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Abstract: The course covers the basic concepts of modern string theory. This

includes covariant and light-cone quantisation of bosonic and fermionic strings,

geometry and topology of string world-sheets, vertex operators and string scattering

amplitudes, world-sheet and space-time supersymmetries, elements of conformal

field theory, Green-Schwarz superstrings, strings in curved backgrounds, low-energy

effective actions, D-brane physics.
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1. Introduction to the course

1.1 Historical remarks

String theory arose at the end of sixties in an attempt to describe the theory of

strong interactions. In 1969 Veneziano found a beautiful formula for the scattering

amplitude of four particles. This amplitude comprised many features that physicists

expected to be found in the theory of strong interactions. It was realized very soon by

Nambu and Susskind that the underlying dynamical object from which the Veneziano

formula can be derived is a relativistic string. The fundamental difference of strings

from the theory of point particles is that strings are extended, one-dimensional,

objects; when string moves through space and time it sweeps two-dimensional surface

called the string “world-sheet”. The strings can be of two types: open – with topology

of an interval and closed – with topology of a circle.

Subsequent investigations revealed however severe difficulties to treat the string

as the theory of strong interactions. These difficulties are

1. Existence of a “critical dimension”.

2. Existence of a massless spin two particle which is absent in the hadronic world.
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If one tries to construct the quantum mechanics of relativistic strings one finds

that mathematically consistent theory exists if and only if the dimension of space-

time where string propagates is 26. The number 26 was named the “critical dimen-

sion”. On the one hand, it was pretty remarkable and unexpected to find an example

of physical theory which puts restrictions on space-time where it is defined. On the

other hand, it was certainly not clear why a theory that shared at least some qualita-

tive features with hadronic physics should exist in 26 dimensions only. A subsequent

discovery of QCD (Quantum Chromo Dynamics) as the most appropriate candidate

to describe the theory of strong interactions led to a considerable loss of interest to

string theory.

In 1974, Scherk and Schwarz came up with a proposal to completely alter the

view on string theory. They suggested to consider the massless spin two particle

absent in the hadronic world as the graviton – the quantum of the gravitational

interaction. Indeed, this particle neatly fits the properties of the graviton – string

theory predicts that this particle interacts according to the standard laws of General

Relativity. Gravitational interactions have a natural scale, called the Planck mass,

which is around 1019 GeV. This is a huge number in comparison with characteristic

energies of hadronic physics, 100 − 200 MeV. Thus, according to their view, string

theory could provide the unifying description of all the particles and matter forces,

including gravity and it operates on a new fundamental scale.

Even if one accepts that quantum mechanics of relativistic strings can be defined

in the unusual number 26 of the space-time dimensions, another problem arises. Such

string does not contain fermionic degrees of freedom and it predicts the existence of

a particle with the negative mass squared: m2 < 0. Such a particle, tachyon, is a

source of instability and its existence indicates that either the theory is ill-defined

or it is formulated around a “wrong” ground state, or as physicists say, around a

“wrong” vacuum. Critical dimension, tachyon and absence of fermions were the

puzzling features the string theory had to face.

The status of string theory changed again with the discovery of supersymmetry.

All universe is made of two fundamental types of particles: bosons and fermions.

Fermions constitute all the matter and bosons mediate interactions of the matter

particles. Supersymmetry is a new type of symmetry between bosons and fermions

(Wess and Zumino 1974). Many physicists hope today that supersymmetry could

provide an underlying principle for unification of all interactions.

The first success in incorporating supersymmetry in string theory was achieved

in 1971 by Ramond, who constructed a string analogue of the Dirac equation (the

spinning string). Shortly afterwards, Neveu and Schwarz constructed a new bosonic

string theory. They realized that the two constructions were different facets of a

single theory - an interacting superstring theory containing Neveu and Schwarz’s
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bosons and Ramond’s fermions. The supersymmetry of the two-dimensional string

world sheet was recognized by Gervais and Sakita in 1971. This was advent of the

NSR (Neveu-Ramond-Schwarz) superstring.

In 1972 Schwarz demonstrated the consistency of the superstring theory in 10 di-

mensions. Instead of 26 found for purely bosonic string, the critical dimension for the

NSR string appears to be 10. In 1977 Gliozzi, Scherk and Olive realized that further

conditions should be imposed on the spectrum (the GSO projection mechanism) of

the NSR string which lead to both the so-called space-time supersymmetry (to com-

pare with the world-sheet supersymmetry mentioned above) and to the removal of

tachyon. Thus, superstring theory has at least two advantages in comparison with

bosonic strings: critical dimension 10 < 26 and the absence of tachyon. It also turned

out that the GSO projection can be imposed in two different ways which lead to two

different types of superstrings, called the Type IIA and Type IIB.

String theories have a natural particle limit, when the length of string vanishes.

In this limit superstrings give rise to the low-energy effective theories, known as

supergravities. These theories can be defined in a way completely independent of

string theory: they can be thought of as supersymmetric generalizations of the pure

Einstein gravity. As is known, attempts to quantize gravity in the standard frame-

work of quantum mechanics fail because gravity is a non-renormalizable theory (there

are infinitely many divergent graphs with any number of external legs and with an

arbitrarily high index of divergence, cf. the course on Quantum Field Theory). Su-

persymmetric theories tend to be less divergent than non-supersymmetric ones which

gave initially a hope that supersymmetry could cure the nonrenormalizable infinities

of the quantum gravity. It seems that supergravities themselves are still not capable

to solve the divergency problem1. Quite remarkably, there is a strong evidence that

the divergency problem of quantum (super)gravities is resolved by string theory.

���
���
���

���
���
���

Resolution of the four-fermi interaction. At high energies the weak force is
mediated by a heavy boson.

1For instance, it is unknown if the so-called N = 8 supergravity is finite or not.
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To get a better feeling why it happens it is convenient to envoke an analogy

with the theory of weak interactions. Trying to describe the decay of the neutron by

the Fermi-type Lagrangian containing the quartic, point-like, interaction vertex one

finds irremovable ultraviolet divergencies at higher loop orders. Again, the reason

is that the corresponding theory of Fermi-interactions in non-renormalizable. The

solution of this problem lies in a fact that at higher energies (more than 100 GeV),

the pointlike vertex gets resolved and the interaction is mediated by a heavy W-

boson. In the new theory one has qubic vertices and this ultimately makes the

theory renormalizable.

Very similar phenomenon occurs in string theory. Expanding the Einstein-

Hilbert action
√−gR one gets more and more complicated point-like vertices which

render the theory non-renormalizable, analogously to the old Fermi theory. In oppo-

site, in string theory all these vertices get dissolved by the exchange of the massive

string states. String states form an infinite tower of particles of arbitrarily high mass

and spin and all of them participate in the interaction process. Resolving the ultra-

violet divergency problem string theory appears to be a natural candidate for the

theory of quantum gravity.

There is a still an important question how to relate the superstring theory defined

in a ten-dimensional space-time with a our conventional four-dimensional physics.

The basic approach to obtain four-dimensional theories is along the old ideas of

Kaluza and Klein and it consists in compactifying of the ten-dimensional theory down

to four dimensions. In this case, the four string coordinates remain uncompactified,

while the other six are curled up and parametrize a compact space of a very small

size (of the order of the Plank length). It appears that the internal space cannot be

completely arbitrary – it must have vanishing Ricchi-curvature.

One of the major obstacles to build a unified theory is the left-right asymmetry

recorded in the present days experiments. A theory in which there is an asymmetry

between the left and the right must contain chiral fermions. Chiral fermions are

usually a source of anomalies, i.e., of breakdown of classical symmetries by quantum

effects. Anomalies render a theory eventually inconsistent. Only in some special,

“rear” cases anomalies cancel (as it happens for instance for a standard generation

of quarks and leptons, cf. the course on the Standard Model). In higher space-time

dimensions it becomes even more non-trivial to achieve cancellation of anomalies.
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Type IIB

Type IIA SO(32) heterotic

String theories

E8 x E8 heterotic

Type I

?

Remarkably, in 1983, Alvarez-Gaumé and Witten demonstrated that anomaly can-

celled out in the chiral Type IIB supergravity theory. This was nice, but the cor-

responding theory was still far from phenomenology. Shortly afterwards Green and

Schwarz (1984) showed that cancellation of anomalies in the open superstring the-

ories singles out two gauge groups, namely SO(32) and E8 × E8. The gauge groups

SO(32) and E8 × E8 are realized in the so-called “heterotic string” which is a hy-

brid of the old d = 26 dimensional bosonic string and the d = 10 superstring. It

was shown that compactifying the theory down to four dimensions one can obtain

several generations of the chiral fermions. It was a first example of a string theory

whose low-energy limit was not in an immediate conflict with all known physics.

One of the important questions is why there exists non a unique but several

consistent string theories. With a recent advent of the string dualities and D-branes

an interesting new picture start to emerge (but still very far from being complete),

according to which different superstring theories provide different descriptions of

the one and the same theory valid in different regimes of the coupling constant

parameters.

Recommended literature:

1. M. Green, J. Schwarz and E. Witten, “Superstring Theory”, volume I and II,

Cambridge University Press, 1987.

2. D. Lüst and S. Theisen, “Lectures on string theory”, Lecture Notes in Physics,

Springer Verlag, 1989.

3. ’t Hooft, “Introduction to String Theory”, Lecture Notes, 2005.
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4. B. Zwiebach, “A first course in string theory”, Cambridge university press,

2004.

5. J. Polchinski, “String theory”, volume I and II, Cambridge university press,

1998.
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2. Relativistic particle

Consider relativistic particle of mass m moving in d-dimensional Minkowski space:

ηµν = (−1, +1, +1, . . . , +1).

Action

S = −α

∫ s

s0

ds

Note that
∫ s

s0
ds has maximum along straight lines, this explains the sign “-” in front

of the action.

Embedding xµ ≡ xµ(τ):

ds =

√
−dxµ

dτ

dxµ

dτ
dτ ≡

√
−ηµν

dxµ

dτ

dxν

dτ
dτ

If xµ = (cτ, ~x) then

ds =
√

c2 − ~v2 , ~v =
d~r

dτ

Thus, the action is

S = −αc

∫ τ1

τ0

√
1− ~v2

c2
dτ

The Lagrangian in the non-relativistic limit

L = −αc

√
1− ~v2

c2
dτ = −cα

(
1− ~v2

2c2

)
+ . . . = −αc +

α~v2

2c
+ . . .

To get the standard kinetic energy one has to identify

α = mc

In what follows we will work in units in which c = 1.

The action is invariant under reparametrizations of τ :

δxµ = ξ(τ)∂τx
µ as long as ξ(τ0) = ξ(τ1) = 0

Let us show this

δ(
√−ẋµẋµ) =

1

2
√−ẋµẋµ

(−2ẋνδẋν) = − 1√−ẋµẋµ
ẋν∂τ (ξẋν) =

= − 1√−ẋµẋµ

[
ẋν ẋν ξ̇ + ξẋν ẍν

]
= − 1√−ẋµẋµ

ẋν ẋν ξ̇ + ξ∂τ (
√−ẋµẋµ)

=
√−ẋµẋµξ̇ + ξ∂τ (

√−ẋµẋµ) = ∂τ (ξ
√−ẋµẋµ)
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Therefore, we arrive at

δS = −m

∫ τ1

τ0

∂τ (ξ
√−ẋµẋµ) = −m

[
ξ
√−ẋµẋµ

]
|τ=τ1
τ=τ0

= 0 ,

i.e., the action is indeed invariant w.r.t. the local reparametrization transformations.

The most elegant way to quantize a system is to use the Hamiltonian formal-

ism2. Let us therefore try to develop the Hamiltonian (canonical) formalism for the

relativistic particle. The canonical momenta

pµ =
∂L

∂ẋµ
= −m

∂

∂ẋµ
(
√−ẋµẋµ) = m

ẋµ√−ẋµẋµ

We notice that

p2 ≡ pµp
µ = −m2

Thus, we see that the canonical momenta are not independent, rather they obey the

constraint

φ ≡ p2 + m2 = 0 (2.1)

Constraints which follow just from the definition of the canonical momenta without

using equations of motion are called primary constraints. Mass-shell condition for

the point particle is a primary constraint.

In general the number of primary constraints is equal to the number of zero

eigenvalues of the Hessian matrix:

Hµν =
∂pµ

∂ẋν
=

∂2L

∂ẋµ∂ẋν

For the relativistic particle we have only one eigenvector ẋµ with zero eigenvalue

∂pµ

∂ẋν
ẋν =

(
m√−ẋµẋµ

δµν + m
ẋµẋν

(−ẋµẋµ)
3
2

)
ẋν = 0

The inverse function theorem stats that absence of zero eigenvalues of the Hessian

is a necessary condition to be able to express the velocities ẋµ via the canonical

momenta pµ. Dynamical systems with the Hessian of non-maximal rank are called

singular.

Constraints which have vanishing Poisson bracket:

{φi, φj} = 0

2About the Hamiltonian approach to dynamical systems of classical mechanics, the reader may
consult appendix A.
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are called the first class constraints. The mass-shell constraint for the relativistic

particle is of the first class.

There is another action for the relativistic particle. It has the following two

characteristic features

• it does not contain square root

• it admits generalization to the massless case

Introduce e(τ) the auxiliary field on the world-line.

S =
1

2

∫ τ1

τ0

dτ
[1

e

(dxµ

dτ

dxµ

dτ

)
− em2

]

Equations of motion:

for xµ d

dτ

(1

e
ẋµ

)
= 0

for e(τ) − 1

2e2
ẋµẋµ − 1

2
m2 = 0 =⇒ ẋ2 + m2e2 = 0

The last equation can be solved for e:

e2 = − 1

m2
ẋ2

which leads to
d

dτ

[ m√−ẋν ẋν
ẋµ

]
= 0

which is nothing else as the old eom for xµ. Also if we substitute solution for e into

the new action then this action reduces to the old one:

S =
1

2

∫ τ1

τ0

dτ
[ m√−ẋ2

ẋ2 −
√−ẋ2

m
m2

]
= −m

∫ τ1

τ0

dτ
√
−ẋ2 (2.2)

Also

pµ =
1

e
ẋµ =⇒ p2 =

1

e2
ẋ2 = −m2

but this time due to equations of motion for e. Equation of motion for e is purely

algebraic. The Hessian
∂2L

∂ẋµ∂ẋν
=

1

e

∂

∂ẋµ
ẋν =

1

e
ηµν

is of maximal rank.

The constraint p2 + m2 = 0 does not follow from the definition of the canonical

momentum along, but one has to use equations of motion. Constraints which are

satisfied as consequences of equations of motion are called secondary.
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The action has local gauge symmetry which is now

δxµ = ξẋµ

δe = ∂τ (ξe)

The first symmetry transformation is generated by the constraint p2 + m2:

δηx
µ = η{p2 + m2, xµ} = 2ηpµ =

η

e
ẋµ = ξẋµ , η ≡ eξ .

The second transformation for e is easily derived from e2 = − 1
m2 ẋ

2. Thus, in our

new formulation we have the set of fields (xµ, e) and reparametrization symmetry

which acts on them and leaves the action invariant. This reparametrization freedom

can be used to put e = 1
m

which results into the following equation

ẍµ = 0

This is not the end however, because there is eom for e which now reads as ẋ2 = −1.

Complete eoms are

ẍµ = 0 , ẋ2 = −1

Thus, the relativistic particle moves freely in Minkowski space over time-like geodesics.

Space-like and light-like straight lines are excluded by the constraint ẋ2 = −1.

In the case of the massless particle we can set e = 1 and get eoms

ẍµ = 0 , ẋ2 = 0

In both, the massive and massless cases, the constraints are integral of motions: they

are preserved in time due to the dynamical equation ẍµ = 0.

Finally, we treat the relativistic particle in the so-called first order (the Hamil-

tonian) formalism. To this end we have to represent the initial Lagrangian in the

form

L = pµẋ
µ + Lrest

where pµ = 1
e
ẋµ and express in Lrest the derivatives ẋµ via pµ. In doing so we obtain

the phase-space Lagrangian

L = pµẋ
µ − e

2
(p2 + m2)

We clearly see that the auxiliary field e we introduced in our second formulation

plays here the role of the lagrangian multiplier to the constraint p2 + m2 = 0. By

using the gauge freedom we can fix the gauge e = 1
m

and the physical Hamiltonian

becomes in this case

H =
1

2m
(p2 + m2)
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which is in complete agreement with our previous discussion (We actually have to

identify θ = e). This Hamiltonian3 should be provided with the constraint p2+m2 = 0

which is the eom for e.

More generally, evolution of a singular system is governed by the Hamiltonian

H = Hcan +
∑

n

χnφn

Here {φn} is an irreducible set of primary constraints and Hcan is the canonical

Hamiltonian:

Hcan = pµẋµ −L

Only on the constraint surface φn = 0 the Hamiltonian H coincides with Hcan. In

our present case

Hcan = m
ẋν ẋ

ν

√−ẋµẋµ
− (−m

√−ẋµẋµ) = 0

and Hamiltonian dynamics of the system is due to the mass-shell condition only. The

choice of the coefficients χn(τ) in H is equivalent to the choice of the gauge.

H = Hcan + χφ =
θ

2m
(p2 + m2) , χ =

θ

2m

We get the time-evolution

dxµ

dτ
= { θ

2m
(p2 + m2), xµ} =

θ

m
pµ =

θẋµ

√−ẋµẋµ

Therefore ẋ2 = −θ2. Choosing θ = 1 means that we identify the time variable with

the proper time. This nicely illustrates the general point: in order to write down the

evolution equations in a system with local gauge invariance one has first to identify

the “time” variable.

Other gauge choices are possible. For instance, the static gauge consists in

imposing the condition t ≡ x1 = τ . Equation for pt ≡ p1 allows us to determine e:

δL
δpt

=
dt

dτ
− ept = 0 =⇒ e =

1

pt

The physical Hamiltonian dual to the world-line time τ coincides in this case with

the momentum pt conjugate to t: H = pt. It can be found from the eom for e:

p2 = m2 = 0 =⇒ − p2
t + ~p2 + m2 = 0 =⇒ pt =

√
~p2 + m2 .

Note that here ~p = {pi} with i = 2, . . . , d.

3The gauge e = 1
m is a close analogue of the conformal gauge to be considered for the string

case.
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This gauge choice leads to the common Hamiltonian of the relativistic particle

H =
√

~p2 + m2 .

This exercise with the relativistic particle also shows how sensitive is the Hamiltonian

to the choice of the gauge. Fixing the gauge e = 1 we get the polynomial Hamiltonian,

while fixing the static gauge the Hamiltonian appears to be a non-linear square root.

Finally, there is another type of gauge known as the light-cone gauge. We intro-

duce the light-cone coordinates

t = x+ − x− xd = x+ + x−

pt =
1

2
(p+ + p−), pd =

1

2
(p+ − p−)

and denote the other “transverse coordinates” xi and pi with i = 2, . . . , d − 1 as ~x

and ~p. Then the phase space Lagrangian becomes

L = ẋ−p+ − ẋ+p− + ~̇x~p− e

2
(−p−p+ + ~p2 + m2)

The light-cone gauge consists in choosing x+ = τ . From the kinetic term of the

Hamiltonian it is clear that the variable x+ is conjugate to p− and therefore p− is

the physical Hamiltonian. It can be easily found from the equation for e:

H =
1

p+
(~p2 + m2)

The gauge-fixed Lagrangian becomes

L = ẋ−p+ + ~̇x~p− p− = ~̇x~p−H = ~̇x~p− 1

p+
(~p2 + m2)

The variable p+ is canonically conjugate to x−.

Notice that both in the static and in the light-cone gauge the number of physical

degrees of freedom is 2(d− 1). The auxiliary field e was solved in terms of physical

fields. The physical phase space inherits the canonical Poisson bracket.

In the next lecture we extend these different approaches to dynamics of relativis-

tic particles to relativistic strings.

3. Classical relativistic bosonic string

3.1 Nambu-Goto string

Two-dimensional surface traced by string during its time evolution is called world-

sheet. The action for a relativistic string should be a functional of a string trajectory,

i.e. of the world-sheet.
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The Nambu-Goto action

SNG = −T

∫
dA = −T

∫
d2σ

√
−det

(
∂Xµ

∂σα

∂Xν

∂σβ
ηµν

)
(3.1)

This we can write as

−det

[(
ẊµẊµ ẊµX ′

µ

ẊµẊµ X ′µX ′
µ

)]
= (ẊX ′)2 − Ẋ2X ′2 . (3.2)

Thus,

SNG = −T

∫
d2σ

√
(ẊX ′)2 − Ẋ2X ′2 = −T

∫
d2σ

√
−Γ

Here Γ = detΓαβ, where

Γαβ =
∂Xµ

∂σα

∂Xν

∂σβ
ηµν (3.3)

is the metric induced on the string world-sheet.

