sector does not contribute to the number
operator! This leads to the fact the mass operator commutes with bf: [bfy, M?] = 0,
i.e. the states |0) and b|0) have the same mass. These states are degenerate. On the

£ bt with n,r < 0 increase o M? by 2n and 2r units

other hand, all other oscillators o, b*

respectively. This means that in the NS-sector the ground state is unique and it has
Lorentz spin zero. In the R-sector the ground state is degenerate and since bf form
the Clifford algebra the ground state is a spinor of the Lorentz group SO(d — 1, 1).
This explains why in the NS-sector all the states are space-time bosons, while in the
R-sector they are all fermions. Indeed, all creation operators have vector Lorentz
index and by this reason they cannot convert a space-time boson into a space-time
fermion or vice versa. If we will write the Ramond ground state as |a), where a is a
SO(d — 1, d) spinor index, the b}y act on it as the usual I-matrices

tE|a) = %(rww |

Here T'* are the usual I'-matrices of the d-dimensional Minkowski space and they
satisfy the Clifford algebra {T'*,T"} = 2p*” .

We will not go into discussion of the covariant quantization but will just state
that consistency of the quantum theory will impose the following restrictions on the
constant a of the normal ordering ambiguity (for the Ramond and Neveu-Schwarz
sectors) and the dimension d of the target space-time:

1
aNS:§7 (ZRZO, d=10.
The same result follows from the condition of non-anomalous Lorentz algebra in the
light-cone gauge. Instead of d = 26 found for bosonic string, quantum fermionic

string chooses to live in a ten-dimensional world.
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7.1 Light-cone quantization and superstring spectrum

As we have established imposition of the superconformal gauge does not completely
remove the gauge (unphysical) degrees of freedom. The superconformal transforma-
tions which do not destroy the superconformal gauge choice are left. In order to
remove the remaining unphysical degrees of freedom one can try to fix the light-cone
gauge, similar to as was done for bosonic string. We can also fix

Xt =dptr

in our fermionic theory and this choice will completely remove the reparametrization
invariance. However, the local supersymmetry transformations obeying the equations

Dy =0_et =0

are still left over. These transformations can be used in order to completely elimi-
nate the fermionic field ¥+, where this time * refer to the target-space light-cone
components

= %W £ 1)

This is equivalent to putting to zero the modes b} for all r. After this gauge choice

is done we can solve the super-Virasoro constraints and find the longitudinal modes
(remember that T = 3)

_ 1 i . i
0+ X~ = - ((aﬂ:X )? + Wi@ﬁ&)
- 2 i

This shows that only the transversal components X and " are physical degrees of
freedom. In terms of oscillators the previous equations read

- 1 PP m i

a, = \/Q_T’]ﬁ< Lo 0g, L+ ET (5 — ) bbL, —2a5m)
- 2 Z i i

bT = O/p+ Oé'rfqbq .

For the case of closed strings these expressions must be supplemented by the analo-

gous ones for the left-moving modes. Here we also include a normal ordering constant
a which is a = % in the NS sector and a = 0 in the R sector.

The mass operator is
M? = My + M,

o/ M7, = 2(20/%04; —|—Zrbi_rbf, —a)

n>0 r>0

where
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and similar for M?. For the case of open string we have

o/ M3 = (Z ool + Z rb’ b — a) :

n>0 r>0

a’'mass? rep of SO(8) little (—=1)F|rep of little
group group
NS — sector
-1 |0) SO(9) -1 1
0 b' 1 15/0) SO(8) +1 8,
8
+5@0), by Ll0)  SO(9) —1 36
8
v 28
bifl/2bj—1/2l)]il/2’0> +1
56,
+1 SO(9) 84 + 44
0/—1b]71/2|0>a b’ 5/510) +1
—_———— ——
14+28+35, 8v

R — sector

|a) +1 8
8s
0 SO(8)
|a) -1 8¢
~—
8¢
ol (lay, b la) +1 128
~—— S~—~—
8c+56c 85+565
+1 SO(9)
ol lay, b la) —1 128
SN—— S~—~—
854565 8c+56¢

Tab. 5. The lowest levels of the open fermionic string spectrum.
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In the closed string case we have in addition the condition of level-matching
which requires that for physical states

M2 = M2,

Finally, we give expressions for the light-cone action

S, .= % d%—(()’(i)2 —(X")? — 2@&1'/)@8&1/11') (7.1)

and the Hamiltonian

H=()+) (o0l +a,ah)+> rb+0,b) —2a.

n>0 r>0

Note that every sector, R and NS, has its own Hamiltonian.

Let us now analyze the closed string spectrum. We first discuss the right-moving
part which (up to a mass rescaling by 2) is equivalent to the spectrum of open
fermionic string.

e NS-sector. The ground state is the oscillator vacuum |0) with o’ M? = —a. The
first excited state is bi1/2|0> with o/M? = 1 —a. This is a vector of SO(d — 2),
where the critical dimension d = 10. Since the little Lorentz group for massless
states in d-dimensions is SO(d — 2) this state must be massless which gives the

normal ordering constant to be a = % At the next level one has the states

a’1]0) and b, b »[0) with o/M? = 1. The number of these bosonic states

is 8428 = 36 = %, they are comprise an antisymmetric representation of

SO(9), the little Lorentz group for massive states.

e R-sector. The Ramond ground state is a spinor of SO(9,1). The dimension
of the Dirac spinor in d = 10 is 28 = 25 = 32, i.e. it has 32 complex or 64
real components. In ten dimensions it is possible to impose both Majorana
and Weyl conditions?® which reduce the number of independent components
to % = 16. On shell the number of components is further reduced by two
because the Dirac equation I'*0,1 relates half of the components to the other
half (which satisfies the Klein-Gordon equation). The 8 remaining components
can be viewed as the components of the Majorana-Weyl spinor of SO(8), the
latter being the little Lorentz group for massless states in d = 10. Indeed, the

spinor of SO(8) should have

(2% complex components)/(Majorana x Weyl) = 32/4 = 8

20In general, for the groups SO(p,q) the Majorana and Weyl conditions can be simultaneously
imposed if and only if p — ¢ = 0 mod 8. For Minkowski space, p = d — 1, ¢ = —1, this gives
d = 24 2n and for Euclidean space, p = d, ¢ = 0, this gives d = 2n.
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real components. Thus, the Ramond ground state is massless.