What is a local characteristic of the string world-sheet? Consider a point on the

world-sheet and the space of all vectors tangent to the surface is at this point. These

vectors sweep two-dim vector space. The physical propagation of the string requires

that in these two-dim vector space there is a basis built over two vectors one of them

is time-like and another is space-like.

Recall the standard definitions from the theory of special relativity. We have the

invariant interval between two infinitezimal events:

−ds2 = ηµνdxµdxν = −dx0dx0 +
3∑

i=1

dxidxi . (3.4)

• If ds2 > 0 the interval is called time-like. In this case the different events which

happen in the same space-point are always time-separated.

• If ds2 < 0 the interval is called space-like. In this case events which happen at

the same time are space-separated.

• If ds2 = 0 the interval is light-like. Vectors vµ obeying the condition v2 =

ηµνv
µvν = 0 are called light-like or null.

Identify x0 = t = τ . Then

ẊµẊµ = −1 + ~v2 ≤ 0 ⇐ time− like

X ′µX ′
µ = (X ′i)2 ≥ 0 ⇐ space− like
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This situation should persist in any Lorentz frame. At any point on a string world-

sheet one should always be able to find two vectors: one is time-like and another is

space-like.

Consider Sµ(λ) = ∂Xµ

∂τ
+ λ∂Xµ

∂σ
must be space- or time-like as λ varies.

SµSµ = Ẋ2 + 2λẊX ′ + λ2X ′2 ≡ y(λ) .

Discriminant must be positive then there are two roots and therefore the regions of

λ with time- and space-like vectors. Discriminant is

(ẊX ′)2 − Ẋ2X ′2 > 0 .

This condition guarantees the causal propagation of string.

Action is invariant under reparametrizations

δXµ = ξα∂αXµ , ξα = 0 on the boundary

Two possibilities:

• Open strings: 0 ≤ σ ≤ π

• Closed strings: 0 ≤ σ ≤ 2π

Equations of motion:

S =

∫ τ2

τ1

dτ

∫ π

0

dσL

Variation

δS

δXµ
=

∫ τ2

τ1

dτ

∫ π

0

dσ

(
δL

δẊµ
∂τδX

µ +
δL

δX ′µ ∂σδX
µ

)
(3.5)

= −
∫ τ2

τ1

dτ

∫ π

0

dσ

(
∂τ

δL

δẊµ
+ ∂σ

δL

δX ′µ

)
(3.6)

+

∫ π

0

dσ
δL

δẊµ
δXµ|τ2τ1 +

∫ τ2

τ1

δL

δX ′µ δXµ|σ=π
σ=0 (3.7)

• Open string boundary conditions: δL
δX′µ (τ, σ = π) = δL

δX′µ (τ, σ = 0) = 0

• Xµ(σ + 2π) = Xµ(σ).

Canonical formalism. Momentum

P µ =
δL

δẊµ
= −T

(ẊX ′)X ′µ − (X ′)2Ẋµ

√
(ẊX ′)2 − Ẋ2X ′2

We see that

P µX ′
µ = 0 (3.8)

P µPµ + T 2X ′2 = 0 (3.9)

– 15 –



Exercise Show that the Hessian matrix has for each σ two zero eigenvalues cor-

responding to Ẋµ and X ′µ.

Equations of motion are very complicated:

∂

∂τ


(ẊX ′)X ′µ − (X ′)2Ẋµ

√
(ẊX ′)2 − Ẋ2X ′2


 +

∂

∂σ


(ẊX ′)Ẋµ − (Ẋ)2X ′µ

√
(ẊX ′)2 − Ẋ2X ′2


 = 0 .

Exercise Think how reparametrization invariance can be used to bring this equa-

tion to the simplest form.

3.2 The Polyakov action

Introduce a word-sheet metric hαβ(σ, τ). Consider the action

Sp = −T

2

∫
d2σ

√
−hhαβ∂αXµ∂βXνηµν (3.10)

Here h = dethαβ.

3.2.1 Symmetries

The reparametrization invariance

δXµ = ξα∂αXµ

δhαβ = ξγ∂γhαβ + hαγ∂βξγ + hβγ∂αξγ

δhαβ = ξγ∂γh
αβ − hαγ∂γξ

β − hβγ∂γξ
α

δ(
√
−h) = ∂α(ξα

√
−h)

The Weyl invariance

The Weyl invariance consists in rescaling the metric

hαβ → e−2Λ(σ,τ)hαβ . (3.11)

3.2.2 Equations of motion

First we discuss the equation of motion for the intrinsic metric hαβ. This discussion

amounts to the introduction of the two-dimensional stress-energy tensor which is a

response of the action to the change of the metric

δSp = −T

∫
d2σ

√
−h Tαβδhαβ

that is

Tαβ = − 1

T
√−h

δSp

δhαβ
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Thus, eom for hαβ is

Tαβ = 0 .

Performing a variation we obtain

Tαβ =
1

2
∂αXµ∂βXµ − 1

4
hαβhγδ∂γX

µ∂δXµ . (3.12)

From here we immediately notice that the stress-energy tensor is traceless

T α
α = Tαβhαβ = 0

This is a direct consequence of the Weyl symmetry.

Due to the equations of motion for the scalar fields Xµ this tensor is covariantly

conserved:

∇αTαβ = 0 .

This can be easily derived as follows. Consider a variation of the action:

δSp =

∫
d2σ

( δL

δhαβ
δhαβ +

δL

δXµ
δXµ

)

We see that on the equations of motion for Xµ, i.e. on δL
δXµ = 0, we have

δSp = −T

∫
d2σ

√
−hTαβδhαβ = −2T

∫
d2σ

√
−hTαβ∇αξβ ,

where on the r.h.s. we specified the variation to be a diffeomorphism transformation.

The last expression can be integrated by parts and, die to δSp = 0, we conclude that

∇αTαβ = 0. This derivation is similar to the derivation of the charge conservation

law in electrodynamics, the latter being a consequence of the gradient invariance.

Let us show directly that ∇αTαβ = 0. We have

2∇α
Tαβ = ∇α

∂αX
µ

∂βXµ + ∂αX
µ∇α

∂βXµ −
1

2
∇β

�
h

γδ
∂γX

µ
∂δXµ

�
(3.13)

Since ∇α∂αXµ = 0 is eom for Xµ we find

2∇α
Tαβ = ∂αX

µ∇α
∂βXµ −

1

2
∂β

�
h

γδ
∂γX

µ
∂δXµ

�
=

= ∂αX
µ

h
αδ∇δ∂βXµ −

1

2
∂βh

γδ
∂γX

µ
∂δXµ − h

γδ
∂γX

µ
∂δ∂βXµ =

= ∂αX
µ

h
αδ

∂δ∂βXµ − ∂αX
µ

∂sXµh
αδ

Γ
s
δβ −

1

2
∂βh

γδ
∂γX

µ
∂δXµ − h

γδ
∂γX

µ
∂δ∂βXµ .

Here the first term cancels with the last one and we find

2∇α
Tαβ = −∂αX

µ
∂sXµh

αδ
Γ

s
δβ −

1

2
∂βh

γδ
∂γX

µ
∂δXµ

Only symmetric part of hαδΓs
δβ = 1

2 hαδhsp
�

∂δhpβ + ∂βhpδ − ∂phβδ

�
in the indices α, s matters! This translates into symmetry of

β, δ. Finally,

2∇α
Tαβ = − 1

2
h

αδ
∂βhpδh

sp
∂αX

µ
∂sXµ −

1

2
∂βh

γδ
∂γX

µ
∂δXµ = 0 . (3.14)

Equations

T α
α = 0 , ∇βTαβ = 0

are consequences of the Weyl and diffeomorphism symmetry, respectively. These

two are gauge symmetries, and the relations above can be understood as the second

Noether theorem.
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3.2.3 Conformal gauge

Consider the conformal Killing equation

ξγ∂γhαβ + hαγ∂βξγ + hβγ∂αξγ = Λhαβ (3.15)

and solve it assuming the conformal gauge

hαβ = e2φ

(−1 0

0 1

)
(3.16)

This equation can be split as follows. First we take α = τ and β = σ and using

hτσ = 0 we find

hττ∂σξ
τ + hσσ∂τξ

σ = 0 → ∂σξ
τ − ∂τξ

σ = 0

Second, we take α, β = τ and then α, β = σ. We get

ξγ∂γhττ + 2hττ∂τξ
τ = Λhττ

ξγ∂γhσσ + 2hσσ∂σξ
σ = Λhσσ

i.e.

ξγhττ∂γhττ + 2∂τξ
τ = Λ

ξγhσσ∂γhσσ + 2∂σξ
σ = Λ .

Subtracting one from the other we get

∂τξ
τ − ∂σξ

σ = 0 .

Thus, the conformal Killing equations reduce in the conformal gauge to

∂σξ
τ − ∂τξ

σ = 0

∂τξ
τ − ∂σξ

σ = 0 (3.17)

or equivalently

(∂τ + ∂σ)(ξτ − ξσ) = 0

(∂τ − ∂σ)(ξτ + ξσ) = 0 (3.18)

By using the world-sheet light-cone coordinates σ± = τ ±σ this can be reformulated

as4

∂+ξ− = 0 = ∂−ξ+ .

4The basic relations are ∂τ = ∂+ + ∂−, ∂σ = ∂+ − ∂−, ∂± = 1
2

(
∂τ ± ∂σ

)
.
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Thus,

ξ+ = ξ+(σ+) , ξ− = ξ−(σ−)

solve the conformal Killing equations. This is a freedom (reparametrization + Weyl

rescaling) which does not destroy the conformal gauge condition.

The final remark concerns restrictions on ξ± following from the periodicity con-

ditions. Indeed, for the Weyl factor Λ we have

ξτ∂τφ + ξσ∂σφ + 2∂τξ
τ = Λ(σ, τ) .

The factor Λ must be periodic in σ because the metric hαβ is. Since φ is periodic

the allowed solutions ξ± of the conformal Killing equation are those which lead to

periodic Λ. One can easily see that this implies that ξ± must be periodic in σ.

3.2.4 Polyakov string in the first order formalism.

In the first order formalism the density L ≡ L(σ, τ) of the Polyakov Lagrangian takes

the form

L = Pµ∂τX
µ +

1

2Tγττ

(
PµP

µ + T 2X ′
µX

′µ
)

+
γτσ

γττ

(
PµX

′µ
)

(3.19)

The conformal gauge consists in imposing the following two conditions

γττ = −1 , γτσ = 0.

The gauged-fixed Lagrangian density is

L = Pµ∂τX
µ − 1

2T

(
PµP

µ + T 2X ′
µX

′µ
)

(3.20)

and the Hamiltonian density is

H =
1

2T

(
PµP

µ + T 2X ′
µX

′µ
)

The phase-space Lagrangian shows that the variables (Pµ, Xµ) are canonical, i.e. the

corresponding Poisson bracket is

{Xµ(σ, τ), Xν(σ′, τ)} = {P µ(σ, τ), P ν(σ′, τ)} = 0 , (3.21)

{Xµ(σ, τ), P ν(σ′, τ)} = ηµνδ(σ − σ′) . (3.22)

The dynamics of the system in the conformal gauge is governed by the Hamiltonian

H =

∫
dσ H =

1

2T

∫
dσ

(
PµP

µ + T 2X ′
µX

′µ
)

Equations of motion

Ẋµ = {Xµ, H} =
1

T
P µ , (3.23)

Ṗ µ = {P µ, H} = TX ′′µ , (3.24)
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which result into

Ẍµ −X ′′µ = ¤Xµ = 0

We see that we have two constraints

C1 = PµP
µ + T 2X ′

µX
′µ , C2 = PµX

′µ (3.25)

We find the following Poisson brackets

{C1(σ), C1(σ
′)} = 4T 2∂σC2(σ)δ(σ − σ′) + 8T 2C2(σ)∂σδ(σ − σ′) , (3.26)

{C1(σ), C2(σ
′)} = ∂σC1(σ)δ(σ − σ′) + 2C1(σ)∂σδ(σ − σ′) , (3.27)

{C2(σ), C1(σ
′)} = ∂σC1(σ)δ(σ − σ′) + 2C1(σ)∂σδ(σ − σ′) , (3.28)

{C2(σ), C2(σ
′)} = ∂σC2(σ)δ(σ − σ′) + 2C2(σ)∂σδ(σ − σ′) . (3.29)

Instead of the constraints C1 and C2 we can equally consider their linear combi-

nations

T++ =
1

8T 2
(C1 + 2TC2) =

1

8T 2
(Pµ + TX ′

µ)2 , (3.30)

T−− =
1

8T 2
(C1 − 2TC2) =

1

8T 2
(Pµ − TX ′

µ)2 . (3.31)

Their Poisson algebra becomes

{T++(σ), T++(σ′)} =
1

2T

(
∂σT++(σ)δ(σ − σ′) + 2T++(σ)∂σδ(σ − σ′)

)
,

{T−−(σ), T−−(σ′)} = − 1

2T

(
∂σT−−(σ)δ(σ − σ′) + 2T−−(σ)∂σδ(σ − σ′)

)
,

{T++(σ), T−−(σ′)} = 0 . (3.32)

Constraints T++ and T−− Poisson commute and form two independent Poisson alge-

bras!

Now one can easily find the evolution equations for T++ and T−−. We have

∂τT++ = {T++(σ), H} = ∂σT++ =⇒ (∂τ − ∂σ)T++ = ∂−T++ = 0 ,

∂τT−− = {T−−(σ), H} = −∂σT−− =⇒ (∂τ + ∂σ)T−− = ∂+T−− = 0 ,

Thus, we see that evolution equations imply that

T++ = T++(σ+) , T−− = T−−(σ−) . (3.33)

The Hamiltonian itself is

H = 2T

∫ 2π

0

dσ(T++ + T−−) ,

i.e. it is a sum of zero modes of the left- and right-moving constraints.
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3.3 Integrals of motion. Classical Virasoro algebra.

String has an infinite set of integrals of motion (quantities which are conserved in

time due to equations of motion) which are constructed with the help of T±±.

Note that T±± themselves are not the good conserved quantities as they depend

on time! However, if we define the Fourier components

Lm = 2T

∫ 2π

0

dσ eimσ−T−−(σ, τ)

then5

dLm

dτ
= 2T

∫ 2π

0

dσ
(
∂τe

im(τ−σ)T−−(σ, τ) + eim(τ−σ)∂τT−−(σ, τ)
)

(3.34)

= 2T

∫ 2π

0

dσ
(
imeim(τ−σ)T−−(σ, τ)− eim(τ−σ)∂σT−−(σ, τ)

)

= 2T

∫ 2π

0

dσ
(
imeim(τ−σ)T−−(σ, τ) + ∂σe

im(τ−σ)T−−(σ, τ)
)

= 0

Thus, the Fourier components of the stress-energy tensor provide an infinite set of

the conserved constraints. Analogously, we define

L̄m = 2T

∫ 2π

0

dσ eimσ+

T++(σ, τ) ,

which is also an integral of motion. Note that in this derivation we never used the

constraints T++ = 0 = T−−.

The Poisson brackets of the Lm and L̄m generators are

{Lm, Ln} = −i(m− n)Lm+n ,

{L̄m, L̄n} = −i(m− n)L̄m+n , (3.35)

{Lm, L̄n} = 0 .

{Lm, Ln} = 4T
2
∫

dσdσ
′
e
−imσ−inσ′{T−−(σ), T−−(σ

′
)}

= −2T

∫
dσdσ

′
e
−imσ−inσ′�

∂σT−−(σ)δ(σ − σ
′
) + 2T−−(σ)∂σδ(σ − σ

′
)
�

=

= −2T

∫
dσ
�
− T−−(σ)∂σe

−i(m+n)σ′
+ 2e

−imσ
T−−(σ)∂σe

−inσ
�

= −i(m− n) 2T

∫
dσe

−i(m+n)σ
T−−(σ) = −i(m− n)Lm+n

This is the so-called Wit algebra. This algebra acts on Xµ(σ, τ):

{Lm, Xµ} = 2T

∫ 2π

0

dσ′eimσ′−{T−−(σ′), Xµ(σ)} =

= −1

2
eimσ−(Ẋµ −X ′µ) = −eimσ−∂−Xµ . (3.36)

5When finding the time dynamics of Lm one has to remember that the function Lm has an
explicit time-dependence and, therefore dLm

dτ = ∂τLm + {Lm,H}.
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Analogously,

{L̄m, Xµ} = 2T

∫ 2π

0

dσ′eimσ′+{T++(σ′), Xµ(σ)} =

= −1

2
eimσ+

(Ẋµ + X ′µ) = −eimσ+

∂+Xµ . (3.37)

To summarize

{Lm, Xµ} = −eimσ−∂−Xµ , {L̄m, Xµ} = −eimσ+

∂+Xµ . (3.38)

In particular,

{L̄0 − L0, X
µ} = ∂σX

µ (3.39)

i.e. L̄0−L0 generates rigid σ-translations. The transformations we consider transform

a solution

¤Xµ = 0

into another solution of this equation. Indeed, we have for instance

∂+∂−
(
eimσ−∂−Xµ

)
= imσ−eimσ−∂+∂−Xµ + eimσ−∂−∂+∂−Xµ = 0

as the consequence of ∂+∂−Xµ = 0.

Lm =0

L

_

m

(P , X)

Lm =0
_

Lm

Fig. 1. The phase space of string. The Virasoro constraints Lm = 0 = L̄m

define a time-independent hypersurface on which the dynamics of string
takes place. This hypersurface remains invariant under the action of Lm’s
and L̄m’s.

Even more generally, for any periodic function f we define

Lf =

∫ 2π

0

dσf(σ+)T++ .
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Then we see that

0 =

∫ 2π

0

dσ∂−
(
f(σ+)T++

)
= ∂τLf −

∫ 2π

0

dσ∂σ

(
f(σ+)T++

)
.

Thus,

∂τLf =

∫ 2π

0

dσ∂σ

(
f(σ+)T++

)
= 0 .

To summarize: we see that upon fixing conformal gauge we are still left with

gauge freedom. It corresponds to reparametrizations of the special type (solutions

to the conformal Killing equation):

σ+ → ξ+(σ+) , σ− → ξ−(σ−) ,

where ξ± are two arbitrary functions periodic in σ.

Finally, for the case of open string we define

Lm = 2T

∫ π

0

dσ
(
eimσ+

T++ + eimσ−T−−
)

. (3.40)

The point is that there appears additional boundary terms which show that the old
Lm and L̄m are not separately conserved. With our new definition of Lm we obtain

dLm

dτ
= 2T

∫ π

0
dσ

(
imeimσ+

T++ + eimσ+
∂τT++ + imeimσ−T−− + eimσ−∂τT−−

)

= 2T

∫ π

0
dσ

(
imeimσ+

T++ + eimσ+
∂σT++ + imeimσ−T−− − eimσ−∂σT−−

)

= 2T

∫ π

0
dσ

(
imeimσ+

T++ − ∂σeimσ+
T++ + imeimσ−T−− + ∂σeimσ−T−−

)

+ 2Teim(τ+π)
(
T++(π, τ)− e−2πimT−−(π, τ)

)
− 2Teimτ

(
T++(0, τ)− T−−(0, τ)

)

The bulk term vanishes as before and we left with the boundary term

dLm

dτ
= 2Teim(τ+π)

(
T++(π, τ)− T−−(π, τ)

)
− 2Teimτ

(
T++(0, τ)− T−−(0, τ)

)

Due to the open string boundary conditions X ′µ(π, τ) = 0 = X ′µ(0, τ) we obviously

have

T++(π, τ) = T−−(π, τ) , T++(0, τ) = T−−(0, τ)

Therefore, the boundary term vanishes and, therefore, Lm are conserved quantities

in the open string case.
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3.3.1 Solutions of the equations of motion

Here we are going to discuss the solutions of the string equations off motion

¤Xµ = 0

which arises upon fixing the conformal gauge.

• Closed strings. We have

Xµ(σ, τ) = Xµ
L(τ + σ) + Xµ

R(τ − σ)

where

Xµ
R(τ − σ) =

1

2
xµ +

pµ

4πT
(τ − σ) +

i√
4πT

∑

n6=0

1

n
αµ

ne−in(τ−σ) (3.41)

Xµ
L(τ + σ) =

1

2
xµ +

pµ

4πT
(τ + σ) +

i√
4πT

∑

n6=0

1

n
ᾱµ

ne−in(τ+σ) (3.42)

Since Xµ(σ, τ) are real then (xµ, pµ) are real as well and

αµ
−n = (αµ

n)† , ᾱµ
−n = (ᾱµ

n)†

Let us define the zero modes as

αµ
0 = ᾱµ

0 =
1√
4πT

pµ .