It turns out that the group SO(8) has three inequivalent representations of
dimension 8: two of them are spinor representations and another is the vec-
tor one. Spinor representations are commonly denoted by 8, and 8. and the
corresponding representation bases are depicted as

|a) and @) .
The vector representation is 8, and the basis is |7).

The first excited level consist of states a’ ||a) and b’ ||a) and their chiral part-
ners with o’M? = 1. Once again, for d = 10, all the massive light-cone states
can be uniquely assembled into representations of SO(9), the little Lorentz
group for massive states.

GSO projection

It turns out that fermionic string with all the states we found in the R and NS
sectors is inconsistent. This can seen, for instance, from the fact that the 1-loop
amplitude is not modular invariant. In order to construct a consistent modular
invariant theory one should truncate the string spectrum in a specific way. This
truncation is known as the GSO (Gliozzi-Scherk-Olive) projection. It restores the
modular invariance, removes from the theory the tachyon and, in addition, provides
the space-time supersymmetry of the resulting string spectrum. Below we will use
an inverse argument to motivate the GSO projection — we will show that it allows
to achive a spectrum which exhibits space-time supersymmetry.

Looking at the massless states in the Ramond sector we see that one has two SO(8)
spinors 8, and 8.. On the other hand, the massless states of the NS sector comprise
a vector 8,. If we project one of the two spinors out then there will be match of NS
bosonic (8) and R fermionic (also 8) degrees of freedom. These massless vector and
the massless spinor is indeed a content of the A/ = 1 super Yang-Mills theory in ten
dimensions.

One has also to get rid of tachyon which is in the NS sector. This all can be achieved
if one first defines an operator

G=(-1F, F=> b b -1
=}

and then requires that all allowed states should have G = 1:

G|D) = |®).
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o’mass?|  rep of SO(B) little | (—1)F|(—=1)F| rep of little
group group
(NS,NS) — sector
—2 0y, < [0)r  [SO(9)] —1 | -1 1
0 |b 10100 XV, ,|00R|SO(8)| +1 | +1 |1+ 28+ 35,
8 8
(R,R) — sector
la)r X |b) g +1 | +1 |1+ 28+ 354
) 8y
la)r x |b) g ~1 | -1 |1+28+35,
el
0 SO(8)
|CL L X |b>R —1 +1 8y + 564
—~
8¢ 8s
|CL>L X |b>R +1 —1 8y + 564
—~—
8s 8¢
(R,NS) — sector
|a)r, X b1 j5|0) & +1 | +1 | 8.+56,
8 y
s 81}
0 SO(8)
@)1, % bi—1/2|0>R -1 | +1 8 + 56,
8 y
c 8v
(NS, R) — sector
621/2|G>L X ‘CL>R +1 +1 8.+ 56,
—— \8/
8v s
0 SO(8)
blypsla)r x a)k +1 | -1 | 8,+56,
—— \8/
8v c

Tab. 6. The lowest levels of the closed fermionic string spectrum.
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Since a general state in the NS sector has the form

B) = all ...l P |0)

—ni —nNT—T1 —TrM

we get
Gl®) = (-1)"7[®).

Thus, all states with M even are projected out, in particular, the tachyon. This
removes the tachyon and all the states with half-integer o/ M?. Indeed,

M 1

/M2 = i -

a zy 5
=1 v

a

and for M even the sum of half-integers is always an integer o/M? is half-integer
number.

In the Ramond sector the operator GG is defined as follows
G=(=1)F = bbb (—1)En=tiali

The transversal zero modes b)) form the Clifford algebra {bi, b} = 6”. Thus, these
operators can be represented by SO(8) y-matrices I'* which have size 16 by 16. These
matrices act on the 16-dimensional Majorana (i.e. real) spinor whose components
can be thought to combine two Weyl projections, which are precisely |a) and |a):

W =(joe)

In the Majorana representation these matrices I can be taken in the block-diagonal

W:(&Yg>’

The fact that I'* obey the standard Glifford algebra {T'!, TV} = 2§ implies that 8 x 8
real matrices ¢ satisfy the following algebra

V() A () =207

form as

If we introduce the standard Pauli matrices

0
o=

1
0

0 1

then the matrices 'yi can be defined as

1. 2 _

¥ o= —io2 Qo2 ®o2, 7 =11d®o1 oz,

¥ = il®os o2, t=ir1®o2®1,

5

v = io3 ®o2®I, b =ica®I®o1,

77 = i ®I® o3 /¥ =1QI®I.
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The matrix 'yi cab be understood as carrying the matrix indices a and a: 'y}m The chiral and anti-chiral representations of SO(8) are
constructed then with the help of matrices

i iyt j iyt
v = - A=A GHD

ool

ve = 3 O = (),

The operator I' = b} - - - 1§ is the chirality operator (the analog of the v*-matrix
in 4dim.) and it projects out one of the two Weyl components of the Ramond
ground state [1)). We see that G anti-commutes with any mode b_,: {G,b" ,} =0
and, therefore, the eigenvalues of G in the Ramond sector are 1, depending on their
chirality, if we define G|a) = |a) and G|a) = —|a). Further, a general state in the R

sector is

|P)o =, ---ath bW a)
or

D), =™, oo™ B0 a)

We therefore find that

Gl)e = (=DM (=1 om0|@),
Gl®)s = —(=1)M(=1)%i 0| D), .

The GSO projection consists in leaving the states which have either G = 1 or G = —1.

To construct the spectrum of the closed superstring we have to tensor left and
right-moving states (such that the level matching constraint M7 = M3 is satisfied)
and then impose the GSO projection. Here we have to distinguish four different
sectors

(R,R), (NS,NS), (R,NS), (NS,R)

S S

Vo Vo
space—time bosons space—time fermions

The GSO projection is imposed separately for the left- and right-moving modes. In
the NS sector one keeps the states with

In the Ramond sector there are essentially two possibilities which lead to super-
symmetric and tachyonic-free spectrum. One of them is to take G = G = 1. The
massless spectrum is

Bosons : [(1) +(28) + (35)v] + [(1) 4 (28) + (35)5]
Fermions : [(S)C + (56)4 + [(8)c + (56)0] .

In total there are 128 bosonic and 128 fermionic states. The GSO projection imposed
in this way defines the so-called Type IIB superstring and its massless spectrum is
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that of Type IIB supergravity in ten dimensions. In particular, 35, are on-shell
degrees of freedom of the graviton, two 28 are two anisymmetric tensor fields and
35, is a rank four antisymmetric self-dual tensor. In addition one has two real scalars.
The fermionic degrees of freedom are two spin-3/2 gravitinos, 56.., and two spin-1,/2
fermions. The presence of two gravitinos indicates that the corresponding theory
has N' = 2 supersymmetry. Since the gravitions and the fermions are of the same
chirality this theory is chiral.

One can make another choice of the GSO projection by requiring that G = —G = 1.
This gives the following massless spectrum

Bosons : [(1) + (28) + (35)\,} + [(S)V + (56)v]

Fermions : [(8)C + (56)4 + [(8)5 + (56)5] :

There are on-shell degrees of freedom of the graviton (35;), antisymmetric rank three
tensor (56,), an antisymmetric rank two tensor (28), one vector 8,) and one real
scalar, which is called dilaton. The fermionic degrees of freedom comprise two spin-
3/2 gravitinos and two spin-1/2 fermions. Gravitions and fermions are of opposite
chirality. Thus, this theory has N' = 2 supersymmetry also but it is non-chiral. This
string theory is called Type IIA, and the corresponding supergravity is Type IIA
supergravity.
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Appendices

A. Dynamical systems of classical mechanics

To motivate the basic notions of the theory of Hamiltonian dynamical systems con-
sider a simple example.

Let a point particle with mass m move in a potential U(q), where ¢ = (¢',. .. q")
is a vector of n-dimensional space. The motion of the particle is described by the
Newton equations

. OU
mg' = ——
q aq
Introduce the momentum p = (py,...,p,), where p; = mq' and introduce the energy

which is also know as the Hamiltonian of the system
H= -+ Ulg)
= Qmp q).

Energy is a conserved quantity, i.e. it does not depend on time,

dH _ 10U 10U
dt - mplpl q 8q7’ _ m %QZ q aqz -

due to the Newton equations of motion.
Having the Hamiltonian the Newton equations can be rewritten in the form
i OH ) 0OH
¢ =5 Pi=—5-
P dg’

These are the fundamental Hamiltonian equations of motion. Their importance lies
in the fact that they are valid for arbitrary dependence of H = H(p,q) on the
dynamical variables p and ¢.

The last two equations can be rewritten in terms of the single equation. Introduce
two 2n-dimensional vectors

oH
x:<p), VH=<2§;)
q d¢7

0 I

=(17)

Then the Hamiltonian equations can be written in the form

and 2n X 2n matrix J:

xr=J-VH, or J-x=—-VH.
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In this form the Hamiltonian equations were written for the first time by Lagrange
in 1808.

Vector x = (x!,...,2%") defines a state of a system in classical mechanics. The

set of all these vectors form a phase space M = {x} of the system which in the present

case is just the 2n-dimensional Euclidean space with the metric (z,y) = Y227, 2%y".

The matrix J serves to define the so-called Poisson brackets on the space F(M)
of differentiable functions on M:

. "\ (OF 0G  OF 0G
J J

=1

Problem. Check that the Poisson bracket satisfies the following conditions

{F7G}: —{G,F},
{FAG H}} +{G {H,F}} +{H . {F,G}} =0

for arbitrary functions F,G, H.

Thus, the Poisson bracket introduces on F(M) the structure of an infinite-
dimensional Lie algebra. The bracket also satisfies the Leibnitz rule

{F,GH} ={F,G}H + G{F,H}
and, therefore, it is completely determined by its values on the basis elements a':
{27 2%} = Ji*
which can be written as follows
{¢0,y =0, {0} =0, {.q}=79;.
The Hamiltonian equations can be now rephrased in the form

i ={H 2} <& i={Hz}=Xy.

A Hamiltonian system is characterized by a triple (M, {,}, H): a phase space
M, a Poisson structure {, } and by a Hamiltonian function H. The vector field Xy
is called the Hamiltonian vector field corresponding to the Hamiltonian H. For any
function F' = F(p, q) on phase space, the evolution equations take the form
dF

%:{HaF}
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Again we conclude from here that the Hamiltonian H is a time-conserved quantity

dH
— ={H,H} =0.
dt { ? }

Thus, the motion of the system takes place on the subvariety of phase space defined
by H = F constant.

In the case under consideration the matrix J is non-degenerate so that there
exist the inverse

Jl=—J

which defines a skew-symmetric bilinear form w on phase space

w(z,y) = (x,J1y).
In the coordinates we consider it can be written in the form
w = Z dp; N dq’ .
J
This form is closed, i.e. dw = 0.

A non-degenerate closed two-form is called symplectic and a manifold endowed
with such a form is called a symplectic manifold. Thus, the phase space we consider
is the symplectic manifold.

Imagine we make a change of variables ¢/ = f7(z*). Then

, J . , P
Ry T
OF m a7
=~
A

or in the matrix form

j=AJA - V,H.

The new equations for y are Hamiltonian if and only if
AJA =]

and the new Hamiltonian is H(y) = H(z(y)).

Transformation of the phase space which satisfies the condition
AJA =

18 called canonical. In case A does not depend on x the set of all such matrices form
a Lie group known as the real symplectic group Sp(2n,R) . The term “symplectic
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group” was introduced by Herman Weyl. The geometry of the phase space which
is invariant under the action of the symplectic group is called symplectic geometry.
Symplectic (or canonical) transformations do not change the symplectic form w:

w(Ax, Ay) = —(Ax, JAy) = —(z, A" JAy) = —(z, Jy) = w(z,y).