Oscillators obey the Poisson relations

{αµ
m, αν

n} = {ᾱµ
m, ᾱν

n} = −imδm+nηµν ,

{αµ
m, ᾱν

n} = 0 (3.43)

{xµ, pν} = ηµν .

The Virasoro constraints become

Lm =
1

2

∞∑
n=−∞

αµ
m−nαnµ , L̄m =

1

2

∞∑
n=−∞

ᾱµ
m−nᾱnµ . (3.44)

• Open strings Solution of the wave equation with the open string boundary

conditions is

Xµ(σ, τ) = xµ +
pµ

πT
τ +

i√
πT

∑

n 6=0

1

n
αµ

ne−inτ cos nσ . (3.45)
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Oscillators obey the Poisson algebra

{αµ
m, αν

n} = −imδm+nη
µν ,

{xµ, pν} = ηµν . (3.46)

If we define the zero mode as αµ
0 = 1√

πT
pµ then the generators of the open

string classical Virasoro algebra are realized as

Lm =
1

2

∞∑
n=−∞

αµ
m−nαnµ . (3.47)

The hermiticity property of the non-zero modes are αµ
−n = (αµ

n)†.

3.3.2 Poincaré symmetry. String tension.

The Noether currents of the Poincaré symmetry

Pα
µ = −T

√
−hhαβ∂βXµ (3.48)

Jµν
α = −T

√
−hhαβ(Xµ∂βXν −Xν∂βXµ) (3.49)

Here Pα is a current corresponding to translational invariance Xµ → Xµ + a, where

a is an arbitrary constant, and Jµν is a current corresponding to Lorentz rotations

Xµ → Λµ
νX

ν , where Λµ
ν is a (constant) matrix comprising the parameters of the

Lorentz transformation. We see that

Jµν
α = XµP

α
ν −XνP

α
µ .

Both currents are conserved due to equations of motion of Xµ and their τ -components

integrated over σ define the conserved charges (for the open string case integration

rans from 0 to π)

P µ =

∫ 2π

0

dσP µ
τ , Jµν =

∫ 2π

0

dσJµν
τ .

Imposing the conformal gauge and using the fundamental brackets for (X,P ) one

finds the following Poisson algebra

{P µ, P ν} = 0

{P µ, Jρσ} = ηµσP ρ − ηµρP σ (3.50)

{Jµν , Jρσ} = ηµρJνσ + ηνσJµρ − ηνρJµσ − ηµσJνρ .

Substituting solution for Xµ one finds

P µ = T

∫ 2π

0

dσẊµ = pµ ,
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i.e. the total mass momentum of string coincides with pµ.

The total angular momentum of closed string in the conformal gauge is is defined as

Jµν = T

∫ 2π

0

dσ(XµẊν −XνẊµ) . (3.51)

Substituting the oscillator expansion we get

Jµν = xµpν − xνpµ

︸ ︷︷ ︸
`µν

+Sµν + S̄µν ,

where

Sµν = −i

∞∑
n=1

1

n

(
αµ
−nα

ν
n − αν

−nα
µ
n

)
, (3.52)

S̄µν = −i

∞∑
n=1

1

n

(
ᾱµ
−nᾱ

ν
n − ᾱν

−nᾱ
µ
n

)
. (3.53)

For the case of open string expressions are the same (again integration runs from 0 to

π) except S̄µν is absent. Here `µν is the angular momentum of string and Sµν + S̄µν

is its internal spin.

Let us show that both P µ and Jµν are invariant under the action of the Virasoro

algebra. We have

{Lm, P µ} = {Lm, pµ} = 0 (3.54)

as Lm does not contain xµ. Let us separate the zero mode part6 of Lm

Lm = αρ
0αmρ +

1

2

∑

n6=0,m

αρ
m−nαnρ .

We first compute

{Lm, `µ} = {αρ
0αmρ, x

µpν − xνpµ} =
1√
4πT

αmρ{pρ, xµpν − xνpµ} =

= αν
mαµ

0 − αµ
mαν

0 . (3.55)

Second, since Sµν = −∑
k 6=0

i
k
αµ
−kα

ν
k we have

∑

n,k 6=0;n 6=m

{1

2
αρ

m−nαnρ,− i

k
αµ
−kα

ν
k} = 0 ,

∑

k 6=0

{αρ
0αmρ,− i

k
αµ
−kα

ν
k} = αµ

mαν
0 − αν

mαµ
0 ,

6We assume here that m 6= 0.
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therefore, {Lm, `µν + Sµν} = 0. Thus, Poincaré symmetry descends on the space of

physical states. Physical states will be classified in terms of representations of the

Poincaré group of d-dimensional Minkowski space.

An important invariant of the Poincaré group is the square of the momentum PµP
µ.

Indeed,

{PµP
µ, P ν} = {PµP

µ, Jρλ} = 0 .

It coincides with the mass: M2 = −PµP
µ. Of course, P 2 is also invariant w.r.t. to

the action of Lm and L̄m. Consider now one of the constraints, L0 = 0. Separating

the zero mode

L0 =
1

2

n=∞∑
n=−∞

αnα−n =
1

2
α2

0 +
∞∑

n=1

αnα−n , αµ
0 =

1√
4πT

pµ

we have

pµp
µ + 8πT

∞∑
n=1

αnα−n = 0 .

From here we deduce the mass

M2 = −p2 = 8πT

∞∑
n=1

αnα−n .

Mass is created due to internal excitations of string! From this expression it is not

obvious that M2 is non-negative.

Another invariant of the Poincaré group is

J2 =
1

2

(
JαβJαβ +

2

M2
PαJαλP βJβλ

)
.

Checking Poincaré invariance of this expression is straightforward, as an intermediate step we note the relations

{J
µν

, PρJ
ρσ} = η

νσ
J

µρ
Pρ − η

µσ
J

νρ
Pρ

{P
µ

, JαβJ
αβ} = −4J

µρ
Pρ .

The terms JαβJαβ and PαJαλP βJβλ separately Poisson commute with Jµν .

Consider an open string which has P i = pi = 0 for all i = 1, . . . , d − 1. By using reparametrization invariance fix the static

gauge X0 = τ . The angular moment `µν of this string is zero. Also PαJαλP βJβλ = 0 and, therefore,

J
2

=
1

2
JijJ

ij
,

where i, j = 1, . . . d− 1. We have

J
2

= − 1

2

∞∑

n,m=1

1

nm

�
α

i
−nα

j
n − α

j
−nα

i
n

��
α

i
−mα

j
m − α

j
−mα

i
m

�

=
∞∑

n,m=1

1

nm

�
(α
∗
nαm)(α

∗
mαn)− (α

∗
nα
∗
m)(αnαm)

�
≤

∞∑

n,m=1

1

nm
(α
∗
nαm)(α

∗
mαn) .
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It follows from the Schwarz inequality that

(α
∗
nαm)(α

∗
mαn) = |(α∗nαm)|2 ≤ (α

∗
nαn)(α

∗
mαm) ≤ nm(α

∗
nαn)(α

∗
mαm) .

Therefore,

J
2 ≤

∞∑

n,m=1
(α
∗
nαn)(α

∗
mαm) =

1

4

∞∑

n=−∞
αnα−n

∞∑

m=−∞
αmα−m =

1

(2πT )2
M

4

because in the open string case

M
2

= πT
∞∑

n=−∞
αnα−n = 2πT

∑

n>0
αnα−n .

Thus, for an open string motion we found inequality

J ≡
√

J2 ≤ 1

2πT
M

2
.

Here the parameter

α
′
=

1

2πT

is called a slope of the Regge trajectory. The function J = α′M2 is a straight line in the (M2, J) plane whose slope is α′.

Consider a closed (pulsating) string solution

x = R cos σ cos τ , y = R sin σ cos τ , t = Rτ .

We see that

P 0 = 2πRT =⇒ T =
P 0

2πR
≡ E

2πR
,

i.e. tension is energy per unit length.

3.4 Strings in physical gauge

As we have seen upon fixing conformal gauge we are still left with the gauge freedom.

It corresponds to reparametrizations of the special type (solutions to the conformal

Killing equation):

σ+ → ξ+(σ+) , σ− → ξ−(σ−) ,

where ξ± are two arbitrary functions (periodic in σ). This freedom can be further

fixed leaving only physical excitations. This is achieved by imposing the so-called

light-cone gauge.

3.4.1 First order formalism

Introduce the light-cone coordinates in the d-dimensional Minkowski space

X± =
1√
2
(X0 ±Xd−1), X i, i = 1, . . . , d− 2 .

Consider the Polyakov action and introduce the light-cone momenta conjugate to

the light-cone coordinates

P± =
∂L

∂Ẋ± , Pi =
∂L
∂Ẋ i

(3.56)
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Express now the velocities via the corresponding momenta

Ẋ± =
1

Tγττ
(P∓ − TγτσX ′±) , Ẋ i =

1

Tγττ
(−P i − TγτσX ′i) .

Note that the light-cone indices are raised and lowered according to the rule

P− = −P+ , P+ = −P− .

Now we can construct the phase-space Lagrangian in the light-cone coordinates:

L = PiẊ
i + P+Ẋ+ + P−Ẋ− + rest .

After explicit computation we find

L = PiẊ
i + P+Ẋ+ + P−Ẋ− +

1

2Tγττ

(
− 2P−P+ + PiP

i + T 2X ′
iX

′i − 2T 2X ′−X ′+
)

+
γτσ

γττ

(
PiX

′i + P−X ′− + P+X ′+
)

. (3.57)

The phase-space light-cone gauge consists in imposing the following two conditions

1. Closed string

X+ =
p+

2πT
τ , P+ = const ≡ 1

2π
p+ . (3.58)

2. Open string

X+ =
p+

πT
τ , P+ = const ≡ 1

π
p+ . (3.59)

This gauge choice is done to remove completely the gauge degrees of freedom (recall

that in the conformal gauge we still had a gauge freedom left which was generated

by solutions of the conformal Killing equation).

We further consider the closed string case in detail. We will derive and solve all

the constraints followed from the Lagrangian (3.57) in several steps.

1. Varying the Lagrangian w.r.t. γττ and imposing the light-cone gauge allows

one to solve for P−:

P− =
π

p+

(
PiP

i + T 2X ′
iX

′i
)

. (3.60)

Thus, equation of motion for γττ allows one to determine P−.
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2. Varying w.r.t. γτσ leads to determination of X ′−:

X ′− = − 1

P−
PiX

′i =
2π

p+
PiX

′i . (3.61)

If we integrate the last equation over σ we obtain

X−(2π)−X−(0) =
2π

p+

∫ 2π

0

dσPiX
′i . (3.62)

The closed string periodicity condition requires the fulfillment of the following

constraint

V =

∫ 2π

0

dσPiX
′i = 0 . (3.63)

This is the only constraint which remains unsolved and it is known as the level

matching condition. We will impose it on physical states of the theory.

3. Now we can determine the world-sheet metric γαβ. Equation of motion for P+

is

0 =
δL
δP+

= Ẋ+ − P−
Tγττ

+
γτσ

γττ
X ′+ ,

which with our gauge choice gives

γττ = −1 .

4. Equation of motion for Ẋ− gives

0 =
d

dt

δL
δẊ− −

δL
δX− = − d

dt

p+

2π
− δL

δX− =⇒ δL
δX− = 0 ,

which gives

∂σ

(
γτσ

γττ
P−

)
= 0 =⇒ ∂σγ

τσ = 0 .

For the closed string case this implies that γτσ = γτσ(τ) is an arbitrary function

of τ . The presence of this function signals a residual symmetry. Indeed, on the

solutions of the level-matching constraint V = 0 the ratio γτσ

γττ can be shifted by

an arbitrary function f(τ) of τ without affecting the Lagrangian.

5. Varying w.r.t P− we find an evolution equation for X−:

0 =
δL
δP−

= Ẋ− − P+

Tγττ
= 0 =⇒ Ẋ− =

π

Tp+
(PiP

i + T 2X ′
iX

′i) .
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Thus, the variable X− is not physical and can be solved from the following two

equations we found above

Ẋ− =
π

Tp+
(PiP

i + T 2X ′
iX

′i) (3.64)

X ′− =
2π

p+
PiX

′i (3.65)

These two equations can be rewritten as

∂±X− =
2πT

p+
(∂±X i)2 . (3.66)

It is worth noting that two equations (3.64), (3.65) are compatible. Indeed, the

σ-derivative of the first equation must be equal the τ -derivative of the second

one. One can see that this is indeed so due to equations of motion for physical

fields.

Now we are ready to construct the gauge-fixed Lagrangian. Substituting solutions

of all the constraints and the gauge conditions into eq.(3.57) we obtain the density

L = PiẊ
i − 1

2π
p+Ẋ− − p+

2πT
P− − γτσ(τ)

(
PiX

′i − p+

2π
X ′−

)
. (3.67)

Thus, the Lagrangian itself is

L =

∫ 2π

0

dσL = −p+ẋ− +

∫ 2π

0

dσ PiẊ
i

︸ ︷︷ ︸
defines Poisson structure

−H− γτσ(τ)V . (3.68)

Here x− denotes the zero (constant) mode of the variable X− and the Hamiltonian

is

H =
1

2T

∫ 2π

0

dσ
(
PiP

i + T 2X ′
iX

′i
)

.

We also see that γτσ(τ) plays the role of the Lagrangian multiplier to the level-

matching constraint V . Without loss of generality we will choose γτσ = 0 which

corresponds the conformal gauge condition discussed above.

From the gauge-fixed Lagrangian we conclude that our physical variables are (Pi, Xi),

where i = 1, . . . , d−2, and also (x−, p+) and they have the following Poisson brackets

{X i(σ, τ), Xj(σ′, τ)} = {P i(σ, τ), P j(σ′, τ)} = 0 ,

{X i(σ, τ), P j(σ′, τ)} = δijδ(σ − σ′) , (3.69)

{p+, x−} = 1 .
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The physical Hamiltonian and the Poisson brackets look the same as the ones in the

conformal gauge, however, the important difference is that now they involve 2(d−2)

physical fields only plus two additional degrees of freedom (x−, p+). First, from

eq.(3.65) we find that the zero mode of X− evolves as

ẋ− =
1

p+
H =⇒ x−(τ) = x− +

H

p+
τ .

It is this τ -independent mode x− which is conjugate to p+. Second, equations

∂±X− =
2πT

p+
(∂±X i)2 (3.70)

can be solved for the longitudinal oscillators α−n , ᾱ−n with n 6= 0 by substituting an

expansion

X−(τ, σ) = x− +
p−

2πT︸︷︷︸
H

p+

τ +
i√
4πT

∑

n 6=0

1

n

(
α−n e−inσ− + ᾱ−n e−inσ+

)
. (3.71)

We find p− = 2πT
p+ H and

α−n =

√
πT

p+

∞∑
m=−∞

αi
n−mαi

m , n 6= 0, (3.72)

ᾱ−n =

√
πT

p+

∞∑
m=−∞

ᾱi
n−mᾱi

m , n 6= 0 . (3.73)

These formulae give a complete solution for X−.

Thus, the light-cone gauge allows for the explicit solution of the Virasoro constraints.

The variables (Pi, Xi) are physical excitations while X±, P+ were removed by the

light-cone gauge choice and by solving the constraints. The variable P− plays the

role of the Hamiltonian for physical excitations! Equations of motion for physical

fields are the same as before

Ẍ i −X ′′i = 0 , i = 1, . . . , d− 2.

The variables (Pi, Xi), where i = 1, . . . , d − 2, are called transversal, while X±, P±

are longitudinal. The only constraint which we were not able to solve explicitly is

the level-matching constraint V = 0. It is easy to check that

{X i,V} = ∂σX
i , {P i,V} = ∂σP

i , (3.74)

i.e. V generates the rigid σ-rotations. We also have the evolution equations

{X i, H} =
1

T
P i = ∂τX

i , {P i, H} = T∂2
σX

i = ∂τP
i . (3.75)
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One can also see that the τ - and σ-flows generated by H and V respectively commute

with each other because

{H,V} = 0 .

Imposition of the light-cone gauge is possible because in the conformal gauge the

field X+ satisfies the wave equation: ¤X+ = 0. The corresponding solution for X+

is

X+(τ, σ) = x+ +
p+

2πT
τ +

i√
4πT

∑

n6=0

1

n

(
α+

n e−inσ− + ᾱ+
n e−inσ+

)
. (3.76)

Our gauge choice (3.58) is taken to be compatible with the form (3.76). Effectively,

it means taken equal to zero all oscillators

α+
n = 0 = ᾱ+

n , n 6= 0

and also x+ = 0 or

α+
n = ᾱ+

n =
p+

√
4πT

δn,0 .

One may wonder why one cannot completely remove X+, i.e. to choose a gauge

X+ = 0. To understand this point one has to remember that the infinitesimal

conformal transformations are of the form

X → X +
∑

n

aneinσ−∂−X , X → X +
∑

n

āne
inσ+

∂+X ,

where an, ān are arbitrary constants. In other words these transformations can be

written as

X → X + ξ−(σ−) , X → X + ξ+(σ+) ,

where ξ± are arbitrary functions obeying only one requirement: they must be periodic

in σ. These functions can be used to remove all oscillator modes and the zero mode

x+ but they cannot remove

p+τ = p+

2
(τ − σ) + p+

2
(τ + σ)

because the functions τ − σ and τ + σ are not periodic in σ.

String in the light-cone gauge can be treated in the standard framework of the Hamiltonian reduction. The Hamiltonian

H = L0 + L̄0 is invariant under the symmetry algebra on the surface Lm = 0 = L̄m:

{H, Lm} = imLm , {H, L̄m} = imL̄m .

The symmetry algebra itself is

{Ln, Lm} = −i(m− n)Ln+m , {L̄n, L̄m} = −i(m− n)L̄n+m .
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+

Orbits of the Virasoro algebra

Phase space (P,X)

Constrained surface

Lm=L m

_
=0

Gauge condition for X

Fig. 2. The physical phase space is obtained by solving the Virasoro con-
straints Lm = 0 = L̄m and reducing the action of the Virasoro algebra on
the constrained surface by imposing the light-cone gauge.

One would like to reduce the dynamics of the system over the action of the symmetry algebra. In the framework of the

Hamiltonian reduction conditions

Lm = 0 = L̄m

correspond to fixing the moment map. The reduced phase space P is defined as a quotient space

P =
solutions of Lm = 0 = L̄m

isotropy subalgebra
,

where the isotropy subalgebra is a subalgebra of the Virasoro algebra which leaves the surface Lm = 0 = L̄m invariant. In our present

situation this subalgebra coincides with the algebra itself and, therefore,

P =
solutions of Lm = 0 = L̄m

action of Virasoro
.

The action of the Virasoro algebra is factored out by imposing the light-cone gauge, which simultaneously leads to solving the Virasoro

constraints. The transversal coordinates introduced above provide the description of the reduced phase space.

Mass of the string in the light-cone gauge is computed as follows (recall that mass

is a quadratic Casimir of the Poincaré group). Since we have found that p− = 2πT
p+ H

we get for the mass

M2 = −pµp
µ = −(pi)2 + 2p+p− = −(pi)2 + 4πTH . (3.77)

The physical Hamiltonian is

H =
1

2

∞∑
n=−∞

(
αi

nαi
−n + ᾱi

nᾱ
i
−n

)
=

(pi)2

4πT
+

∞∑
n=1

(
αi

nα
i
−n + ᾱi

nᾱi
−n

)
. (3.78)

Thus, we obtain

M2 = 4πT

∞∑
n=1

(
αi

nα
i
−n + ᾱi

nᾱi
−n

)
=

2

α′

∞∑
n=1

(
αi

nα
i
−n + ᾱi

nᾱi
−n

)
. (3.79)

This clearly shows positivity of M2, a property which was not obvious in the confor-

mal gauge.
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Finally, we can write the level-matching condition in terms of transversal oscillators.

We find

V =
1

2T

∑

n 6=0

(
ᾱi

nᾱi
−n − αi

nαi
−n

)
= 0 . (3.80)

Thus, the level-matching condition tells that the left- and right-moving oscillators

contribute the same amount of energy.