In the case we considered the phase space was Euclidean: M = R?". This is not
always so. The generic situation is that the phase space is a manifold. Considera-
tion of systems with general phase spaces is very important for understanding the
structure of the Hamiltonian dynamics.

Dynamical systems with symmetries

Let g(t) will be a one-parametric group of transformations of the phase space:
x — g(t)z. This group does not need to coincide with the one generated by the
Hamiltonian H. The action of this group is called Hamiltonian if there exists a
function C' such that

d
—g(t)x|tmo = J - VC.

dt
The flow of any function F' under the one-parameter group generated by C' is then
d d
oF = %F(Q(t)l')’t:o =VF. 7 ()x|i=o = (VF,J-VC)={F,C}

If we take F' = H, we get
0H ={H,C}.

Thus, if C' = {H,C} =0, ie. if C is an integral of motion, then it generates the
symmetry transformations which leave the Hamiltonian invariant. Infinitezimally,
the symmetry transformations are realized as

§F = {F,C}.

There could be several one-parametric groups which are one-parametric subgroups of
a non-abelian Lie G, the latter being the symmetry of the Hamiltonian. Accordingly,
there are the integrals of motion C;, ¢ = 1,...,dimG. Since C; are integrals of
motion, from the Jacobi identity

{Cn O HY + {{H,C}.C)) + {{Cy. H}.C} = 0

we conclude that {{C;,C;}, H} =0, i.e. {C;,C;} is an integral of motion. If one can
chose the functions C; is such a way that they form the Lie algebra of G under the
Poisson bracket:

{Oi7 C]} = Z];Ok )

then the corresponding action of G on the phase space is called Poisson. Here fE

]
are the structure constants of the Lie algebra of G.
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B. OPE and conformal blocks

Every conformal (primary) operator enters in the Operator Product Expansion with
its conformal family (descendants). Contribution of the entire conformal family
associated to a primary operator O into the OPE is called the conformal block.
Conformal blocks are completely fixed by conformal symmetry. As an example, let
us show how to find the conformal block associated to the scalar primary operator O
of conformal dimension Ag, which arises in the OPE of two scalar operators A and
B of conformal dimensions A4 and Ag, respectively.

Assume the Operator Product Expansion

A(z)B(0) =

. )%(A;AB - ’;kl (2,0)0(0) + ... (B.1)

Here dots indicate the conformal families of other primary operators. We assume
that all primary operators are orthogonal w.r.t. to the two-point functions

Co
(y?)2e

The three-point functions are fixed by conformal symmetry. In particular,

(0(0)0(y)) =

Capo
(x2>%(AA+AB—Ao) <y2)%(AB+Ao—AA) ((ZE _ y>2)%(AA+AO—AB).

{(A(2)B(0)O(y)) =

Plugging the OPE into the tree-point function we get

[e.9]

1
({EQ) L(A4+AB—-Ap)

(A(x)B(0)O(y)) = %Ar(l’, —0,)(0(0)0(y))-

r=0

Thus, compatibility of the 3-point function with the OPE results into

Caso 1 i 1 1
Co (y2)z(BstR0-24)((y — )2)3(BatRo-A e k (y2)Ao'
Taking into account that e~*% is the shift operator acting as

e fly) = fly—a),

the last relation may be written as

CABO 5 1 ¥ 1
Zk' (AB+Ao AA)<_x'ay) (y2)3(Batho-ap) Zk'/\ z, =0, )(y2)Ao’

It suggests to define

N(2.0,) = 22001"(0,0,),
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where the operator Qy(x,d,) is defined by the relation

(") (x - 0,)"(y*)" = Qu(w,0,) ()" (B.2)

and a, b are given by
1 1
a:—ﬁ(AB—i—AO—AA), b:—ﬁ(AA—i—AO—AB).

The explicit form of the operator Q(x, d,) is found by the Fourier transform. Indeed,
we have

2va _ o2a+d dQF(a—I—g) 1 e~y
0y = e | G ()

and similar for the others. Substituting the Fourier transform of every function of
y? one gets

1 Tla+49rb+4%) I'(—a—0b) /dpdq e~y
T2 Tla+b+9) I(=a)l(-b) (p?)etdi2(g?)b+a/2

e WY ab )
:/dp(pg)aTd/Q y (@, —ip),

where QZ’b(m, —ip) is defined by

(—izq)" (B.4)

“(x,0,)e™ = QL (x, —ip)e™V,
and we have used the change of variables p — p — q.
From here one gets that QZ’b(x, —ip) is given by the integral

ab o] I’(a+§)1’(b—|—g) ['(—a—10) 2\a+b+d/2 (_WQ)k
i) = et e |

Thus, the problem is reduced to evaluation of the integral

(—izq)*

Hown) = [ di oot 9

One has

_ ' a1=1(1 _ pyoe—1(_j\k (l"Q)k
I(ag, as) = F(Oq)l“(az)/o dit* 11— t)* (=) /dq[(q—tp)2+t(1—t)p2]0<1+a2

ap + OQ) /01 dttm—l(l _ t)aQ_l(—i)k/dq[ (xq + txp)k

@ + t(1 — t)p?]er+e

[k/2]

Hoa 4 a2) /0 LA (1 g () O () [ da (g

(> + (1 — t)p?|ortoe’

)2m

m=0
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where C?™ = m There appear only even powers 2m since for odd powers

the internal integral is zero. Thus, we now need to evaluate the integral

B (wq)*™
b= /dq[q2 + A

Under the integral the symmetric product g;, ...q;,,, may be substituted for

- ()™
G lion = G d 12 (d+ 2(m — 1))

(0iyin---Oig, _1in, + Dermutations), (B.6)

where on the r.h.s. all non-trivial permutations are present. The total number of

this permutations is fm—”;z', Therefore, under the integral one may substitute

2m _ i1 dom _ (xQ)m(Qz)m (2m)!
()™ = @™ iy i = G 2 = 1)) 2l

(q2>m B 71.cl/2 oo 2(q2)m+d/2—1
/ﬁ%f+mv‘rwmyﬂ TR

Now we have

Performing the change of variables t = #, we arrive at
( q2)m 7Td/2 o 1 o -
d _ Bt /2—y dtty—m d/2—1 1—¢ m+d/2—1
| 5 = e : ey