3.4.2 Poisson structure of the light-cone theory

Using the Poisson brackets of physical fields we can now establish the Poisson rela-

tions between all quantities of interest. We first summarize the basic Poisson relations

for the closed string case

{, } p+ p− pj xj x− αj
m α−m

p+ 0 0 0 0 1 0 0

p− 0 0 0 − pi

p+ − p−
p+

2πiT
p+ mαj

m
2πiT
p+ mα−m

pi 0 0 0 − δij 0 0 0

xi 0 pi

p+ δij 0 0 δijδm

4πT
αi

m

p+

x− − 1 p−
p+ 0 0 0 0 α−m

p+

αi
n 0 − 2πiT

p+ nαi
n 0 − δijδn

4πT
0 − inδijδn+m − i

√
4πT
p+ nαi

n+m

α−n 0 − 2πiT
p+ nα−n 0 − αi

n

p+ − α−n
p+ i

√
4πT
p+ mαi

n+m {α−n , α−m}

Tab. 1. Poisson brackets of the light-cone modes. The variable p− is

essentially the Hamiltonian: p− = 2πT H
p+ . The brackets involving ᾱ

variables are the same.

These relations are easy to derive. For instance,

{p−, x−} = {2πT
H

p+
, x−} = −2πTH

1

(p+)2
{p+, x−} = −2πT

H

(p+)2
= −p−

p+
.

Also, one has to remember that the variable α−n contains the zero mode αi
0

α−n =

√
πT

p+
2αi

0α
i
n + . . . =

piαi
n

p+
+ . . .

and, therefore,

{xi, α−n } =
1

p+
{xi, pjαj

n} =
1

p+
αi

n .

The most complicated bracket is {α−m, α−n }.
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Let us outline the computation of this bracket.

{α
−
m, α

−
n } =

{ piαi
m

p+
+

√
πT

p+

∑

k 6=m,0

α
i
m−kα

i
k,

pjαj
n

p+
+

√
πT

p+

∑

l6=n,0

α
j
n−l

α
j
l

}
=

{ piαi
m

p+
,

pjαj
n

p+

}
+

√
πT

p+

{ piαi
m

p+
,
∑

l6=n,0

α
j
n−l

α
j
l

}
−
√

πT

p+

{ piαi
n

p+
,
∑

l 6=m,0

α
j
m−l

α
j
l

}
+

πT

(p+)2

{ ∑

k 6=m,0

α
i
m−kα

i
k,

∑

l 6=n,0

α
j
n−l

α
j
l

}

−im
pipi

(p+)2
δn+m

︸ ︷︷ ︸
first bracket

−2i(m− n)

√
πT

(p+)2
p

i
α

i
n+m

︸ ︷︷ ︸
second and third brackets

+
2πT

(p+)2


−i(m− n)

∑

k 6=m+n,0

α
i
n+m−kα

i
k




︸ ︷︷ ︸
forth bracket

. (3.81)

Thus, we are getting

{α
−
m, α

−
n } = −im

pipi

(p+)2
δn+m +

2πT

(p+)2


−i(m− n)

∞∑

k=−∞
α

i
n+m−kα

i
k


 ,

where due to αi
0 = pi

√
4πT

we combined the second and a third terms into one sum. If m + n 6= 0 then the first term vanishes and we

can rewrite the last formula as

{α
−
m, α

−
n } =

√
4πT

p+

�
−i(m− n)α

−
m+n

�
.

If n = −m then in eq.(3.81) contribution from the second and the third term vanishes and we get

{α
−
m, α

−
−m} = −im

pipi

(p+)2
+

2πT

(p+)2


−2im

∑

k 6=0

α
i
−kα

i
k


 ≡ −2im

√
4πT

p+



√

πT

p+

[ pi

√
4πT

)2

+
∑

k 6=0

α
i
kα

i
−k

]

 .

Therefore,

{α
−
m, α

−
−m} = −2im

√
4πT

p+



√

πT

p+

∞∑

k=−∞
α

i
kα

i
−k


 .

It is therefore natural to define

α
−
0 ≡

√
πT

p+

∞∑

k=−∞
α

i
kα

i
−k .

With this definition we obtained a universal formula (valid for all indices m and n):

{α
−
m, α

−
n } =

√
4πT

p+

�
−i(m− n)α

−
m+n

�
.

Also we conclude that with this definition

p
−

=
√

πT (α
−
0 + ᾱ

−
0 ) .

Thus, one finds the following result

{α−m, α−n } =

√
4πT

p+

(−i(m− n)α−m+n

)
.

If we introduce

Ln =
p+

√
4πT

α−n .

we therefore find

{Ln, Lm} = −i(n−m)Ln+m

which is the classical Virasoro algebra! Thus, in the light-cone gauge the Virasoro

algebra is carried over by the longitudinal oscillators α−n .
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3.4.3 Lorentz symmetry

The light-cone gauge manifestly breaks the d-dimensional Lorentz invariance of the

theory. We have the generators of the Lorentz algebra which in terms of transversal

oscillators become realized non-linearly. For instance, the generator

J i− = xip− − x−pi

︸ ︷︷ ︸
`i−

−i

∞∑
n=1

1

n

(
αi
−nα−n − α−−nα

i
n

)− i

∞∑
n=1

1

n

(
ᾱi
−nᾱ

−
n − ᾱ−−nᾱ

i
n

)

is not anymore quadratic in oscillators because p− and α− are non-trivial function

of the transversal oscillators.

In spite of rather non-linear realization one can check that all the Poisson re-

lations involving J i− are still satisfied (this is also consequence of the fact that

{Lm, Jµν} = 0 = {L̄m, Jµν} , which means that the Poisson bracket of Jµν admits a

reduction on the constraint surface Lm = 0 = L̄m). In particular, from the Poincaré

algebra we must have

{J i−, J j−} = 0 .
Let us check this explicitly. First we have

{`
i−

, `
j−} = {x

i
p
− − x

−
p

i
, x

j
p
− − x

−
p

j} =

= {x
i
p
−

, x
j
p
−} − {x

−
p

i
, x

j
p
−} − {x

i
p
−

, x
−

p
j} + {x

−
p

i
, x
−

p
j} .

By using the Poisson brackets from Table 1 we obtain

{`
i−

, `
j−} =

pi

p+
p
−

x
j − pj

p+
p
−

x
i

︸ ︷︷ ︸
first bracket

−p
i
x

j p−

p+
+ x

−
p
−

δ
ij

︸ ︷︷ ︸
second bracket

+p
j
x

i p−

p+
− x

−
p
−

δ
ij

︸ ︷︷ ︸
third bracket

.

and the forth bracket vanishes. Thus,

{`
i−

, `
j−} = 0 .

Consider the Poisson bracket of the internal spin components

{S
i−

, S
j−} = −

∑

n,m 6=0

1

nm
{α

i
−nα

−
n , α

j
−mα

−
m} =

= −
∑

n,m 6=0

1

nm

�
{α

i
−n, α

j
−m}α

−
n α

−
m + {α

i
−n, α

−
m}α

−
n α

j
−m + {α

−
n , α

j
−m}α

i
−nα

−
m + {α

−
n , α

−
m}α

i
−nα

j
−m

�
=

= iδ
ij
∑

n6=0

α−n α−−n

n
+ i

√
4πT

p+

∑

m,n 6=0

�
− 1

m
α

i
−n+mα

j
−mα

−
n +

1

n
α

i
−nα

j
n−mα

−
m +

n−m

nm
α

i
−nα

j
−mα

−
m+n

�
.

Here the first first sum is zero (proved by changing n for −n). In the second and the third summonds one makes the change of

summation indices, n → n + m and m → m + n respectively. After this change these terms cancel exactly against the last one.

However, there are terms which are still left, these are the terms in the second and third summonds containing zero modes, i.e. terms

for which −n + m = 0 and also the term of the last summond for which m + n = 0 . Thus,

{S
i−

, S
j−} = − i

p+

∑

n6=0

1

n

�
p

i
α

j
−n − p

j
α

i
−n

�
α
−
n + 2i

√
4πT

p+
α
−
0

∑

n6=0

1

n
α

i
nα

j
−n . (3.82)

Analogously, we will get the following contribution from the left-moving modes Then we compute

{`
i−

, S
j−} = −i

∑

n6=0

1

n
{x

i
p
−

︸ ︷︷ ︸
A

− x
−

p
i

︸ ︷︷ ︸
B

, α
j
−nα

−
n } = −i

∑

n 6=0

1

n




α
j
−np

− αi
n

p+
+ x

i
�
− 2πiT

p+
nα

j
−nα

−
n +

2πiT

p+
nα

j
−nα

−
n

�

︸ ︷︷ ︸
from A

− p
i
α

j
−n

α−n
p+

︸ ︷︷ ︸
from B




.
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Thus, we arrive at

{`
i−

, S
j−} + {S

i−
, `

j−} = −2i
p−

p+

∑

n 6=0

1

n
α

i
nα

j
−n +

i

p+

∑

n 6=0

1

n

�
p

i
α

j
−n − p

j
α

i
−n

�
α
−
n . (3.83)

Now summing up equations (3.82) and (3.83) we obtain

{`
i−

, S
j−} + {S

i−
, `

j−} + {S
i−

, S
j−} = i

4
√

πT

p+

�
α
−
0 − α−0 + ᾱ−0

2

� ∑

n6=0

1

n
α

i
nα

j
−n . (3.84)

At first glance this expression is non-zero and it can not be compensated by the contribution of left-moving modes

{`
i−

, S̄
j−} + {S̄

i−
, `

j−} + {S̄
i−

, S̄
j−} = i

4
√

πT

p+

�
ᾱ
−
0 − α−0 + ᾱ−0

2

� ∑

n6=0

1

n
ᾱ

i
nᾱ

j
−n . (3.85)

However, we have to invoke the level-matching constraint which simply tells that α−0 = ᾱ−0 and makes both eqs.(3.84) and (3.85)

separately vanish. Thus, we have indeed shown that the most non-trivial relation {Ji−, Jj−} = 0 is indeed satisfied.

4. Quantization of bosonic string

4.1 Remarks on canonical quantization

According to the standard principles of quantum mechanics canonical quantization

consists in replacing the Poisson brackets of the fundamental phase space variables

by commutators

{ , } → 1

i~
[ , ] ,

where ~ is the Plank constant. Thus, we consider now X(σ, τ) and P (σ, τ) as the

quantum mechanical operators which obey the following commutation relations7

[Xµ(σ, τ), Xν(σ′, τ)] = [P µ(σ, τ), P ν(σ′, τ)] = 0 ,

[Xµ(σ, τ), P ν(σ′, τ)] = iηµνδ(σ − σ′) , (4.1)

These commutation relations induce the commutation relations on the Fourier coef-

ficients

[αµ
m, αν

n] = [ᾱµ
m, ᾱν

n] = ~mδm+nη
µν ,

[αµ
m, ᾱν

n] = 0 , (4.2)

[xµ, pν ] = i~ηµν .

For the case of open string the modes ᾱn are absent. In what follows we will work

in units in which ~ = 1, so that the commutation relations read as

[αµ
m, αν

n] = [ᾱµ
m, ᾱν

n] = mδm+nη
µν ,

[αµ
m, ᾱν

n] = 0 , (4.3)

[xµ, pν ] = iηµν .

7Here the indices µ, ν run from 0 to d− 1.
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To restore ~, one has to simply rescale the modes as α → 1√~α, ᾱ → 1√~ ᾱ.

Let us take m > 0 and rescale am = 1√
m

αm. Then using the hermiticity property

the commutation relations can be rewritten as

[aµ
n, a†νm ] = ηµνδn,m

[āµ
n, ā†νm ] = ηµνδn,m

which are the standard commutation relations of two infinite sets of independent

quantum harmonic oscillators.

Introduce the number operator for m’s mode

Nm =: αµ
mα−m,µ :

Then we see that for m > 0

[Nm, αm] = −mαm ,

[Nm, α−m] = mα−m .

From here we conclude that

• Modes with m > 0 should be identified with the lowering operators

• Modes with m < 0 should be identified with the raising operators

Construction of the representation of the canonical commutation relations is com-

pleted by introducing the ground state which satisfies the following properties

αµ
m|pν〉 = 0 ,

p̂µ|pν〉 = pµ|pν〉 . (4.4)

The whole infinite-dimensional (Hilbert) space of states is obtained by acting on the

ground state with creation operators.

This construction brings us to the major problem of canonical quantization.

Consider for m positive the following commutator

[α0
m, α0

−m] = [α0
m, (α0

m)†] = mη00 = −m.

Thus, we induce from here (let even a ground state carries zero momentum pµ)

〈0|[α0
m, (α0

m)†]|0〉 = 〈0|α0
m (α0

m)†|0〉 = ||(α0
m)†|0〉||2 = −m < 0 .

Thus, Minkowskian type of the target-space metric leads to the existence in the

Hilbert space the states with negative norm. States with negative norm are some-

times called “ghosts” and they do not allow for probability interpretation of the

corresponding quantum-mechanical system.
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One can correctly anticipate that the problem with negative norm states arose

because we did not take into account the Virasoro constraints. The covariant ap-

proach to quantization consists in defining the subspace of physical states in the

original Hilbert space which obey the Virasoro constraints. One can further show

that in a special dimension of space-time (d = 26) the negative norm states decouple

from the physical Hilbert space.

In the classical theory we have the constraints Lm = 0 = L̄m. However, in

quantum theory expressions for Lm and L̄m are quadratic in oscillators and might

involve operators (quantum oscillators) which do not commute with each other! From

all Lm a constraint which suffers from ordering ambiguity is L0 as

L0 =
1

2

∞∑
n=−∞

αµ
nα−n,µ (4.5)

and oscillators αµ
n and αµ

−n do not commute with each other. The standard way

to deal with this ambiguity in quantum field theory is to use the normal ordering

prescription

Lm =
1

2

∞∑
n=−∞

: αµ
m−nαn,µ : . (4.6)

The normal ordering prescription means that

: αm1 . . . αmk
:= αn1 . . . αnp︸ ︷︷ ︸

all creation

αs1 . . . αsr︸ ︷︷ ︸
all annihilation

in the operators are ordered in such a fashion that all annihilation operators are

put on the right from all the creation operators. The order of the creation (or

annihilation) operators between themselves does not matter because these operators

commute between themselves and therefore their expression does not have ordering

ambiguity. In particular, for L0 we have

L0 =
1

2
α2

0 +
∞∑

n=1

αµ
−nαn,µ − a , (4.7)

where we include a so far unknown normal ordering constant a. As to the zero modes,

the normal-ordering prescription here is

: pµxν := xνpµ .

Since the ground state obeys p̂µ|p〉 = pµ|p〉 it can be regarded as the usual quantum-

mechanical eigenstate of the momentum operator p̂µ = −i ∂
∂xµ

which is in the mo-

mentum representation has the form of the plane-wave

|p〉 ≡ eipµxµ|0〉 ,
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where on the r.h.s. pµ is not an operator and |0〉 denotes the zero-momentum ground

state. Plane-waves are not square-integrable functions but they form a basis of a

generalized Hilbert space and they are assumed to be normalized as

〈p|p′〉 = δ(p− p′) .

4.1.1 Virasoro algebra

Let us now investigate the algebra of the operators Lm in the quantum case. We

first assume that the normal ordering constant a = 0. We start by computing

[αµ
m, Ln] = 1

2

∞∑
p=−∞

[αµ
m, : αν

pαn−p,ν :] = 1
2

∞∑
p=−∞

(
mδm+pα

µ
n−p + mαµ

pδm+n−p

)
= mαµ

n+m .

Then we have

[Lm, Ln] =
1

2

∞∑
p=−∞

[: αµ
pαm−p,µ :, Ln] .

We write down the normal ordering explicitly (to simplify the notation we write the

Lorentz summation index on the same level)

[Lm, Ln] =
1

2

0∑
p=−∞

[αµ
pαµ

m−p, Ln] +
1

2

∞∑
p=1

[αµ
m−pα

µ
p , Ln] =

=
1

2

0∑
p=−∞

pαµ
p+nαµ

m−p︸ ︷︷ ︸
p=q−n

+(m− p)αµ
pαµ

m−p+n

+
1

2

∞∑
p=1

(m− p)αµ
m−p+nα

µ
p + pαµ

m−pα
µ
n+p︸ ︷︷ ︸

p=q−n

.

In the underbraced terms we make a change of summation index p = q − n and get

[Lm, Ln] =
1

2

( 0∑
p=−∞

(m− p)αµ
pαµ

m+n−p +
n∑

q=−∞
(q − n)αµ

q αµ
m+n−q

+
∞∑

p=1

(m− p)αµ
m+n−pα

µ
p +

+∞∑
q=n+1

(q − n)αµ
m+n−qα

µ
q

)
.

Without loss of generality we assume that n > 0. then we have

[Lm, Ln] =
1

2

( 0∑
p=−∞

(m− n)αµ
pαµ

m+n−p +
n∑

q=1

(q − n) αµ
q αµ

m+n−q︸ ︷︷ ︸
not ordered!

+
∞∑

p=n+1

(m− n)αµ
m+n−pα

µ
p +

n∑
q=1

(m− q)αµ
m+n−qα

µ
q

)
.
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Using αµ
q αµ

m+n−q = αµ
m+n−qα

µ
q + qδm+nδµ

µ = αµ
m+n−qα

µ
q + qdδm+n, where d is the

dimension of the Minkowskian space-time where string propagates. Thus, the algebra

relation is

[Lm, Ln] =
1

2

∞∑
p=−∞

(m− n) : αµ
pαµ

m+n−p : +
d

2
δn+m

n∑
q=1

(q2 − nq) .

Since
n∑

q=1

q2 =
1

6
n(n + 1)(2n + 1) ,

n∑
q=1

q =
1

2
n(n + 1) .

one finds the final result

[Lm, Ln] = (m− n)Lm+n +
d

12
m(m2 − 1)δm+n

which is the famous Virasoro algebra. We see that it is different from the classical

Virasoro (Wit) algebra by the presence of the central term.

In a more general setting the algebra is written as

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n ,

where the constant term c is known as the central charge.

If we introduce a normal ordering constant a by shifting the definition of Lm as

Lm → Lm − δm,0 then the linear term in m in the central term changes

[Lm, Ln] = (m− n)Lm+n +
( c

12
m3 +

(
2a− c

12

)
m

)
δm+n .

We see that the central term has an invariant meaning and cannot be removed for

all Lm by adjusting the normal ordering constant a.

Finally, we comment on the relation to semiclassics. If we restore the Plank the

algebra relations take the form

[Lm, Ln] = ~(m− n)Lm+n + ~2 c

12
m(m2 − 1)δm+n .

We see that one can define the Poisson bracket

{Lm, Ln} = lim
~→0

1

i~
[Lm, Ln] = −i(m− n)Lm+n ,

which coincides with the Wit algebra. The central term obviously vanishes in the

semi-classical limit.
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4.1.2 Virasoro constraints in quantum theory

At first sight it seems that the natural analog of the classical equations Ln = 0 = L̄n

in quantum theory is to require that a physical state should be annihilated by all

Virasoro generators:

Ln|Φ〉 = 0 = L̄n|Φ〉 , n ∈ Z .

Due to the normal-ordering ambiguity in the definition of L0 in quantum theory the

classical conditions L0 = 0 = L̄0 are replaced now by

(L0 − a)|Φ〉 = 0 , (L̄0 − ā)|Φ〉 = 0 , (4.8)

where in fact the normal-orderings constants a and ā must be equal to each other8 and

L0, L̄0 are understood as the normal-ordered generators. It is easy to see, however,

that eqs.(4.8) cannot be consistently imposed for all m. Indeed, if eqs.(4.8) would

be satisfied for all m we would have

[Ln, L−n]|Φ〉 = 2nL0|Φ〉+
d

12
n(n2 − 1)|Φ〉 ,

i.e.

0 =

(
2na +

d

12
n(n2 − 1)

)
|Φ〉 for any n .

This is obviously not possible to satisfy unless |Φ〉 = 0. The physical reason for

impossibility to impose in quantum theory the same set of constraints as in the

classical one is an anomaly. Because of the anomaly term the first-class Virasoro

constrains of the classical theory turn upon quantization into the constraints of the

second class!

From the experience with the quantum electrodynamics one can try to impose only

“half” of the constraints, i.e.

(L0 − a)|Φ〉 = 0 ,

Ln|Φ〉 = 0 , n > 0 . (4.9)

The conjugate state then obeys 〈Φ|L−n = 0 for n > 0 and we see that 〈Φ|Ln|Φ〉 for

all n 6= 0, i.e. expectation values of Ln vanish for all nonnegative n.

Let us recall that the mass operator is obtained from the constraint L0 − a = 0, We

have

M2 = −p2 = 4πT (−a + N) , N =
∞∑

n=1

αµ
−nαn,µ .