- 72 T(y—m—d/2)T(m+d/2) pmtd/2—y

- I(d/2) I'(y)

Thus, we evaluate the integral L

L:/dq[(xﬂ—

¢ +hT
_ (x?)m (2m)! 742 T(y —m —d/2)T(m +d/2) /2
d(d+2)..(d+2(m —1)) 2mm! T'(d/2) INGY)
— qd/2 2m)!T(y —m —d/2) (x2>mhm+d/27'y
4mm) C'(v) '

Finally, one gets

I( ) d/2 F(al + Oég) % 02m< . )k;—Zm( 1)m
a1, Q) = T 2 (_izp _
()T () —
X /1 oo th—2m=1(] _ pjoo=1 (2m)! D(ar + as —m — d/2)
0

2\m 2\m+d/2—a1—az
t(l—t
Pl Tata) ) =00 ’
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where we have substituted v = a; + ap and h = (1 — ¢)p®. This is simplified to

[k/2]
I(ay, ) = o § :Ci’” (Zm)!(_Z.xp)k—Zm(_xQ)m(p2)m+d/2—a1—a2
’ I'(an)l(a2) — 4mm)

1
X / dth—md/2mea=l() _ gymd/2mea=lpg) 4y —m — d/2).
0

Thus, the final formula reads as

piz W2 (2m)! 1 "
I — C2m . kE—2m [~ _ 22 2\d/2—o1—a2
(a1, az) Ploa )T (co) mz:zo R (—izp) 455 p (p°)

F'(k—m+d/2—a)T(m+d/2 —ay)
IF'k+d—oa1 —az)

For QZ’b(x, —ip) one therefore finds

['(ag 4+ s —m —d/2).

k/2]

a,b . _ 1 k—2m 1 2 2 "
k(x’_lp)_F(a+b+d/2)F ZC 2 (7“9)
X L(k _FZ:;:Z)—(Z)) )F(a+b+d/2—m).

By using the relation (a)_,, = ((1__2)"; it can be further simplified to give

1 & BN (=) (—)—m o (1o \"
(—a —b) Zm'(kz 2m)(=d/2 —a—b+ 1)y, (2 2,)" (_4 QAy) ’

Further summation gives the conformal block of the scalar field and it is per-
formed by changing the order of the summation and the shift of the summation
variable:

[e.e] 1 u
> 00 =

(_a)m( b) m —9m 1 m
Z Z a—bkm'k—2m)( d/2—ka—b+1) (z-8,)" (—4x2Ay>

QZVb(@V ay)

m=0 k=2m
. (@ Lo VIS (D (@)t
_mz_:om!(—d/Q—a—b—f—l)m ( 4 Ay) kzo(—a—b)k+2m ko
Since
(=0)ktm  _ (=b)m (=b+m)y

(=@ —=D)psom (=@ —D)am (—a —b+2m);,
we finally get

oo 1 "
> (@0, =
k=0

o0 — @) (—b)m 1 1 "
- (_M(_ a — (b —i—)l)mm! (_a — b)Qm IFI(_b - e ’ * 2m; l@y) <_4x2Ay> ’

m=0
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where F} is a degenerate hypergeometric function:

i, fz) =Y %1’—‘ (B.7)

C. Useful formulae

In discussion of the central charge of the Virasoro algebra we encounter the sum

Sp = ti.
q=1

Here we present a general method of computing this and similar sums. The method
is based on considering the generating function

p(x) = anx",
n=1
so that L on
%
Sn = E(&w)"”—o
For x < 1 we have
st D) I dSar=y i
n=1 gqg=1 q=1 n=q q=1
We further notice that

Thus,

Z . < 0? x s 10 = ) >+
= =

1 0221 —x  220r1—ux (1—x)3
and, therefore, we obtain the generating function

(x):xQ—i-x: 1 3 2
v A—2f (—22 (1—2p (d_a)

Finally we compute

i<a"p) _i(2~3---(n+1) _33-4--~(n—|—2)+24-5---(n+3)) .

azn) ol \\ (1 — )2 (1 — )3 (1 — z)n+d

The last formula results into

Sy = (n-l—l)(l — ;(n+2) + é(n+2)(n+3)> = én(n+1)(2n+1).
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D. Riemann normal coordinates

Consider a Riemannian manifold M of dimension n with coordinates 2, 1 = 1,...,m.
The geodesic equation is
i+ T (x)i?d* = 0.

Let us consider two points p and ¢ with coordinates x' and z* + da respectively. We
assume that these points are closed so there is a unique geodesic connecting them.

A parameter t on the geodesic can be chosen proportional to the length of the
arc connecting these two points (the natural parameter). The solution z?(t) can be
chosen so that z°(0) = 2* and (1) = 2’ + dz°. The tangent vector to the geodesic
at t = 0 is defined by & = 7°(0). Then equation for the geodesic can be solved
perturbatively by assuming the following expansion

o (t) =2+t
Plugging this into the geodesic equation one finds

i i i 1 i ~j 1, i g2 ¢
Z (t> =+t - §Fj1j2 (x)gjléptZ B grjljﬂs(x)ghgpéjstg T
where
Fi

J1j2J3

17 j2js Jije= 13 Jije™ gl -
Here all the quantities are evaluated at 2. At t = 1 we have z%(1) = z' + dx so that
i i i el lp drgie _ L 1 i g
A §Fj1j2(x>§ S aFﬁjﬂs(I)g §287 —
Hence, the point 2 4 dz° is parameterized by the tangent vector £&. We can there-
fore take £ as the new coordinate system on our manifold. The coordinates £ are

called Riemann normal coordinates. They are used to define a map of an open
neighbourhood U of the zero-vector 0 € T, M to the manifold M:

exp, . UeTl ,M— M

which is well-defined diffeomorphism of U on its image. Now we are parameterizing
the points of the curved manifold with tangent vectors. The image of the geodesic
through a point x in the Riemann normal coordinates is just a straight line.