8This follows from the constraint (L0 − L̄0)|Φ〉 = 0.
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Here N is the number operator. It turns out that all eigenvalues of the number

operator N are non-negative. Indeed,

N =
∞∑

n=1

(
− α0

−nα
0
n +

d−1∑
i=1

αi
−nα

i
n

)
.

We see the “-” sign coming from the time-like oscillators. However, the time-like

oscillators themselves provide only non-negative contribution to N , because for any

m > 0

[N, a0
−m] = −

∞∑
n=1

[α0
−nα

0
n, a0

−m] = −
∞∑

n=1

α0
−n[α0

n, a
0
−m] = mα0

−m

since commutator of two time-like oscillators contributes with the negative sign.

Thus, time-like creation operators contribute positively to N .

Virasoro primaries, descendents and physical states

Let us introduce the following useful definitions.

1. States which are annihilated by all positively moded Virasoro operators and

are eigenstates of the operator L0 with an eigenvalue a are called Virasoro

primaries. Number a is called a weight of the Virasoro primary.

2. A Virasoro descendent of a given primary is a state that can be written as a

finite linear combination of products of negatively moded Virasoro operators

acting on the primary state.

3. A state which is both primary and descendent is called a null state.

If |Φ〉 is a primary state then L−1|Φ〉 is its descendent. If N |Φ〉 = NΦ|Φ〉 then

NL−1|Φ〉 = (NΦ + 1)L−1|Φ〉.

There are two basis descendents with the number NΦ + 2, namely L−2|Φ〉 and

L−1L−1|Φ〉. The counting of descendents changes at NΦ + 3. Here the candidate

descendents are

L−3|Φ〉 , L−2L−1|Φ〉 , L−1L−2|Φ〉 , L3
−1|Φ〉 .

The second and the third states are not identical because the Virasoro operators do

not commute. However, due to the Virasoro algebra there is one relation between

the above states

L−1L−2 = [L−1, L−2] + L−2L−1 = L−3 + L−2L−1 .

Thus, there are only three descendents with number NΦ + 3.
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In general, for any fixed level NΦ + n, one can choose an independent basis of

descendents of the form

L−n1L−n2 · · ·L−nk
|Φ〉 , where n1 ≥ n2 ≥ . . . ≥ nk and

k∑
i=1

ni = n .(4.10)

It is a conventional ordering of the Virasoro operators. Note that the number of

descendents in this basis is equal to a number of partitions of integer n.

For any given primary, there can be a linear combination of descendents (4.10)

which vanishes. The vanishing of such combinations happens not due to the Virasoro

algebra relations but rather due to specific properties of the primary state |Φ〉. For

instance, one can realize that for the zero-momentum ground (primary) state |0〉 the

descendent L−1|0〉 vanishes identically.

An important property of the descendents is that they are all orthogonal to any

primary. Indeed, a descendent |des〉 can be written as L−ni
|χ〉 for some ni > 0 and

some state |χ〉. Then for any primary state

〈des|prime〉 = 〈χ|Lni
|prime〉 = 0 ,

since a primary |prime〉 is annihilated by all positively moded oscillators.

Null states, which are both primary and descendents, correspond to pure gauge

degrees of freedom. Any null state has a vanishing norm and it is orthogonal to any

primary and to any descendent. If we alter a primary state by adding a null state,

then the new primary state has the same inner products with all primary states as the

original one. Adding null states to primaries cannot change any physical expectation

value. This motivates the following definition of a physical state:

A physical state is an equivalence class of a primary

state with the weight a = 1 modulo the null states.

The choice a = 1 will be motivated by studying the quantization of strings in the

physical (light-cone) gauge. Note that here we talk about equivalent classes precisely

because of the ambiguity created by the null states. Primary states which differ by a

null state are physically indistinguishable. In the next section studying the spectrum

of open string we will see that the null states are indeed responsible for the gauge

degrees of freedom.

4.1.3 The spectrum

The classical strings cannot provide a reasonable particle physics because the masses

of string states take continuous values. Only the ground state is massless in the

classical open string theory but because it carries no spin we are not able to identify

it with photon. Quantization procedure – this is what alters the nature of the classical
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string spectrum and makes it discrete. Simultaneously, states to be identified with

photon emerge in the quantum spectrum because of the downward shift of the M2

producing thereby the massless states with a proper spin labels.

Consider open strings. The Hamiltonian is

H = L0 − 1 = α′p2 + N − 1 .

The basis vectors of the Hilbert space are

|ψ〉 =
∞∏

n=1

25∏
µ=0

(αµ†
n )λn,µ|p〉 ,

are non-negative integers. Generic state |ψ〉 is not physical. A physical state is a

state which obeys the Virasoro constraints (4.9) and is not a descendent.

Let us look for some examples of physical states. The first one is the ground state

|p〉. The only non-trivial constraint is

(L0 − a)|p〉 = (α′p2 − a)|p〉 = 0 .

Since p2 = −M2 we get that the on-shell condition for this state is M2 = − a
α′ . Later

on studying the light-cone quantization we find that the normal-ordering constant

a must be equal to one. Thus, the mass-squared of the ground state is negative:

M2 = − 1
α′ . The corresponding hypothetic particle moving faster than light is called

tachyon.

The next state to consider is ζµα
µ
−1|p〉. We have

(L0 − 1)ζµα
µ
−1|p〉 = (α′p2 + N − 1)ζµα

µ
−1|p〉 = α′p2ζµα

µ
−1|p〉 = 0

from which we deduce the on-shell condition p2 = 0, i.e. the corresponding particle

is massless. Further condition gives

L1ζµα
µ
−1|p〉 = (α0α1 + α−1α2 + · · · )ζµα

µ
−1|p〉 =

√
2α′ζµp

µ|p〉 = 0 .

Thus, for a physical state the momentum pµ and the polarization vector ζµ must be

related as ζµp
µ = 0 which is nothing else as the Lorentz gauge condition. All higher

Virasoro modes Ln, n ≥ 2 are automatically annihilate the state. We, however, have

not described the physical state completely. The massless vector particle which is

photon must have d−2 independent polarizations while the Lorentz gauge lives d−1

polarizations only. We should now recall that physical states are defined modulo the

null states.

Consider a state (κ is any constant)

|d〉 =
κ√
2α′

L−1|p〉 = κpµα
µ
−1|p〉 , p2 = 0 .
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This state has the same form as before with ζµ = κpµ (longitudinally polarized

photons). It is physical, because ζµp
µ = κp2 = 0. On the other hand, it is null as it

appears to be a descendent of L−1. Thus, the states

ζµ and ζµ + κpµ

should be identified. The reason for this identification can be understood as follows.

If ζµp
µ = 0 then (ζµ + κpµ)pµ = 0 as well, because p2 = 0. As the result, this

identification reduces the number of independent polarizations to d− 2, as it should

be for a massless photon. Indeed, for any vector ζµ obeying ζµp
µ = 0, one can use

the shift freedom ζµ → ζµ + κpµ to put, e.g., one of the components of ζµ to zero.

4.1.4 Propagators

Here we introduce the concept of propagator or, equivalently, the two-point Green

function.

Consider first the right-moving fields of the closed string. Their propagator is

defined as

〈XR(τ, σ)XR(τ ′, σ′)〉 = T
(
XR(τ, σ)XR(τ ′, σ′)

)− : XR(τ, σ)XR(τ ′, σ′) : , (4.11)

where T means time-ordering prescription. Thus,

T
(
XR(τ, σ)XR(τ ′, σ′)

)
=

{
XR(τ, σ)XR(τ ′, σ′) , for τ > τ ′ ,
XR(τ ′, σ′)XR(τ, σ) , for τ < τ ′ .

For τ > τ ′ we have

〈XR(τ, σ)XR(τ
′
, σ
′
)〉 =

=
� 1

2
x

µ
+

pµ

4πT
(τ − σ) +

i√
4πT

∑

n 6=0

1

n
α

µ
ne
−in(τ−σ)

�� 1

2
x

ν
+

pν

4πT
(τ
′ − σ

′
) +

i√
4πT

∑

m 6=0

1

m
α

µ
me

−im(τ′−σ′)�

− :
� 1

2
x

µ
+

pµ

4πT
(τ − σ) +

i√
4πT

∑

n 6=0

1

n
α

µ
ne
−in(τ−σ)

�� 1

2
x

ν
+

pν

4πT
(τ
′ − σ

′
) +

i√
4πT

∑

m 6=0

1

m
α

µ
me

−im(τ′−σ′)�
: .

Most of the terms cancelled and we are left with

〈XR(τ, σ)XR(τ
′
, σ
′
)〉 =

1

8πT
x

µ
p

ν
(τ
′ − σ

′
) +

1

8πT
p

µ
x

ν
(τ − σ)

− 1

8πT
: x

µ
p

ν
: (τ

′ − σ
′
)− 1

8πT
: p

µ
x

ν
: (τ − σ)

− 1

4πT

∑

n6=0

∑

m 6=0

1

nm
(α

µ
nα

ν
m− : α

µ
nα

ν
m :)e

−in(τ−σ)
e
−im(τ′−σ′)

.

Thus,

〈XR(τ, σ)XR(τ
′
, σ
′
)〉 =

1

8πT
[p

µ
, x

ν
](τ − σ)− 1

4πT

∑

n>0

∑

m<0

1

nm
[α

µ
n, α

ν
m]e

−in(τ−σ)
e
−im(τ′−σ′)

.

Substituting the commutators we obtain

〈XR(τ, σ)XR(τ
′
, σ
′
)〉 = − i

8πT
η

µν
(τ − σ)− ηµν

4πT

∑

m<0

1

m
e

im(τ−σ)
e
−im(τ′−σ′)

= − i

8πT
η

µν
(τ − σ) +

ηµν

4πT

∑

m>0

1

m


 ei(τ′−σ′)

ei(τ−σ)




m

= − i

8πT
η

µν
(τ − σ)− ηµν

4πT
ln


1− ei(τ′−σ′)

ei(τ−σ)


 .
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Thus, for τ > τ ′ one obtains the propagators9

〈XR(τ, σ)XR(τ ′, σ′)〉 =
ηµν

8πT
ln z − ηµν

4πT
ln(z − z′) ,

〈XL(τ, σ)XL(τ ′, σ′)〉 =
ηµν

8πT
ln z̄ − ηµν

4πT
ln(z̄ − z̄′) ,

〈XR(τ, σ)XL(τ ′, σ′)〉 = − ηµν

8πT
ln z ,

where we made an identification

z = ei(τ−σ) , z̄ = ei(τ+σ) .

Computation for the case of open string is similar. For τ > τ ′ we have

〈X(τ, σ)X(τ ′, σ′)〉 = −i
ηµν

πT
τ +

1

πT

∞∑
n=1

1

n
e−inτ+inτ ′ cos nσ cos nσ′ .

Performing the sum one finds

〈X(τ, σ)X(τ ′, σ′)〉 = − ηµν

4πT

[
log

(
eiτ − e−i(σ−σ′)eiτ ′

)
+ log

(
eiτ − ei(σ−σ′)eiτ ′

)

+ log
(
eiτ − e−i(σ+σ′)eiτ ′

)
+ log

(
eiτ − ei(σ+σ′)eiτ ′

)]
.

4.1.5 Vertex operators. Tachyon scattering amplitude

Here we approach for the first time the question about string interactions. It is

important to realize that the situation here is different to what one usually accounters

in QFT. The interaction of strings cannot be introduced by adding non-linear terms

to the string Lagrangian; in the latter case one would obtain non-linear interacting

theory but still of a single string.

emmiting a particle
V

Insertion
of a local operator

In

Out

In

Out

on a mass−shell
split string

Fig. 3. Open (closed) strings interact by means of joining and splitting.
Emission of a point particle on mass-shell is represented by insertion of a
local vertex operator.

9Rigorous justification of these formulae requires an introduction of an IR regularization, because
correlation functions of the massless field in two-dimensions suffer from IR divergencies.
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String interactions are introduced by allowing a topology of a wold-sheet to change.

If a split string is on-shell it can be thought as an infinite collection of particles

which form its spectrum. In the limiting case of single emitted particle the process

of scattering can be viewed as application to an initial state |In〉 of a local vertex

operator V ≡ V (τ, σ) which depends on the emitted state and transforms |In〉 into

the outgoing state |Out〉:

|Out〉 = V |In〉 .

Thus, to any physical state |Φ〉 from the spectrum one can put in correspondence a

local vertex operator VΦ.

Conformal operators

Operator A(τ) is called conformal with the conformal dimension ∆ if10

A′(τ ′) =
( dτ

dτ ′

)∆

A(τ) .

Under infinitezimal variation τ → τ ′ = τ + ε(τ) one gets

δA(τ) = −ε
dA

dτ
−∆A

dε

dτ

With ε = −ieimτ

[Lm, A(τ)] = eimτ (−i∂τ + m∆)A(τ)

If the operator A is expandable as A(τ) =
∑

Ane−inτ , for its Fourier modes the last

relation implies

[Lm, An] = (m(∆− 1)− n)An+m

Thus, if A has conformal weight ∆ = 1 then it’s zero mode commutes with all Lm.

Therefore, A0 maps physical states into physical states:

|Φ′〉 = A0|Φ〉 .

An alternative way to understand this is to notice that for ∆ = 1 we have

[Lm, A(τ)] = eimτ (−i∂τ + m∆)|∆=1A(τ) = −i
∂

∂τ

(
eimτA(τ)

)
,

i.e. the r.h.s. is the total derivative. Thus, A0 =
∫

dτA(τ) will transform as

[Lm, A0] = −i

∫
dτ

∂

∂τ

(
eimτA(τ)

)
,

10This transformation law can be written as

A(τ ′)(dτ ′)∆ = A(τ)(dτ)∆ .

For ∆ = 1 this implies that A(τ)dτ is a one-form.
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where the expression on the r.h.s. is specified by the periodicity/boundary properties

of A(τ).

Explicit example of a vertex operator

Consider the following operator acting in the Hilbert space of open string

V (k, τ, σ) = e
1√
πT

∑∞
n=1

kµα
µ
−n

n
einτ cos nσ

eikµ(xµ+ pµ

πT
τ)e

− 1√
πT

∑∞
n=1

kµα
µ
n

n
e−inτ cos nσ

.

At σ = 0 this simplifies to

V (k, τ) = e
1√
πT

∑∞
n=1

kµα
µ
−n

n
einτ

︸ ︷︷ ︸
V−

eikµ(xµ+ pµ

πT
τ)︸ ︷︷ ︸

V0

e
− 1√

πT

∑∞
n=1

kµα
µ
n

n
e−inτ

︸ ︷︷ ︸
V+

.

This operator is “almost” normal-ordered and can be concisely written as

V (k, τ) = V−V0V+

Here only zero modes entering V0 are not normal-ordered. Indeed, according to our

conventions : pµxν := xνpµ, the operator pµ should be always on the right from xµ

which is not the case for V0.

The normal-ordering of V0 can be achieved with the help of the Baker-Campbell-

Hausdorff formula11

eAeB = eA+B+ 1
2
[A,B]

Thus, we have

: eikµxµ

ei
kµpµ

πT
τ := eikµxµ

ei
kµpµ

πT
τ = eikµxµ+i

kµpµ

πT
τ− τ

2πT
kµkν [xµ,pν ]

Recalling that [xµ, pν ] = iηµν we therefore find that

eikµxµ+i
kµpµ

πT
τ = eiα′k2τ : eikµxµ

ei
kµpµ

πT
τ := eiα′k2τ : V0 :

Thus, we obtain completely normal-ordered vertex operator

V = eiα′k2τV− : V0 : V+

We would like to investigate the transformation properties of this operator under

conformal transformations. To this end we need to compute by using the Leibnitz

rule

e−iα′k2τ [Lm, V ] = [Lm, V−] : V0 : V+ + V−[Lm, : V0 :]V+ + V− : V0 : [Lm, V+] .

11Suppose you forgot an exact coefficient in front of the commutator term. Write the operator
identity in the form eAeB = eA+B+α[A,B] with the forgotten coefficient α. Rescale A and B with a
small parameter ε to get eεAeεB = eεA+εB+ε2α[A,B]. Now expand both sides up to order ε2 keeping
the order of operators. You will find that fulfilment of the operator relation at order ε2 will require
to fix α = 1

2 .
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Assuming for definiteness that m > 0 it is not difficult to find12

[Lm, V−] =
1

2
√

πT

∞∑
p=1

eipτ
[
V−(kαm−p) + (kαm−p)V−

]

[Lm, : V0 :] =: V0 :
(αmk)√

πT

[Lm, V+] =
1

2
√

πT

−1∑
p=−∞

eipτ
[
V+(kαm−p) + (kαm−p)V+

]
=

∞∑
p=1

e−ipτ

√
πT

: V+(kαm+p) :

Here the first commutator is of particular importance because it still contains the

terms which are not normal-ordered. Indeed, it can be written in the form

[Lm, V−] =
1√
πT

∞∑

p=1,p 6=m

eipτ : (kαm−p)V− :

+
1√
πT

eimτV−(kα0) +
1

2
√

πT

m−1∑
p=1

eipτ [kαm−p, V−] .

Further we get

[kαm−p, V−] =
k2

√
πT

ei(m−p)τV−

This leads to

[Lm, V−] =
1√
πT

∞∑

p=1,p6=m

eipτ : (kαm−p)V− :

+
1√
πT

eimτV−(kα0) +
k2

2πT

m−1∑
p=1

eimτV−

︸ ︷︷ ︸
(m−1)eimτ V−

.

12
The calculation is as follows:

[Lm, V−] =
1

2

+∞∑

n=−∞
[α

µ
m−nαn,µ, V−] =

1

2

+∞∑

n=−∞
[α

µ
m−n, V−]αn,µ + α

µ
m−n[αn,µ, V−] .

The two terms on the r.h.s. are computed separately, for instance

1

2

+∞∑

n=−∞
[α

µ
m−n, V−]αn,µ =

1

2

m−1∑

n=−∞
[α

µ
m−n, e

1√
πT

∑∞
p=1

kν αν
−p

p
eipτ

]αn,µ =
1

2
√

πT

∞∑

p=1

m−1∑

n=−∞
[α

µ
m−n, α

ν
−p]

︸ ︷︷ ︸
n=m−p

kν

p
e

ipτ
V−αn,µ

=
1

2
√

πT

∞∑

p=1
e

ipτ
V−(k

µ
αm−p,µ) .

The other terms are computed in a similar way.
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Plugging everything together we find

e−iα′k2τ [Lm, V ] =
∞∑

p=1,p 6=m

eipτ

√
πT

: (kαm−p)V−V0V+ :

︸ ︷︷ ︸
+

eimτ

√
πT

: V−V0(kα0)V+ :

︸ ︷︷ ︸
+

eimτ

√
πT

: V−[kα0, V0]V+ : +α′k2(m− 1)eimτ : V−V0V+ :

+
1√
πT

: V−V0V+(kαm) :

︸ ︷︷ ︸
+

∞∑
p=1

e−ipτ

√
πT

: V−V0V+(kαm+p) :

︸ ︷︷ ︸

Here the underlined terms are nicely combined with a single sum13 with the range of

summation variable p form −∞ to +∞ and if we further take into account that

[kα0, V0] =
k2

√
πT

V0

we will get

[Lm, V ] = eimτeiα′k2τ

∞∑
p=−∞

e−ipτ

√
πT

: V−V0V+(kαp) :

+ α′k2(m + 1)eimτ eiα′k2τ : V−V0V+ :︸ ︷︷ ︸
V

It remains to note that

−i∂τV = α′k2V + eiα′k2τ

∞∑
p=−∞

e−ipτ

√
πT

: V−V0V+(kαp) :

With the account of this formula we obtain

[Lm, V ] = eimτ
(
− i∂τ + α′k2m

)
V

and, therefore, we conclude that the operator V has the following conformal dimen-

sion ∆:

∆ = α′k2 .

In particular, for k2 = 1
α′ the conformal dimension ∆ = 1 and the vertex operator

we discuss corresponds to emission of the tachyon with the mass m2 = − 1
α′ .

We also see that on the zero-momentum ground state

V (k, 0)|0〉 = V−eikµxµ|0〉 .
13It is convenient to shift the summation variable p for p → p−m.
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As we will discuss later on, one can perform an analytic continuation τ → −iτ under

which the exponent entering the vertex operator V− will transform as eiτ → eτ . Then

in the limit τ → −∞ we see that V− → 1 and in the Euclidean picture

lim
τ→−∞

V (k, 0)|0〉 = eikµxµ|0〉 ,

i.e. at τ → −∞ this vertex operator creates a particle with the momentum kµ.