How metric will look in the new coordinate system? Upon changing the coordi-
nates form z* to £ the metric transforms in the standard way

O(z* + 62%) O(a! + d2h)
¢ 9/3

9:;(6) = Iri(x + 0)

We have
O(z* + oxF)

: — ok kel 4.
85’ 4 zjé +
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and also

1

Iri(z + 02) = gni <$1 +& - §F§1j2§jlfj2 + - > = gra(x) + Ohgis&* + -

Thus, at the linearized level we find that
05(©) = (8 = The") (5]~ ™) (910(0) + Bpa?) + -

= gij(z) + ((%gij — T} gk — angki) &+

[

Dngij

We see that

95(8) = 9i(x) + Digij(@)€" + - (D.1)

It is important to realize that the coordinates ¢¥ depend on x because they define
the tangent vector to the manifold at the point z. Under reparametrizations of
x — 2’ the object £¥(z) transforms as a vector! The expansion (D.1) is covariant
under general coordinate transformations x — x’' because it includes the tensorial
quantities only.

In the case of the minimal connection (connection compatible with the metric)
we have Dyg;; = 0. This, the expansion of the metric start from the quadratic order
in ¢, Extending this calculation to higher orders in & one finds

1 1
9:;(&) = gij(x) — gRikljk2§k1€k2 - nglRikzjkgfklﬁkz’S“ 4

Also we recall the transformation property of the Christoffel connection

B 83:’“/( , OxP Oz1 02k )
Ok \ P Qptd T OaP Oxd )

(&)

where 2 = ¢ and 2" = ¢' + 7'. Expanding the r.h.s. of the last equation in £’ it is
easy to see that expansion does not contain the constant piece because the constant
terms in the bracket cancel against each other, in other words, in the Riemann normal
coordinates we have

K _
[y (§) = O(E)
In the Riemann normal coordinate system die to the vanishing of F’;q at & = 0 the

geodesic equation takes a form of the free motion A = 0. This is coordinate system
corresponds to the rest frame of a freely falling observer.
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E. Exercises

FExercise 1. Show that the Hessian matrix associated to the Nambu-Goto Lagrangian
has for each o two zero eigenvalues corresponding to X* and X'*.

Exercise 2. How reparametrization invariance can be used to bring the equation

g (XXX — (X')2XH 2 (XX)XH— (X)X
or \/(XX’)Q—XQX’Q do \/(XX’)2—X2X’2

to the simplest form?

Exercise 3. The Polyakov string. Prove that equations of motion for the fields
X* imply conservation of the two-dimensional stress-energy tensor

VAT, =0

FEzercise 4. Show that 7,3 = 0 implies that the end points of the open string
move with the speed of light.

Exercise 5. Non-relativistic string.

e Consider a string in equilibrium on the z-axis between (0,0) and (L,0) and
suppose that the infinitesimal parts of the string can move only in the y-
direction. Derive the Lagrangian with p the mass density and 7' the string
tension.

e Derive the equation of motion from this Lagrangian and keep explicit attention
to the boundary conditions.

e Analyze the boundary terms. What must you impose in order to have a sta-
tionary action?

e Construct the momentum function P.

e Calculate the time derivative of the momentum (consider the boundary condi-
tions). What do you conclude?

e Fourier transform the z-coordinate and solve the eom. Do this for both bound-
ary conditions.
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Exercise 6. Show that the Polyakov action is invariant under reparametrizations

SXHP = £29, X"
5haﬁ = Vaf,@ + vﬂga
6(Vh) = 0.(6*Vh)

Exercise 7. Show that the Weyl invariance implies the tracelessness of the stress-
energy tensor Tqg3.

FEzxercise 8. Show that the Gauss-Bonnet term
1
X=—— / d’c VhR
47

is topological, i.e. it vanishes under smooth variations of the world-sheet metric hqgs.
Take into account that in 2dim the Ricci tensor is proportional to Ricci scalar and
also

&¢Mﬂ~(ﬁw—%mﬂﬂMw.

Ezercise 9. Let S(q,t;qo,to) be the action of the classical path between (g, o)

and (g,t). Show that
oS

i
where p(t) is the conjugate momentum of ¢ at time ¢. Show that
oS 08
2 _H(g. 22
at (q7 aq ) ?

p(t),

where H is the Hamiltonian. Suppose that H(q,p) = % + V(q) and define

w((b t) = e%s(q,t;qo,to) '

Show that the schrodinger equation approximately holds for v,

L0y L0
@ha = H(q, —zha—q>¢ + O(h).

This is of course related to Dirac’s idea that the phase of the wave function is pro-
portional to the classical action.
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Ezxercise 10.

e Show that the constraints
Cy = P,P'+T°X, X", Cy=PFX"

have the following Poisson brackets

{C1(0),C1(0")} = 4T%0,04(0)d(0 — 0’) + 8T*Cy(0)0,6(0 — o),
{Ci(0),Ca(0")} = 9,C1(0)d(0 — 0’) +2C1(0)0,0(0 — o),
{Cy(0),C1(0")} = 0,01 (0)d(0 — 0') +2C1(0)0,0(c — 0'),
{Cy(0),Cy(0")} = 0,C5(0)d(0 — 0") + 2C5(0)0,0(0 — o).

e Define the linear combinations

1

Ty, = 8T2 (Cl + QTCQ) ]T2 (PN + TXl/i)2 ’
1

T = 8T2(01 —2TCy) = (P~ TX,)*

and show that their Poisson algebra is

{Ti(0), T 1. (o)

}
{T-—(0), T--(0")}
{T4i(0), T-—(0")}

(a Ty (0)8(0 — o) + 2T, (0)9,8(0 — a/)) ,

(a T (0)0(0 — o) + 2T (0)d,8(0 — a’)) ,

Ezercise 11. For the closed string case define
2 ) B
L, = 2T/ do "™ T__(o,7)
0
3 2 -
Lm = 2T/ dO' elmg T++(O', T) .
0

Show that for any integer m the generators L,, and L,, are time-independent.

FExercise 12. Compute the Poisson brackets of the constraints L,,, L,,. What
kind of constraints they are, i.e. the first or the second class?

Exercise 13. 1t is known in curved space-time that we can transform the metric
locally in the neighborhood of a point z# = 0 to the following form g, () = 1., —
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%Rwypx"xp , this are Riemann normal coordinates. So that the deviation of g from
the flat metric 7 is only second order in x (this is a coordinate system of an observer
in free fall). Suppose we have a coordinate system z with metric expanded around
0,

- o 1 o~
g#l’(x) = g,ul/(o) + acrg,uy(o)x + 5808/)9/“,(0)1' SE’D .
We want to transform this using a coordinate transformation & — x = z(Z) to
Riemann normal coordinates. We expand the coordinate transformation to third
order (zeroth order is zero)

. Ozt 1 Ozt vzo 1 Oxt
xt = T + -1 722"

orv 2 892”896" 6 01v0x°0xP

We can use the first term to bring g to . Show that after we have done this there

L
ZEV’

are %d(d — 1) remaining degrees of freedom left for where d is the dimension.
Where do these remaining degrees of freedom correspond to?

Show that we can bring d,g,, to zero using the second term of the transformation,
by counting degrees of freedom.

For arbitrary dimension there are not enough degrees of freedom to put 9,9,9,. to
zero. Count the number of remaining degrees of freedom and show that it equals
%dz (d*—1). This is precisely the number of independent components of the Riemann

tensor.

Ezercise 14. Solve equation of motion CJX* = 0 for the case of open string (take
into account the open string boundary conditions).

Exercise 15. Consider solution of the closed string equations of motion
XMoo, 1) =X (T +0)+ XG(T—0)

where

D
m
XR(T—U)—ix“—i—Zl—](T—U _4 5 —a“
1 p*
XM o ey’ ju n(r+0)
(T ) Qx 47T (T J /47TT Z

Derive the Poisson algebra of the variables (z*, p*, o, @) by using the fundamental
Poisson brackets of X*(o), P*(o) variables.
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Exercise 16. Prove that that (closed) string has an infinite set of integrals of
motion: for any function f the quantities

27 27
L= [ aeseor L= [ T

are conserved.

FExercise 17. Obtain an expression for the Virasoro generators L,, and L,, in
terms of string oscillators.

Exercise 18. Show that the operators D,, etn? d g obey the Virasoro algebra.

Ezercise 19. Consider an open string solution 0 < o < 7:

X' =t=1Lr

X' = LcosocosT,

X% = LcososinT,
X'=0, i=3,....,d—1.

Show that this solution satisfies the Virasoro constraints and open string bound-
ary conditions.

Compute the mass of string.

Compute the angular momentum J = Ji5 of string.

Show that J = o/ M?, where o = ﬁ is called a slope of the Regge trajectory.

FExercise 20. By using the Poisson brackets between the generators of the
Poincare group

{P",P"} =0
{PH, JroY = o pr — e po
{JH JPTY = P JVO 4 O JHP — P JHT — e JVP

show that for a certain choice of a function f the following expression

J? = = (Jap®’ + f(P*)PaJ* PP J5)) P? =P, Pr.

N —
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is an invariant of the Poincare group. Find the corresponding f.

Exercise 21* Show that for any open classical string solution the following
inequality holds
J=VJ2<d'M?,
(Hint. Make the computation in the static gauge X° =t = 7 and use the Schwarz
inequality |(f,¢)|*> < (f, f)(g,g) which holds for any two complex functions f and

g.)

Exercise 22. Show that the generators of the angular momentum commute with
the Virasoso generators

{Lpm, J*} =0.

Exercise 23. By using the first-order formalism and imposing the light-cone
gauge for the open string case

e Solve the Virasoro constraints,

e Find the open string light-cone Hamiltonian.

FEzercise 24. Show that Virasoro constraints 7,3 = 0 which we have found in
the conformal gauge can be directly solved in the light-cone gauge without using the
first-order formalism. Show how the conformal gauge Hamiltonian turns into the
light-cone Hamiltonian upon substitution the light-cone gauge conditions and the
Virasoro constraints.

Exercise 25. Rewrite the Poisson algebra of the Poincaré generators in terms of
light-cone coordinates P*, P’ and J™*, J¥, J*~.

Exercise 26. For the closed string case in the light-cone gauge compute the

Poisson brackets between the zero mode variables p*, p~, p', x =, 2* . The full answer
is given in the lecture notes.

Exercise 27. Proof the fulfilment of the Poisson algebra relations between the
generators {J*, JiT} and {J'T, Ji7} .

Exercise 28. The Virasoro algebra relation takes the form

[Lin, Ln) = (m — 1) Ly + A(M) 0
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where A(m) is a function of m. The aim of this exercise is to find the constraints on
A(m) that follow from the condition that the relations above define the Lie algebra.

e That does the antisymmetry requirement on a Lie algebra tells you about
A(m)? What is A(0)?

e Consider the Jacobi identity for the generators L,,, L, and L, with m+n+k =
0. Show that

(m — n)A(k) + (n — k)A(m) + (k — m)A(n) = 0.

e Use the last equation to show that A(m) = am and A(m) = Bm?, for constants
« and [, yield consistent central extensions.

e Consider the last equation with k£ = 1. Show that A(1) and A(2) determine all
A(n)

FExercise 29.

e Use the Virasoro algebra to show that if a state is annihilated by L; and L,
then it is annihilated by all L,, with n > 1.

e Consider the Virasoro generators Lo, L; and L_;. Write out the relevant
commutators. Do these operators form a subalgebra of the Virasoro algebra?
Is there a central term here?

Exercise 30. Consider open string. The fundamental commutation relation is
[ X*(a,7), P*(c’,7)] = " (0 — o), o€ l0,7].

e Show that consistency with the oscillator expansion implies that
o0

E COSNo cosno’

n=—oo

1

™

d(c — o)

e Why the fundamental commutation relation compatible with open string bound-
ary conditions?

e Prove this representation for the d-function by using the fact that any function
f(o) with ¢ € [0, 7] and vanishing derivative at ¢ = 0, 7 can be expanded as

flo) = f:Ancosna.
n=0
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Exercise 31. Compute in the light-cone gauge the commutator of the orbital
momenta

[0 7] =7

Ezercise 32. Show that in the quantum theory the eigenvalues of the covariant

o0
— p
N = g al gy,
n=1

number operator

are always nonnegative.