Normal-ordering the product of exponents

Consider the normal product : eX :: eY :, where X and Y are two operators with the

propagator 〈XY 〉. Clearly one gets

: eX :: eY :=
∞∑

n,m=0

: Xn :

n!

: Y m :

m!
.

To apply the Wick theorem we first calculate the number of ways we can pick up k

X’s from Xn, which is obviously n!
k!(n−k)!

. Analogously, the number of ways to pick

up k Y ’s from Y m is m!
k!(m−k)!

. Now we have to pair (i.e. to form propagators) k fields

X with k fields Y

: X . . . X︸ ︷︷ ︸
k

:: Y . . . Y︸ ︷︷ ︸
k

: .

The are k! ways to pair all the terms in the last expression. Thus, application of the

Wick theorem gives

: eX :: eY :=
∞∑

n,m=0

min(n,m)∑

k=0

:
Xn−k

n!

Y m−k

m!
:

n!

k!(n− k)!

m!

k!(m− k)!
k! 〈XY 〉k =

=
∞∑

n,m=0

min(n,m)∑

k=0

:
Xn−k

(n− k)!

Y m−k

(m− k)!
:
〈XY 〉k

k!
=

∞∑

k=0

〈XY 〉k
k!

∞∑

n,m=k

:
Xn−k

(n− k)!

Y m−k

(m− k)!
:

Thus, we find

: eX :: eY :=: e〈XY 〉+X+Y :

It is now easy to see that the last formula can be generalized for the case of several

vertex operators as follows
∏

i

: eXi := e
∑

i<j〈XiXj〉 : e
∑

i Xi : (4.12)

Two-point function of tachyon vertex operators

Consider the two-point correlation function

〈V (k1, τ1)V (k2, τ2)〉 ≡ 〈0|V (k1, τ1)V (k2, τ2)|0〉
= eiα′k2

1τ1+iα′k2
2τ2〈0| : V (k1, τ1) :: V (k2, τ2) : |0〉 ,
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where we assume that τ1 > τ2. By using the formula (4.12) we find

〈V (k1, τ1)V (k2, τ2)〉 = eiα′k2
1τ1+iα′k2

2τ2e
k1k2
πT

log(eiτ1−eiτ2 )〈0| : V (k1, τ1)V (k2, τ2) : |0〉 .
The vacuum expectation value of the normal-ordered expression on the right hand

side reduces to the contribution of the zero modes only and we get

〈V (k1, τ1)V (k2, τ2)〉 = eiα′k2
1τ1+iα′k2

2τ2e2α′k1k2 log(eiτ1−eiτ2 ) 〈0|ei(kµ
1 +kµ

2 )xµ|0〉︸ ︷︷ ︸
δ(k1+k2)

.

Thus, the two-point function is non-zero only if k1 = k = −k2. In this case we get

〈V (k, τ1)V (−k, τ2)〉 =
eiα′k2(τ1+τ2)

(eiτ1 − eiτ2)2α′k2 .

We thus find that

〈V (k, τ1)V (−k, τ2)〉 =
ei∆(τ1+τ2)

(eiτ1 − eiτ2)2∆
.

Four-tachyon scattering amplitude

Here we compute the scattering amplitude of four tachyonic particles. This is the

famous Veneziano amplitude which subsequently led to discovery of string theory.

The amplitude is defines as

A =

∫ ∞

0

dτ 〈k4|V (k3, τ)V (k2, 0)|k1〉

Here 〈k4| is understood in an unusual way 〈k4| = 〈0|eikµ
4 xµ . Using the definition of

the tachyonic vertex operators and the formula (4.12) one finds

V (k3, τ)V (k2, 0) = eiα′k2
3τ : V (k3, τ) :: V (k2, 0) :

= eiα′k2
3τe−kµ

3 kν
2 〈Xµ(τ)Xν(0)〉 : V (k3, τ)V (k2, 0) :

Recalling the open string propagator at σ = σ′ = 0:

〈X(τ)X(0)〉 = −ηµν

πT
log

(
eiτ − 1

)
.

Thus we find

A =

∫ ∞

0

dτ eiα′k2
3τe2α′(k2k3) log(eiτ−1)〈k4|ei(kµ

2 +kµ
3 )xµei2α′kµ

3 pµτ |k1〉

Further simplification gives

A =

∫ ∞

0

dτ eiα′k2
3τ (eiτ − 1)2α′(k2k3)e2iα′(k3k1)τδ

( 4∑
i=1

ki

)

=

∫ ∞

0

dτ eiα′k2
3τe2iα′(k1+k2)k3τ (1− e−iτ )2α′(k2k3) δ

( 4∑
i=1

ki

)

=

∫ ∞

0

dτ e−iα′k2
3τe−2iα′(k3k4)τ (1− e−iτ )2α′(k2k3) δ

( 4∑
i=1

ki

)
.
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Recall that for tachyons on shell we have k2
i = 1

α′ . Performing now the Wick rotation

τ → −iτ and changing the integration variable τ for x = e−τ we find

A =

∫ 1

0

dx x2α′k3k4(1− x)2α′k2k3 ,

where for the sake of simplicity we omitted the δ-function which encodes the con-

servation law of the momenta. Introducing the Mandelstam variables s = (k1 + k2)
2

and t = (k2 + k3)
2 the last formula can be cast in the form

A =

∫ 1

0

dx xα′s−2(1− x)α′t−2 =
Γ(α′s− 1)Γ(α′t− 1)

Γ(α′(s + t)− 2)
.

In fact this function is known as the Euler beta-function. One of the interesting

properties of the representation of A in terms of the Euler beta-function is that the

latter is explicitly symmetric under the interchange of s and t. Search of amplitudes

with this symmetry property led Veneziano in 1960’s to this amplitude which was

the starting point of modern string theory.

It is interesting to analyze the Veneziano formula in more detail. The Γ-function has

poles at non-positive integers with residues

Γ(x) → (−1)n

n!

1

x + n
as x → −n , n ≥ 0 .

Thus, when α′s → 1− n, n = 0, 1, . . . the amplitude behaves as

A(s, t) → (−1)n

n!

1

α′s− 1 + n

Γ(α′t− 1)

Γ(α′t− 1− n)

Here the dependents of the variable t is polynomial because for n > 0 we have

Γ(α′t− 1)

Γ(α′t− 1− n︸ ︷︷ ︸
w

)
=

Γ(w + n)

Γ(w)
= (w + n− 1) · · · (w + 1)w

= (α′t− 2)(α′t− 3) · · · (α′t− n− 1) ≡ Pn(α′t) ,

i.e. the r.h.s. is a polynomial of degree n. Thus, the scattering amplitude can be

essentially written as

A(s, t) =
∞∑

n=0

(−1)n

n!

Pn(α′t)
n− 1 + α′s

, P0(α t) = 1 .

In scattering theory resonances (or simply poles) of the scattering amplitude are

interpreted as an exchange by intermediate particles whose masses are obtained from

the condition of having poles. In our case we see that the poles arise due to exchange

by hypothetical particles whose masses are quantized as

M2
n = −s =

1

α′
(n− 1) .
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It also follows from the scattering theory that appearance of a polynomial of degree

n as the residue of the amplitude signals that the exchanged particles of the mass

M2
n carry spin up to the maximal value Jmax = n. Our later analysis of string in the

physical gauge will reveal that the exchanged particles delivering the resonances of

the Veneziano amplitude are those from the spectrum of open string!

Operator Product Expansion

Consideration of the Veneziano amplitude shows that the object of primary in-

terest in string perturbation theory is a correletation function of local operators

〈Oi1(x1)Oi2(x2) . . .Oin(xn)〉 ,

where Oi(x) is a local operator. Here x ≡ (τ, σ) is a point on the two-dimensional

world-sheet. It is important to understand the behavior of the correlation function

when two operators are taken to approach each other. The technique to describe this

limit in known as the Operator product Expansion or OPE for short. The Operator

Product Expansion states that a product of two local operators can be approximated

to arbitrary accuracy by a sum of local operators

Oi(x)Oj(y) =
∑

k

Ck
ij(x− y, ∂y)Ok(y) .

Let us take as a local operator the stress tensor and try to work out the corre-

sponding OPE. Introduce the short-hand notation T ≡ T++ and Xµ ≡ Xµ
L. Consider

the component T−− of the stress tensor normalized as

T ≡ T−− =
1

α′
: ∂−Xµ∂−Xµ :=

1

α′
: ∂−Xν

L∂−XLν : .

We will also use the concise notation z = ei(τ−σ) and w = ei(τ ′−σ′).

In what follows we consider the product of two stress tensors evaluated at two dif-
ferent points

T (τ, σ)T (τ ′, σ′) =
1

α′2
: ∂−Xµ(z)∂+Xµ(z) :: ∂−Xν(w)∂+Xν(w) :

and try to expand it over a basis of local operators. By using the Wick theorem, we get

T (τ, σ)T (τ ′, σ′) =
1

α′2
: ∂−Xµ(z)∂−Xµ(z)∂−Xν(w)∂−Xν(w) :

+
4

α′2
〈∂−Xµ(z)∂−Xν(w)〉 : ∂−Xµ(z)∂−Xν(w) :

+
2

α′2
〈∂−Xµ(z)∂−Xν(w)〉 〈∂−Xµ(z)∂−Xν(w)〉 .
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We can now rewrite the r.h.s. by using the propagators introduces above

T (τ, σ)T (τ ′, σ′) =
1

α′2
: ∂−Xµ(z)∂−Xµ(z)∂−Xν(w)∂−Xν(w) :

+
4

α′2
∂x
−∂y

−〈Xµ(z)Xν(w)〉 : ∂−Xµ(z)∂−Xν(w) :

+
2

α′2
∂z
−∂w

−〈Xµ(z)Xν(w)〉 ∂z
−∂w

−〈Xµ(z)Xν(w)〉 .

A little computation gives

T (τ, σ)T (τ ′, σ′) =
1

α′2
: ∂−Xµ(z)∂−Xµ(z)∂−Xν(w)∂−Xν(w) :

− 2
α′

zw

(z − w)2
: ∂−Xµ(z)∂−Xµ(w) :

+
ηµνηµν

2
z2w2

(z − w)4
.

It is further convenient to redefine the stress tensor as follows

T (z) =
T (τ, σ)

z2

so that

T (z)T (w) = =
1

α′2 z2w2
: ∂−Xµ(z)∂−Xµ(z)∂−Xν(w)∂−Xν(w) :

− 2

α′zw
1

(z − w)2
: ∂−Xµ(z)∂−Xµ(w) :

+
ηµνηµν

2

1

(z − w)4
.

Since

∂− =
1

2

( ∂

∂τ
− ∂

∂σ

)
=

1

2

(∂z

∂τ
− ∂z

∂σ

) ∂

∂z
= iz

∂

∂z
,

we have ∂
∂z

= 1
iz

∂
∂z

and, therefore, the last formula can be written as

T (z)T (w) = =
1

α′2
: ∂zX

µ(z)∂zXµ(z)∂wXν(w)∂wXν(w) :

+
2

α′
1

(z − w)2
: ∂zX

µ(z)∂wXµ(w) : +
ηµνηµν

2

1

(z − w)4
.

Expanding the r.h.s. around the point w = z, we will find the following most singular

z → w contribution

T (z)T (w) =
d/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂wT (w) + . . . (4.13)

The first term here reflects the appearance of the conformal anomaly (a purely quan-

tum mechanical effect). In the general setting the coefficient of this term is c/2,

where c is the central charge. The coefficients 2 of the second term coincides with

the conformal dimension of T .
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4.2 Quantization in the physical gauge

Quantization of strings in the physical (light-cone) gauge is perhaps the most straight-

forward way to obtain a restriction on the space-time dimension as well as to under-

stand the spectrum of physical excitations.

Using the Poisson brackets and the basic quantization rules we can easily get the

table of the basic commutator relations of the light-cone string theory.

[ , ] p+ p− pj xj x− αj
m α−m

p+ 0 0 0 0 i 0 0

p− 0 0 0 − i pi

p+ − ip−
p+ − 2πT

p+ mαj
m − 2πT

p+ mα−m
pi 0 0 0 − iδij 0 0 0

xi 0 i pi

p+ iδij 0 0 i δijδm

4πT
iαi

m

p+

x− − i ip−
p+ 0 0 0 0 iα−m

p+

αi
n 0 2πT

p+ nαi
n 0 − i δijδn

4πT
0 nδijδn+m

√
4πT
p+ nαi

n+m

α−n 0 2πT
p+ nα−n 0 − iαi

n

p+ − iα−n
p+ −

√
4πT
p+ mαi

n+m [α−n , α−m]

Tab. 2. Canonical structure of the light-cone modes. The variable

p− is essentially the Hamiltonian: p− = 2πT H
p+ . The commutators

involving ᾱ variables are the same.

We would like to point out the following commutator

[αi
n, α

−
m] =

√
4πT

p+
nαi

n+m .

One of the most important commutators of the light-cone theory is [α−m, α−n ]. It can

be computed precisely in the same way as [Lm, Ln] of the previous section. We find

the same result as before except we have now only d − 2 transversal fields which

contribute to the central charge term with the factor d− 2 instead of d

[α−m, α−n ] =

√
4πT

p+
(m− n)α−m+n +

4πT

(p+)2

d− 2

12
m(m2 − 1)δm+n . (4.14)

The normal ordering ambiguity

α−n → α−n −
√

4πT

p+
aδn,0

leads to the change as

[α−m, α−n ] =

√
4πT

p+
(m− n)α−m+n +

4πT

(p+)2

(d− 2

12
m3 + 2am− d− 2

12
m

)
δm+n .
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4.2.1 Lorentz symmetry and critical dimension

Studying the classical string in the light-cone gauge we realized that the generators

J i− of the Lorentz symmetry become rather complicated functions of transversal

oscillators

J i− = xip− − x−pi − i

∞∑
n=1

1

n

(
αi
−nα

−
n − α−−nαi

n

)− i

∞∑
n=1

1

n

(
ᾱi
−nᾱ−n − ᾱ−−nᾱi

n

)
.

We would like to ask a question whether we can use this expression in quantum

theory regarding αn and ᾱn as operators to define the quantum Lorentz generators?

Due to the unusual canonical structure of the light-cone theory it is not obvious that

consistent Lorentz generators should exist.

In quantum theory we want to realize a unitary representation of the Poincaré

group and therefore, we require the Lorentz generators to be hermitian, i.e.

(Jµν)† = Jµν ,

where we treat Jµν as an operator acting in the Hilbert space. Also the Lorentz

generators must be normal-ordered to have the well-defined action on the vacuum

state. Consider the following ansatz for the Lorentz generators J i−, which are the

most intricate generators to be defined in quantum theory,

J i− =
1

2
(xip− + p−xi)− x−pi

︸ ︷︷ ︸
`i−

−i

∞∑
n=1

1

n

(
αi
−nα−n − α−−nα

i
n

)− i

∞∑
n=1

1

n

(
ᾱi
−nᾱ

−
n − ᾱ−−nᾱi

n

)
.

One can see that these generators are hermitian and normal-ordered so they can

be considered as candidates to realize the Lorentz algebra symmetry. The latter

requirement is equivalent to

[J i−, J j−] = 0 .

This is an equation we would like to prove.

First we discuss the orbital part. We have

[`
i−

, `
j−

] = [ 12 (x
i
p
−

+ p
−

x
i
)− x

−
p

i
, 1

2 (x
j
p
−

+ p
−

x
j
)− x

−
p

j
]

= 1
4 [x

i
p
−

, x
j
p
−

] → i
4 (x

j
p

i − x
i
p

j
) p−

p+

+ 1
4 [x

i
p
−

, p
−

x
j
] → i

4 (p
i
x

j − x
i
p

j
) p−

p+

− 1
2 [x

i
p
−

, x
−

p
j
] → − i

2 (x
−

p
−

δ
ij − x

i
p

j p−
p+ )

+ 1
4 [p

−
x

i
, x

j
p
−

] → − i
4

p−
p+ (p

j
x

i − x
j
p

i
)

+ 1
4 [p

−
x

i
, x
−

p
j
] → − i

4
p−
p+ (p

j
x

i − p
i
x

j
)

− 1
2 [p

−
x

i
, x
−

p
j
] → i

2 ( p−
p+ p

j
x

i − p
−

x
−

δ
ij

)

− 1
2 [x

−
p

i
, x

j
p
−

] → − i
2 (x

j
p

i p−
p+ − x

−
p
−

δ
ij

)

− 1
2 [x

−
p

i
, p
−

x
j
] → − i

2 ( p−
p+ x

j
p

i − x
−

p
−

δ
ij

) .
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Here by arrow we indicated the explicit expression for the corresponding commutator. Reducing similar terms we get

[`
i−

, `
j−

] = i
4 [p

i
, x

j
] p−

p+ + i
4

p−
p+ [p

i
, x

j
] + i

2 [x
−

, p
−

]δ
ij

= 0 .

Thus, the generators of the orbital part of the total momentum have vanishing commutator. Next we compute

[`
i−

, S
j−

] + [S
i−

, `
j−

] = −2
p−

p+

∞∑

n=1

1

n
α

[i
−nα

j]
n + (4.15)

+
1

p+

∞∑

n=1

1

n

[
− (α

j
−nα

−
n − α

−
−nα

j
n)p

i
+ (α

i
−nα

−
n − α

−
−nα

i
n)p

j
]

.

Here and below we use the concise notation α
[i
−nα

j]
n = αi

−nαj
n − α

j
−nαi

n.

Now we are in a position to study the most difficult commutator [Si−, Sj− ]. We will do further analysis in several steps.

1. First we consider the following commutator

[S
i−

, α
−
m ] = −i

∞∑
n

1

n
[α

i
−nα

−
n − α

−
−nα

i
n, α

−
m] (4.16)

= −i
∞∑

n=1

1

n

�
−
√

4πT

p+
nα

i
m−nα

−
n + α

i
−n[α

−
n , α

−
m]

︸ ︷︷ ︸
A

−[α
−
−n, α

−
m]α

i
n −

√
4πT

p+
nα
−
−nα

i
n+m

�
.

Therefore,

[S
i−

, α
−
m ] = −i

√
4πT

p+

∞∑

n=1

1

n

�
− nα

i
m−nα

−
n + α

i
−n(n−m)α

−
m+n + (n + m)α

−
m−nα

i
n − nα

−
−nα

i
n+m

�

− i
f(m)

m
α

i
m .

This further gives

[S
i−

, α
−
m ] = −i

√
4πT

p+

∞∑

n=1

�
α

i
−nα

−
m+n − α

i
m−nα

−
n︸ ︷︷ ︸

A

+ α
−
m−nα

i
n︸ ︷︷ ︸

B

−α
−
−nα

i
n+m

�

+ i

√
4πT

p+

∞∑

n=1

m

n

�
α

i
−nα

−
m+n − α

−
m−nα

i
n

�
− i

f(m)

m
α

i
m .

The terms in the first line of the last equation can be partially cancelled upon changing the summation index and we find

that

[S
i−

, α
−
m ] = −i

√
4πT

p+

m∑

n=1

�
− α

i
m−nα

−
n︸ ︷︷ ︸

A

+ α
−
m−nα

i
n︸ ︷︷ ︸

B

�

+ i

√
4πT

p+

∞∑

n=1

m

n

�
α

i
−nα

−
m+n − α

−
m−nα

i
n

�
− i

f(m)

m
α

i
m .

Since we have
m∑

n=1
α
−
m−nα

i
n =

0∑

k=m−1

α
−
k α

i
m−k ≡

m−1∑

n=0
α
−
n α

i
m−n

we see that

m∑

n=1

�
− α

i
m−nα

−
n + α

−
m−nα

i
n

�
= −

m∑

n=1
α

i
m−nα

−
n +

m−1∑

n=0
α
−
n α

i
m−n

= α
−
0 α

i
n − α

i
0α
−
m +

m−1∑

n=1
[α
−
n , α

i
m−n]

Using the fact that
∑m−1

n=1 (m− n) = 1
2 m(m− 1) we obtain

[S
i−

, α
−
m ] = i

√
4πT

p+
(α

i
0α
−
m − α

−
0 α

i
m) + i

√
4πT

p+

∞∑

n=1

m

n

�
α

i
−nα

−
m+n − α

−
m−nα

i
n

�

+ i

 
4πT

(p+)2

m(m− 1)

2
− f(m)

m

)
α

i
m . (4.17)

Thus, under the action of the Virasoro operators α−m the spin components Si− transform in a nontrivial manner. Note that

the r.h.s. of eq.(4.17) is normal-ordered.
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2. Analogously, we compute (m > 0)

[S
i−

, α
−
−m ] = i

√
4πT

p+
(α
−
−mα

i
0 − α

i
−mα

−
0 )− i

√
4πT

p+

∞∑

n=1

m

n

�
α

i
−nα

−
n−m − α

−
−m−nα

i
n

�

+ i

 
4πT

(p+)2

m(m− 1)

2
− f(m)

m

)
α

i
−m .