Exercise 33. Using the previous exercise show that for any fixed state all but
a finite number of positively moded Virasoro operators automatically annihilate the
state without imposing any conditions. More precisely, show that any state |®) with
the number eigenvalue N > 0 automatically satisfies

L,|®)=0 for n > N.

Ezercise 34. Compute the open string propagator

(X(r,0)X(7',0")) =T (X(r,0)X(7',0"))— : X(1,0)X(7',0") : .

Exercise 35. Show that the vertex operator of the open string

k#a”

1 oo —n _inT . N H 1 oo k‘ua% —inT

V(k,T) :§m2n=1 no © glku(ff“r%ﬂ/ o VT n=1 € j
Vv Vv Vv
V. Vo Vi

is the conformal operator with the conformal dimension A = o/k?.

Ezercise 36. Compute the two-point correlation function of the tachyon vertex
operators
<0|V(k’2, TQ)V(k'l, 7'1)|0>

FExercise 37. Compute the three-point correlation function of the tachyon vertex
operators

<O|V(k’3, Tg)V(/{fz, TQ)V(k?l, T1)’O>
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Fxercise 38. Compute the three-point correlation function of the tachyon vertex
operators

<0|V(k’4, 7‘4)V(k’3, 7‘3)‘/(/{32, Tg)V(k’l, 7‘1)|0>

Exercise 40. Verify that 0" X* is a conformal operator. Find the corresponding
conformal dimension. Find the singular terms of the OPE

T _(r,0) 0" XH(r',0).

Exercise 41. Find the singular terms of the OPE
T _(r,0)V(k, 7, 0",

where V' (k, 7', 0') is the vertex operator of tachyon.

Exercise 42. Find the singular terms of the OPE

T (r,0)T__(7',0).

FEzercise 43. Suppose that there are ¢ = 1,...,n grassman (anticommuting)
variables 7; and 7;. Let us define the integration rules as

/ dn=20, / dngm =1
for any 7; and 7;. Show that for any n x n matrix M the following formula is valid
detM = / dndn ™
Here 71Mn = 7,Min;.

Exercise /4. Show that the stress-tensor for the ghost fields implies the following
expression for the ghost Virasoro generators of the closed string

oo

LEh = Z (m—mn) : byynC_p :
E,g,}; = Z (M —1n) : bgnCen :
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Exercise 45. Consider conformal transformations z — 2’ = f(z). By definition,
primary fields are the fields which transform as tensors under conformal transforma-
tions NP

0(22) = ¢(2.2) = (5-) (55) 9(z/().7(2))
Find how a primary field transforms under infinitezimal conformal transformations
¢ — ¢+ 0¢ gp, where 2/ = 2z +&(2).

Exercise 46. Show that conformal fields of weight h have the following mode
expansion

d2)= D 2.

nEinteger

Exercise /7. In the radial quantization products of fields is defined by putting
them in the radial order. Using the radial order prescription show that the conformal
transformation

Ogp(w) = [Te, p(w)]

can be written in the form

bep(uw) = Yi L )T ()b(w)

 2mi

Here C, is a small contour in a complex plane around point z.

Exercise 48. Using the previous exercise together with the Cauchy-Riemann

j{ dz f(z) _ f" D (w)
C

omi(z—w) (n—1)!
show that any conformal field must have the following R-ordered operator product
with T'(2):

formula

_ _he(w) | 9¢(w)
T(Z)Qﬁ(ﬂ)) - (Z o U})2 + (Z o U))

+ regular terms

Ezercise 49. Show that the following operator product of the stress tensor

c/2 2T (w) oT (w)
Gowi  —w?  (z—w)

corresponds to the following transformation law

T(2)T(w) =

+ regular terms

5T (2) = 750°6(2) + 206(=)T (=) + £(:)0T(2)
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Exercise 50. Under finite transformations z — f(z) the stress tensor transforms
as

T(z) = T'(z) = (0)°T(f(2)) + 13 D(f)

Here
Dﬁkzﬁﬂ@8ﬂ85;@fwn

is the Schwarzian derivative. Show that if f(z) = % then D(f), = 0.

Exercise 51. Consider a parallelogram on the complex plane determined by the
following identification

2 =24+ nA +mly, n,me Z
Show that a general transformation
)\1 — d)\l + C)\Q s )\2 — b)\l + a)\2

with the condition ad — bc = 1 preserves the area of the parallelogram.

FEzxercise 52. Show that the modular transformations

1
T: 7—7+1, S: T —=
.

applied to the fundamental region of the modular group
1 1
Mg:1:{—§§RGT§0,|T|221UO<RGT<§,|7'|2>].}

generate the whole upper-half plane.

Exercise 53. Show that 7 = i and 7 = €5 are the fixed points of S and ST
transformations respectively.

Exercise 5. Verify that the action
1 _
§=—= / d%(aaX#aaX,t + 26t p° aq/;u) .

is invariant under supersymmetry transformations w

5.X" = e
1
St = 5" DaXe
_ 1
St = —Sep 0. X"
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provided the parameter € satisfies the following equation

P’ padse = 0.

Ezercise 55. If in the previous exercise the parameter € is constant then we
deal with global supersymmetry transformations. Derive the Noether current which
corresponds to this global symmetry of the action.

Ezercise 56*. Express the spin connection w via vielbein e by using the condition
of vanishing of the torsion

ap = Da€jg — Dgeg, = 0.

Exercise 57. Derive the on-shell algebra of supersymmetry transformations

(01, 02] =7

Exercise 58. Using the Noether method derive the currents corresponding to
the Poincaré symmetry for the fermionic string. Express the corresponding Noether
charges via oscillators for both Neveuw-Schwarz and Ramond sectors.
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