In fact these formula is also obtained from eq.(4.17) by simply substituting m → −m.

3. The next step consists in finding the commutator

[S
i−

, α
j
−m ] = −i

∞∑

n=1

1

n

�
α

i
−n[α

−
n , α

j
−m]− [α

−
−n, α

j
−m]α

i
n − α

−
−nδ

ij
δn−m

︸ ︷︷ ︸
0 as i 6=j

�

= −i

√
4πT

p+

∞∑

n=1

m

n

�
α

i
−nα

j
n−m − α

j
−n−mα

i
n

�
.

4. Finally we compute the commutator

[S
i−

, α
j
m ] = i

√
4πT

p+

∞∑

n=1

m

n

�
α

i
−nα

j
m+n − α

j
m−nα

i
n

�
.

Substituting all our findings into the commutator [Si−, Sj−] we obtain

[S
i−

, S
j−

] =

√
4πT

p+

∞∑

n=1

1

n

�
− α

j
−nα

−
0 α

i
n + α

j
−nα

i
0α
−
n + α

i
−nα

−
0 α

j
n − α

−
−nα

i
0α

j
n

�

−
∞∑

n=1

 
4πT

(p+)2

n− 1

2
− f(n)

n2

)
α

[i
−nα

j]
n

+

√
4πT

p+

∞∑

m,n=1

1

n

�
α

j
−m(α

i
−nα

−
m+n − α

−
m−nα

i
n)− (α

i
−nα

j
n−m − α

j
−m−nα

i
n)α

−
m

+ (α
i
−nα

−
n−m − α

−
−n−mα

i
n)α

j
m − α

−
−m(α

i
−nα

j
m+n − α

j
m−nα

i
n)
�

.

We first analyze the last two lines of the equation above, which we write as follows

I
ij

=

√
4πT

p+

∞∑

m,n=1

1

n

�
α

j
−mα

i
−nα

−
m+n︸ ︷︷ ︸

A

−(α
i
−nα

j
n−m︸ ︷︷ ︸

A

−α
j
−m−nα

i
n)α

−
m

+ α
i
−nα

−
n−mα

j
m − α

j
−mα

−
m−nα

i
n − α

−
−n−mα

i
nα

j
m︸ ︷︷ ︸

B

−α
−
−m(α

i
−nα

j
m+n︸ ︷︷ ︸

B

−α
j
m−nα

i
n)
�

.

Upon changing the summation variables the A-terms can be partially cancelled, the same is for the B-terms. We therefore obtain

I
ij

=

√
4πT

p+

∞∑

n=1

�
−

n∑

m=1

1

n
α

i
−nα

j
n−mα

−
m +

n∑

m=1

1

n
α
−
−mα

j
m−nα

i
n

�

+

√
4πT

p+

∞∑

n,m=1

�
α

j
−m−nα

i
nα
−
m + α

i
−nα

−
n−mα

j
m − α

j
−mα

−
m−nα

i
n − α

−
−mα

i
−nα

j
m+n

�
.

One can recognize that in the second line of the equation above the first and the last terms are not normal-ordered. We consider the

first sum, which is not normal-ordered, and try to bring it to the normal-ordered form:

∞∑

n,m=1

1

n
α

j
−m−nα

i
nα
−
m =

∞∑

n,m=1

1

n
α

j
−m−nα

−
mα

i
n +

∞∑

n,m=1

1

n
α

j
−m−n[α

i
n, α

−
m]

=
∞∑

n,m=1

1

n
α

j
−m−nα

−
mα

i
n +

√
4πT

p+

∞∑

n,m=1
α

j
−m−nα

i
n+m

=
∞∑

n,m=1

1

n
α

j
−m−nα

−
mα

i
n +

√
4πT

p+

∞∑

k=2

(k − 1)α
j
−k

α
i
k ,

where in the last sum we made a substitution k = m + n and then summed over m, n with the condition m + n = k kept fixed; this

resulted in the factor k − 1. Analogously, we achieve the normal-ordering of the second sum

∞∑

n,m=1

1

n
α
−
−mα

i
−nα

j
m+n =

∞∑

n,m=1

1

n
α

i
−nα

−
−mα

j
m+n +

√
4πT

p+

∞∑

k=2

(k − 1)α
i
−kα

j
k

.
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Thus, our commutator takes the form

I
ij

=

√
4πT

p+

∞∑

n=1

�
−

n∑

m=1

1

n
α

i
−nα

j
n−mα

−
m +

n∑

m=1

1

n
α
−
−mα

j
m−nα

i
n

�

+

√
4πT

p+

∞∑

n,m=1

1

n

�
α

j
−m−nα

−
mα

i
n

︸ ︷︷ ︸
A

+ α
i
−nα

−
n−mα

j
m︸ ︷︷ ︸

B

−α
j
−mα

−
m−nα

i
n

︸ ︷︷ ︸
A

−α
i
−nα

−
−mα

j
m+n︸ ︷︷ ︸

B

�

− 4πT

(p+)2

∞∑

n=1
(n− 1)α

[i
−nα

j]
n .

Again we see that upon change of the summation index the A-terms partially cancel (the same is for the B-terms) and we arrive at

I
ij

=

√
4πT

p+

∞∑

n=1

n∑

m=1

1

n

�
− α

i
−nα

j
n−mα

−
m + α

−
−mα

j
m−nα

i
n

�

+

√
4πT

p+

∞∑

n=1

n−1∑

m=0

1

n

�
− α

j
m−nα

−
−mα

i
n + α

i
−nα

−
mα

j
n−m

�

− 4πT

(p+)2

∞∑

n=1
(n− 1)α

[i
−nα

j]
n .

From here we find

I
ij

=

√
4πT

p+

∞∑

n=1

n∑

m=1

1

n

�
− α

i
−nα

j
0α
−
n + α

−
−nα

j
0α

i
n − α

j
−nα

−
0 α

i
n + α

i
−nα

−
0 α

j
n

�

− 4πT

(p+)2

∞∑

n=1




n−1∑

m=1

n−m

n




︸ ︷︷ ︸
1
2 (n−1)

α
[i
−nα

j]
n − 4πT

(p+)2

∞∑

n=1
(n− 1)α

[i
−nα

j]
n .

Thus, the commutator of the internal spin components we are interested in acquires the form

[S
i−

, S
j−

] =

√
4πT

p+

∞∑

n=1

1

n

�
− α

j
−nα

−
0 α

i
n + α

j
−nα

i
0α
−
n + α

i
−nα

−
0 α

j
n − α

−
−nα

i
0α

j
n

− α
i
−nα

j
0α
−
n + α

−
−nα

j
0α

i
n − α

j
−nα

−
0 α

i
n + α

i
−nα

−
0 α

j
n

�

−
∞∑

n=1

 
4πT

(p+)2
2(n− 1)− f(n)

n2

)
α

[i
−nα

j]
n .

The final step consists in commuting the factor α−0 on the left to compare with eq.(4.15).

We thus find

[Si−, Sj−] = 2
2
√

πTα−0
p+

∞∑
n=1

1

n
α

[i
−nαj]

n +

+
1

p+

∞∑
n=1

1

n

[
(αj

−nα
−
n − α−−nαj

n)pi − (αi
−nα

−
n − α−−nα

i
n)pj

]

−
∞∑

n=1

(
4πT

(p+)2
2n− f(n)

n2

)
α

[i
−nαj]

n .

Finally, adding this expression to eq.(4.15) we arrive at

[J i−, J j−] = 2
(
p− − 2

√
πTα−0

) 1

p+

∞∑
n=1

1

n
α

[i
−nαj]

n +

+
4πT

(p+)2

∞∑
n=1

([d− 2

12
− 2

]
n +

1

n

[
2a− d− 2

12

])
α

[i
−nαj]

n + (αn → ᾱn).
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As for the case of classical string the first term here vanishes due to the level matching

condition α0 = ᾱ0, while the second sum is an anomaly which appears due to non-

commutativity of the oscillators in quantum theory. Thus, for general values of a

and d the theory is not Lorentz invariant: the quantum effects destroy the Lorentz

invariance which was present at the classical level. However, for special values

d = 26 , a = 1

the anomaly term vanishes and the Lorentz invariance is restored!

4.2.2 The spectrum

In the light-cone gauge the spectrum is generated by acting with transversal oscilla-

tors on the vacuum state. We first discuss the spectrum of open strings.

The mass operator is the light-cone gauge for open strings is

M2 =
1

α′

∞∑
n=1

(
αi
−nαi

n − a
)

,

where, as was discussed in the previous chapter, the normal-ordering constant a

should be equal to 1 in order to guarantee the Lorentz invariance of the light-cone

theory.

The ground state |pi〉 carries no oscillators and it has a mass

α′M2|pi〉 = −|pi〉 =⇒ α′M2 = −1.

This is a tachyon.

The first excited state is αi
−1|pj〉. It is a d − 2 component vector which transforms

irreducibly under the transverse group SO(24). We see that

α′M2(αi
−1|pi〉) = (1− a)αi

−1|pi〉 = 0 ,

i.e. this vector is massless.

– 63 –



level α′mass2 rep of SO(24) little rep of little

group group

0 −1 |0〉︸︷︷︸
1

SO(1, 24) 1

1 0 αi
−1|0〉︸ ︷︷ ︸
24

SO(24) 24

2 +1 αi
−2|0〉︸ ︷︷ ︸
24

αi
−1α

j
−1|0〉︸ ︷︷ ︸

299s+1

SO(25) 324s

3 +2 αi
−3|0〉︸ ︷︷ ︸
24

αi
−2α

j
−1|0〉︸ ︷︷ ︸

276a+299s+1

αi
−1α

j
−1α

k
−1|0〉︸ ︷︷ ︸

2576s+24

SO(25) 2900s + 300a

Tab. 3. The spectrum of open bosonic string up to level 3.

In general, the Lorentz invariance requires that physical states transform irreducibly

under the little Lorentz group which is

• SO(d− 2) for massless particles

• SO(d− 1) for massive particles (for tachyon SO(1, d− 2))

For tachyon the little Lorentz group is non-compact. Unitary representations of

non-compact groups are either trivial (i.e. one-dimensional) or infinite-dimensional.

Tachyon realizes the one-dimensional representation.

Further analysis reveals that all states corresponding to higher levels are massive

and that being the tensors of SO(24) they combine at any given mass level to repre-

sentations of SO(25), the latter is the little Lorentz group for massive states. This

is highly non-trivial implication of the Lorentz invariance and it occurs only in the

critical dimension and for a = 1!

At level n the mass of the corresponding states is α′M2 = n− 1. Among them there

is always a symmetric traceless tensor of rank n. This is a state with maximal spin

Jmax = n and, therefore, we have Jmax = n = α′M2 + 1. In general states obey the

inequality

J ≤ α′M2 + 1 .
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The values of J and M2 are quantized and the last inequality implies that the states

lie on the Regge trajectories.

level α′mass2 rep of SO(24) little rep of little

group group

0 −4 |0〉︸︷︷︸
1

SO(1, 24) 1

1 0 αi
−1ᾱ

j
−1|0〉︸ ︷︷ ︸

299s+276a+1

SO(24) 299s + 276a + 1

αi
−2ᾱ

j
−2|0〉︸ ︷︷ ︸

299s+276a+1

αi
−1α

j
−1ᾱ

k
−1ᾱ

l
−1|0〉︸ ︷︷ ︸

299s+1+299s+1

20150s + 32175

2 +4 SO(25)

αi
−2ᾱ

j
−1ᾱ

k
1|0〉︸ ︷︷ ︸

(24)×(299+1)

αi
−1α

j
−1ᾱ

k
−2|0〉︸ ︷︷ ︸

(299+1)×(24)

52026 + 324s + 300a + 1

Tab. 4. The spectrum of closed bosonic string up to level 2.

Now we discuss the spectrum of closed strings. The mass operator for closed

strings is

M2 =
2

α′

( ∞∑
n=1

αi
−nαi

n +
∞∑

n=1

ᾱi
−nᾱi

n − 2a
)

In addition one has to impose the level-matching condition

V =
∞∑

n=1

αi
−nαi

n −
∞∑

n=1

ᾱi
−nᾱ

i
n = 0 ,

which simply means that the excitation (level) number of α-oscillators should be

equal to the excitation number of ᾱ-oscillators.

The ground state is a tachyon which is scalar particle with α′M2 = −4. The

first excited state αi
−1ᾱ

j
−1|0〉 is massless. It can be decomposed into irreducible
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representations of the transversal (and simultaneously little) Lorentz group SO(24)

as follows

αi
−1ᾱ

j
−1|0〉 = α

[i
−1ᾱ

j]
−1|0〉︸ ︷︷ ︸

276

+
(
α

(i
−1ᾱ

j)
−1 −

1

24
δijαk

−1ᾱ
k
−1

)
|0〉

︸ ︷︷ ︸
299

+
1

24
δijαk

−1ᾱ
k
−1|0〉︸ ︷︷ ︸

singlet

.

The massless excitation of spin two transforming in representation 299 of SO(24)

was proposed to be identified with a graviton, the quantum of the gravitational

interaction. To make this identification one has to relate the string scale α′ with the

Planck scale G = M−2
P , where G is the Newton constant and MP is the Planck mass:

α′ = M−2
P .

Since the masses of the massive string modes are proportional to 1/α′ = M2
P, these

string excitations are extremely heavy due to the large value of M2
P and, by this

reason, they do not show up at the energy scales of the Standard Model.

As in the opens string case the higher massive states of closed string are combined

at a given mass level into representations of the little Lorentz group SO(25). The

relation between maximal spin and the mass is now

Jmax =
α′

2
M2 + 2 .

4.3 BRST quantization

The path integral approach proved to be a very useful tool for quantizing the theories

with local (gauge) symmetries. The starting point is the Polyakov action and a new

BRST (Becchi-Rouet-Stora-Tyutin) symmetry. We know that the induced metric

Γαβ = ∂αXµ∂βXµ and the intrinsic metric hαβ are related classically through the

condition Tαβ = 0. However, quantum-mechanically this is not the case.

The basic idea is to define the path integral using the Polykov action and inte-

grate over

hαβ, Xµ

being considered as independent variables:

Z =

∫
Dhαβ(σ, τ)DXµ(σ, τ)eiSp[X,h]

Due to the gauge invariance the last integral is ill-defined. This occurs because we

integrate infinitely many times over physically equivalent, i.e. related to each other

by gauge transformations, configurations. This can be understood looking at a much

simpler example of the two-dimensional integral

Z =

∫ +∞

−∞

∫ +∞

−∞
dxdy e−(x−y)2 .
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It is divergent since the integrand depends on x − y only. Also one sees that the

group of translations

x → x + a, y → y + a

leaves the measure invariant.

y

x+y=0

Orbits x−y=const

gauge slice
intersect each orbit 
at one point

x

Fig. 4. Divergence caused by a presence of the translational symmetry. One
integrates over the orbits of the gauge group while both the measure and
the integrand are translation invariant.

Let us split the coordinates (x, y) as

(x, y) =
(x− y

2
,
y − x

2

)

︸ ︷︷ ︸
x−y

2
+ y−x

2
=0

+
(x + y

2
,
x + y

2

)

︸ ︷︷ ︸
shift by (a,a), a=x+y

2

This suggests to introduce new coordinates “along” the gauge orbit and “orthogonal”

to it:

(x, y) → (u, v) u = x− y, v = x + y,

i.e. x = u+v
2

and y = u−v
2

. Then the integral takes the form

Z =
1

2

∫ +∞

−∞

(∫ +∞

−∞
e−u2

du

)

︸ ︷︷ ︸√
π

dv =

√
π

2

∫ +∞

−∞
d(x + y) =

√
π

∫ +∞

−∞
da

︸ ︷︷ ︸
volume

.

This example illustrates the basic idea to define the path integral – one has to divide

the original Z by the infinite volume of a symmetry group. Thus, our discussion

suggests that a proper definition of the path integral in string theory should be

Z =
1

VDiffVWeyl

∫
Dhαβ(σ, τ)DXµ(σ, τ)eiSp[X,h] ,

where we divided over the infinite volumes of the reparametrization and Weyl groups.
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Let us illustrate this procedure on our simplified example. The integral can be rewritten by using the δ-function:

Z =

∫ +∞

−∞
da

∫ +∞

−∞
e
−(x−y)2

dxdy
�
2δ(x + y)

�
=

∫ +∞

−∞
da

∫ +∞

−∞
e
−z2

dz .

Here insertion of the δ-function can be regarded as the gauge-fixing condition; it selects a single representative from each gauge orbit.

What happens if we change the gauge fixing condition? Suppose we take another slice “orthogonal” to the gauge orbits. Let s will be

a free one-dimensional parameter on this slice

s : f(x, y) = 0 =⇒ (x(s), y(s))

Chose now new coordinates

(x, y) = (x
′
, y
′
)

︸ ︷︷ ︸
along s

+(a, a)

Then

Z =

∫ +∞

−∞

∫ +∞

−∞
e
−(x−y)2

dxdy =

∫ +∞

−∞

∫ +∞

−∞
e
−(x′−y′)2

dsda|J| ,

where x− y = x′ − y′ and

J =
∂(x, y)

∂(s, a)

is the Jacobian. Since x = x′ + a and y = y′ + a we have

J =

 
∂x
∂s

∂x
∂a

∂y
∂s

∂y
∂a

)
=

 
∂x
∂s

1
∂y
∂s

1

)
=

∂x

∂s
− ∂y

∂s
=

∂

∂s
(x
′ − y

′
) .

Along s

0 =
∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s
=

∂f

∂x

∂x′

∂s
+

∂f

∂y

∂y′

∂s
,

which allows for a solution ∂y′
∂s

= − ∂f
∂x

and ∂x′
∂s

= ∂f
∂y′ and, therefore,

J =
∂

∂s
(x
′ − y

′
) =

∂f

∂x
+

∂f

∂y
.

The integral can be now written as

Z =

∫ +∞

−∞
da

∫ +∞

−∞
ds e

−(x′−y′)2 ���
∂f

∂x′
+

∂f

∂y′
��� ,

Here the integral over s is one-dimensional, the functions x′ and y′ are the functions of s and it is independent of a. One can convert

this one-dimensional integral into a two-dimensional one by substituting the δ-function with the gauge condition

∫ +∞

−∞
da e

−(x′−y′)2 ���
∂f

∂x′
+

∂f

∂y′
��� =

∫ +∞

−∞
dxdy δ(f(x, y))e

−(x−y)2
���
∂f

∂x
+

∂f

∂y

��� .

The infinite volume arising upon integrating over a can be factored out and taking into account that

∂f

∂a
|a=0 =

�
∂f

∂x
+

∂f

∂y

�
|a=0

we obtain the final and finite expression

Zfinite =

∫ +∞

−∞
dxdy δ(f(x, y))

���
∂f

∂a

���
a=0

e
−(x−y)2

Here
��� ∂f

∂a

���
a=0

is known as the Faddeev-Popov determinant.

The first problem in realizing this approach for string theory is to find a mea-

sure for functional integration that preserves all symmetries of the classical theory

(reparametrizations + Weyl symmetry).

(δh, δh) =

∫
d2σ

√
hhαβhγδδhαγδhβδ

(δX, δX) =

∫
d2σ

√
hhαβδXµδXµ
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These scalar products define natural reparametrization-invariant and Poincaré in-

variant measures, however none of them is Weyl invariant.

Let us first assume the simplifying situation when all metric on a world-sheet M
with a given topology are conformally equivalent (i.e. they are related to each other

by diffeomorphism and Weyl rescalings; this is the case when operator P † does not

have zero modes). In this case by using reparametrizations we can bring the metric

to the form

hαβ = e2φgαβ ,

where gαβ is a fiducial (reference) metric. Under reparametrizations and the Weyl

rescalings the variation of the metric can be decomposed as

δhαβ = (Pξ)αβ + 2Λ̃hαβ , Λ̃ = Λ +
1

2
∇γξ

γ ,

where P is the following operator

(Pξ)αβ = ∇αξβ +∇βξα −∇γξ
γhαβ ,

which maps vectors into traceless symmetric tensors. Then the integration measure

can be written as follows

Dh = D(Pξ)D(Λ̃) = D(ξ)D(Λ)

∣∣∣∣∣
∂(Pξ, Λ̃)

∂(ξ, Λ)

∣∣∣∣∣
︸ ︷︷ ︸

Jacobian

,

where in the last formula we changed the variables

(Pξ, Λ̃) → (ξ, Λ)

for the price of getting a non-trivial Jacobian. Here D(ξ) is the measure which gives

upon integration an infinite volume of the diffeomorphism group and
∣∣∣∣∣
∂(Pξ, Λ̃)

∂(ξ, Λ)

∣∣∣∣∣ =

∣∣∣∣∣
∂(Pξ)

∂ξ
∂(Pξ)

∂Λ
∂Λ̃
∂ξ

∂Λ̃
∂Λ

∣∣∣∣∣ =

∣∣∣∣∣
∂(Pξ)

∂ξ
0

∂Λ̃
∂ξ

1

∣∣∣∣∣ = |detP |

In fact, we have

δ(Pξ)αβ(σ)

δξγ(σ′)
=

(
δγ
β∇α + δγ

α∇β − hαβ∇γ
)
δ(σ − σ′)

Thus,

|detP | =
∫
DbDc e−i T

2
2
∫

d2σd2σ′
√

h bαβ(σ)
(

δγ
β∇α+δγ

α∇β−hαβ∇γ
)

σ
δ(σ−σ′)cγ(σ′) .
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Here cα is called a ghost field, while bαβ is traceless and symmetric, it is called

antighost field. The ghost cα corresponds to infinitezimal reparametrizations while

baβ corresponds to variations perpendicular to the gauge orbits. Both the ghost and

the antighost fields are real. The last formula can be now written as

|detP | =
∫
DbDc e−

i
πα′

∫
d2σ

√
h bαβ∇αcβ

.

Thus, the total action is given now by the sum of the Polyakov action and the ghost

action:

S = −T

2

∫
d2σγαβ

(
∂αXµ∂βXµ + 4ibβγ∇αcγ

)

There are several subtle issues we have not touched so far

• Conformal anomaly, i.e. possible dependence of the thrown away volume of

the diffeomorphism group on the Weyl (scale) degree of freedom φ.

• Reparametrizations which satisfy Pξ = 0, i.e. conformal Killing vectors. We

see that equations of motion for cα are just conformal Killing equations. There-

fore, in order not to overcount the configurations which are related by a con-

formal transformation one has to exclude integration over the zero modes of cα

ghosts.

• So far we assumed that all symmetric traceless deformations of the metric can

be generated by reparametrizations. This is however not the case if P † has zero

modes. These zero modes correspond to zero modes of the b ghosts.

We can define the stress-energy tensor of the ghost fields

δSgh = T

∫
d2σ

√
−h Tαβδhαβ .

Performing the variation one finds

T gh
αβ = i(bαγ∇βcγ + bβγ∇αcγ − cγ∇γbαβ − hαβbγδ∇γcδ) .

Here the last term vanishes on shell. In the deriving this expression we also used

the tracelessness of bαβ. One can verify that this tensor is covariantly conserved

∇αTαβ = 0.

In the world-sheet light-cone coordinates σ± the non-vanishing components of

the stress-tensor are

T++ = i
(
2b++∂+c+ + (∂+b++)c+

)
,

T−− = i
(
2b−−∂−c− + (∂−b−−)c−

)
.
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Equations of motion are

∂−b++ = ∂+b−− = 0 ,

∂+c− = ∂−c+ = 0 .

This equations are supplemented by

• by periodicity condition for the closed closed string case

b(σ + 2π) = b(σ) , c(σ + 2π) = c(σ) ;

• by boundary conditions for the open string case

b++(σ) = b−−(σ) , c+(σ) = c−(σ) for σ = 0, π ,

which follow by requiring the vanishing of the boundary terms arising upon

deriving equations of motion.

Note that for the closed string case b++ and c+ are left-moving waves, while b−− and

c− are the right-moving ones. The canonical anti-commutation relations are

{b++(σ, τ), c+(σ′, τ)} = 2πδ(σ − σ′) ,

{b−−(σ, τ), c−(σ′, τ)} = 2πδ(σ − σ′) .

For the closed string case the Fourier mode expansions look as

c+(σ, τ) =
+∞∑

n=−∞
c̄ne

−in(τ+σ) ,

c−(σ, τ) =
+∞∑

n=−∞
cne

−in(τ−σ) ,

b++(σ, τ) =
+∞∑

n=−∞
b̄ne−in(τ+σ) ,

b−−(σ, τ) =
+∞∑

n=−∞
bne−in(τ−σ) .

For the anti-commutation relations this becomes

{bm, cn} = δm+n ,

{bm, bn} = {cm, cn} = 0

and the same for the barred oscillators. The Virasoro generators are

Lgh
m =

∞∑
n=−∞

(m− n) : bm+nc−n :

L̄gh
m =

∞∑
n=−∞

(m− n) : b̄m+nc̄−n :
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The ghosts and anti-ghosts are conformal fields. Indeed, it is easy to compute

[Lgh
m , bn] = (m− n)bm+n , [Lgh

m , cn] = −(2m + n)cm+n .

Comparing this with the transformation rule of the modes of a conformal operator

of dimension ∆

[Lm, An] =
(
m(∆− 1)− n

)
Am+n

we conclude that b and c are indeed the conformal fields of the conformal dimension

∆ = 2 and ∆ = −1 respectively.

Using the explicit expressions for the ghost generators Lgh it is not difficult to

compute the algebra

[Lgh
m , Lgh

n ] = (m− n)Lgh
m+n + cgh(m)δm+n ,

where the central charge appears to be

cgh(m) =
1

12
(2m− 26m3) .

Now if we introduce the total Virasoro generator as

Lm = LX
m + Lgh

m − aδm,0

then it will satisfy the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n + c(m)δm+n

with

c =
d

12
(m3 −m) +

1

12
(2m− 26m3) + 2am .

We see that the total central charge vanishes for d = 26 and a = 1. We again

found the same values for the critical dimension and the normal-ordering constant

as followed from the light-cone approach! Here these conditions on the theory follow

from the requirement of vanishing of the total central charge.

BRST operator

The concept of the BRST operator is very general. In fact, the BRST operator can

be associated to any Lie algebra and it is a useful tool to compute the Lie algebra

cohomologies.

Consider a Lie algebra with generators Ki satisfying the relations

[Ki, Kj] = fk
ijKk .

Introduce ghost and anti-ghost fields ci and bi satisfying the anti-commutation rela-

tions

{ci, bj} = δi
j , i = 1, . . . , dimK
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Introduce the ghost number operator U :

U =
∑

i

cibi .

The eigenvalues of this operator are integers ranging from 0 up to dimK.

The BRST operator is defined as

Q = ciKi − 1
2
fk

ijc
icjbk . (4.18)

First we compute a commutator

[Q,U ] = [ciKi − 1
2
fk

ijc
icjbk, c

mbm]

= −cm{ci, bm}Ki − cm 1
2
fk

ij{cicj, bm}bk − 1
2
fk

ijc
icj{bk, c

m}bm

= −ciKi + fk
ijc

icjbk − 1
2
fk

ijc
icjbk = −Q .

Thus, the BRST operator has the following commutator with U :

[U,Q] = Q

and as the result it increases the ghost number by one:

UQ|χ〉 = (QU + Q)|χ〉 = (Ngh + 1)Q|χ〉 .

Second, compute the anticommutator

{Q,Q} = {ciKi − 1
2
fk

ijc
icjbk, c

sKs − 1
2
f p

mnc
mcnbp}

= cicsKiKs − csciKsKi − 1
2
fk

ijc
icj{bk, c

s}Ks − 1
2
fp

mncmcn{ci, bp}Ki

+ 1
4
fk

ijf
p
mn{cicjbk, c

mcnbp} .

It is easy to find

fk
ijf

p
mn{cicjbk, c

mcnbp} = 4fk
ijf

p
kmcicjcmbp .

Therefore, the expression we are interested in reduces to

{Q,Q} = cicj[Ki, Kj]− 1
2
fk

ijc
icjKk − 1

2
fk

ijc
icjKk + fk

ijf
p
kmcicjcmbp .

Due to the algebra relation [Ki, Kj] = fk
ijKk the first three terms in the last expression

cancel out and we are left with

{Q,Q} = fk
ijf

p
kmcicjcmbp .

Due to the anti-commuting property of the ghosts the last expression can be rewritten

as

{Q,Q} = 1
3
(fk

ijf
p
km + fk

mif
p
kj + fk

jmf p
ki)c

icjcmbp .
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The expression in the bracket vanishes because this is the Jacobi identity written for

structure constants of the Lie algebra

fk
ijf

p
km + fk

mif
p
kj + fk

jmf p
ki = 0 .

Thus, we found that the BRST operator is nilpotent, i.e. it its square is zero

Q2 = 1
2
{Q,Q} = 0 .

This is the fundamental property of the BRST operator. We also assume that Q is

hermitian, i.e. Q† = Q.

Let Hk will be a Hilbert space of states with fixed ghost number U = k. An element

|χ〉 ∈ Hk is called BRST-invariant if

Qχ = 0 (4.19)

Clearly, any state of the form Q|λ〉, where |λ〉 is any state with the ghost number14

k − 1, is BRST-invariant because

Q(Q|λ〉) = Q2|λ〉 = 0 .

The state Q|λ〉 has zero norm because

〈λ|Q†Q|λ〉 = 〈λ|Q2|λ〉 = 0 .

The most important BRST-invariant states are those which can not be written in

the form |χ〉 = Q|λ〉. We will regard two solutions of equation (4.19) equivalent if

|χ′〉 − |χ〉 = Q|λ〉

for some λ.
In fact, we recognize that the BRST-operator mimics all the properties of the de-Rahm operator d which acts on the space of external

(differential) forms on a manifold M. Indeed, it has a property that d2 = 0. A differential form ω is called closed if dω = 0 and it is

called exact if there is another form θ such that ω = dθ. The factor-space of all closed forms over all exact forms of a given degree n

H
n
(M) =

closed forms

exact forms

is called n-th cohomology group of the manifold M. In our present case the operator Q takes values in the Lie algebra and it defines

cohomologies with values in an given representation of the Lie algebra.

Furthermore, the states with zero ghost charge are of special importance. Such

a state must be annihilated by all bk. For such states the BRST operator reduces to

Q|χ〉 = ciKi|χ〉 = 0 .

14As we found the BRST-operator increases the ghost number by one.
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Thus, Q|χ〉 = 0 is equivalent to the condition that Ki|χ〉 = 0, i.e. it is invariant under

the action of the Lie algebra. On the other hand, this state cannot be represented as

|χ〉 = Q|λ〉 for some |λ〉 because the ghost number of |λ〉 should be equal −1 which

is impossible.

Let us apply this general construction to the string case. The Lie algebra in this

case is the Virasoro algebra and we supply it with the ghosts cm and ant-ghosts bm.

The BRST operator is now

Q =
+∞∑
−∞

LX
−mcm − 1

2

∞∑
−∞

(m− n) : c−mc−nbm+n : −ac0 ,

where a is the normal-ordering ambiguity constant for L0. It turns out that this

expression can be written as

Q =
+∞∑
−∞

:
(
LX
−m + 1

2
Lgh
−m − aδm,0

)
cm :

The ghost-number operator is

U =
+∞∑
−∞

: c−mbm :

We would like to investigate the fulfilment of the relation Q2 = 0 in quantum theory.

We find

Q2 =
1

2
{Q,Q} =

+∞∑
n,m=−∞

(
[Lm, Ln]− (m− n)Lm+n

)
c−mc−n .

Here Lm = LX
m + Lgh

m − aδm,0 is a total Virasoro operator. Thus, Q2 = 0 for d = 26

and a = 1 as the consequence of vanishing of the total central charge!

Inverse statement is also true: from Q2 = 0 it follows that the central charge of

the Virasoro algebra vanishes. Indeed, we first note that

Lm = {Q, bm}
From here

[Lm, Q] = [{Q, bm}, Q] = (Qbm + bmQ)Q−Q(Qbm + bmQ) = [bm, Q2] = 0

as Q2 = 0. Therefore, we see that

[Lm, Ln] = [Lm, {Q, bn}] = {[Lm, Q], bn}︸ ︷︷ ︸
=0

+ {Q, [Lm, bn]} = (m− n){Q, bm+n} = (m− n)bm+n .
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One can check that these objects are charges which correspond to new conserved

currents

JB
+ = 2c+(TX

++ + 1
2
T gh

++)

J+ = c+b++ .

There is new and more fundamental fermionic symmetry present – it is BRST

symmetry. Let λ be a grassman (anticomuting) parameter. The BRST transforma-

tion is defined as

δY = [λQ, Y ]

It is given by

δXµ = λc+∂+Xµ + λc−∂−Xµ ,

δc+ = λc+∂+c+ ,

δb++ = 2iλT++ ,

δT++ = 0 .

The ghost number operator

U =
1

2
(c0b0 − b0c0) +

∞∑
n=1

(c−nbn − b−ncn)

Here cn, bn for n > 0 are annihilation operators.

Zero-modes require special treatment. We have

c2
0 = b2

0 = 0 , {c0, b0} = 1

There is a two-dimensional representation of this relations:

c0| ↓〉 = | ↑〉 , b0| ↑〉 = | ↓〉
c0| ↑〉 = 0 , b0| ↓〉 = 0 .

The ghost numbers are U↓ = −1/2 and U↑ = 1/2.

Physical states should have the ghost number −1/2. They are annihilated by b0.

Indeed, consider

cn|χ〉 = bn|χ〉 = 0 , n > 0 and b0|χ〉 = 0 .

The condition of the BRST invariance reduces to

0 = Q|χ〉 =
(
c0(L0 − 1) +

∑
n>0

c−nLn

)
|χ〉 .

We thus reproduced the conditions for a physical state obtained in the old covariant

quantization approach. Physical states of bosonic string are cohomology classes of

the BRST operator with the ghost number −1/2.
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5. Geometry and topology of string world-sheet

5.1 From Lorentzian to Euclidean world-sheets

String world-sheets and the target space both have Lorentzian signature. The con-

nection to the theory of Riemann surfaces can be made by performing the Wick

rotation of both world-sheet and the target space metrics. In particular, for the

world-sheet time τ this means τ → −iτ . Thus, on the string-world sheet this Eu-

clidean continuation corresponds to

σ± = τ ± σ → −i(τ ± iσ) . (5.1)

A word of caution is needed here: One cannot really prove that the theory of the

Lorentzian world-sheets is equivalent to the theory of the Euclidean ones. However,

treating the world-sheets as Euclidean provides by itself a consistent theory of inter-

acting strings. The Euclidean version can be then used to learn as much as possible

about its Lorentzian counterpart.

We start with considering a single closed string whose world-sheet has topology

of a cylinder. Formula (5.1) suggests to introduce the complex coordinates

w = τ + iσ , w̄ = τ − iσ .

The Euclidean closed string covers only a finite interval of σ on the complex plane

0 ≤ σ ≤ 2π and, therefore, only a strip of the 2dim plane.

w

Fig. 5. Mapping the cylinder (τ, σ) to a strip (w, w̄) on the complex w-plane.

One can further map the strip to the whole complex plane by using the conformal

map

z = ew = eτ+iσ .

Lines of constant τ are mapped into circles on the z plane and the operation of time

translation τ → τ + a becomes the dilatation

z → eaz .

A procedure of identifying dilatations with the Hamiltonian and circles about the

origin with equal-time surfaces is called sometimes radial quantization. Mapping
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from the cylinder to the plane cannot change the physical content of the theory

if the theory is conformally invariant, which is the case of string theory in critical

dimension.

We note that the plane is a non-compact manifold. However, one can compactify

it by adding a point at infinity. The corresponding compact surface arising in this

way is the Riemann sphere. A metric on a plane can be transformed to a metric on

a sphere by a suitable choice of the conformal prefactor. For instance one can pick

up the metric

ds2 =
4dzdz̄

(1 + |z|2)2

The formula z = cot θ
2
eiφ defines a stereographic projection of the sphere onto the

plane and under this projection the metric takes the form

ds2 = dθ2 + sin2 θdφ2 ,

i.e. it is the standard round metric on a sphere.

���
�

���
� �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������(outgoing string)

�������������������������

�������������������������

z−plane south pole

north pole

(incoming string)

Fig. 6. Stereographic projection of a sphere onto z-plane. Asymptotic
incoming and outgoing strings are mapped to the south and the north poles
of the sphere respectively.

Since cot π
2

= 0 and cot(0) = ∞ the incoming and outgoing strings are mapped to

the south and the north poles of the sphere respectively.

The example above can be generalized to general world-sheets corresponding

to interacting strings. The crucial observation is that conformal invariance allows

to consider compact world-sheets instead of surfaces with boundaries corresponding

incoming and outgoing strings. The string boundaries are mapped to punctures on a

compact Riemann surface.

Under the Euclidean continuation the basic equation ¤X = 0 transforms into

∂z∂z̄X = 0

with a general solution

X(z, z̄) = X(z) + X̄(z̄) ,

i.e. the left and right-moving excitation correspond now to analytic and anti-analytic

fields on the complex z-plane.
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5.2 Riemann surfaces

On a two-dimensional real manifold M the metric can be locally (i.e. in a given

coordinate chart) defined by the line element

ds2 = h11dx2 + 2h12dxdy + h22dy2

Introducing the complex coordinates

z = x + iy , z̄ = x− iy

the line element can be written as

ds2 = 2eφ|dz + µdz̄|2

with the following identifications

eφ = 1
8

(
h11 + h22 + 2

√
h11h22 − h2

12

)
, µ =

h11 − h22 + 2ih12

h11 + h22 + 2
√

h11h22 − h2
12

.

If h11 = h12 and h12 = 0 then µ = 0 and the metric takes in this coordinate chart

the form

ds2 = 2eφ|dz|2 = 2eφ(dx2 + dy2) .

The corresponding coordinate system is called isothermal or conformal and the co-

ordinates (x, y) define a conformal map of a coordinate chart of a manifold to the

Euclidean plane.

A theorem of Gauss

For any real two-dimensional orientable surface with a positive definite metric there

always exists a system of isothermal coordinates (the theorem of Gauss). It is unique

up to conformal transformations. First, assume that we have already found a system

of isothermal coordinates, i.e. the metric is locally in the form

ds2 = 2eφ|dz|2 .

Performing the coordinate transformation with an analytic function of z:

z → f(z)

we get

ds2 → ds2 = 2eφ|f(z)|2|dz|2 ,

i.e. we get a conformally equivalent metric and, therefore, a new system of the

isothermal coordinates.
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coordinate chart

�����
�����
�����
�����

Fig. 6. Covering the Riemann surface with coordinate patches. Every patch
is homeomorphic to an open domain of the Euclidean plane.

Second, in order to prove that isothermal coordinates exist, consider the so-called

Beltrami equation
∂w

∂z̄
= µ(z, z̄)

∂w

∂z
.

Suppose we solve this equation, then

|dw|2 = |∂zw + ∂z̄w|2 = |∂zw|2|dz + µdz̄|2 =
|∂zw|2
2eφ

ds2 .

Thus,

ds2 =
2eφ

|∂zw|2 |dw|2 ≡ λ|dw|2 ,

i.e. w defines a system of isothermal coordinates. It is a mathematical theorem that

for a sufficiently small coordinate patch and a differentiable metric a solution of the

Beltrami equation with ∂zw 6= 0 always exists.

If two metrics are related by a diffeomorphism and a Weyl rescaling they are said

to define the same conformal structure. If a manifold M is covered by a system of

conformal (isothermal) coordinate patches Uα, then on the overlaps the metrics are

conformally related, i.e. the transition functions on the overlaps Uα∩Uβ are analytic

and the complex coordinates are globally defined. A system of analytic coordinate

patches is called a complex structure and it is the same as a conformal structure.

A two-dimensional topological manifold endowed with a complex structure is

called a Riemann surface. Thus, a Riemann surface is a complex manifold.

Another way to understand that Riemann surface is a complex manifold is to

note that in two dimensions the metric provides a globally-defined integrable complex

structure

Iα
β =

√
hhαγεγβ

such that I2 = −1. The conformal structure is conformally-invariant and globally

well-defined. The existence of an integrable complex structure is necessary and suf-

ficient for an even-dimensional manifold to be complex.
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Recall the fundamental result from the theory of two-dimensional (real) manifolds.

Any compact orientable connected two-dimensional manifold is homeomorphic to

a sphere with handles. The number of handles, g, is called the genus, a topolog-

ical invariant. Thus, every compact Riemann surface, being a compact orientable

connected one-dimensional manifold, has an associated genus.

Gauss-Bonnet theorem

Let M is a compact orientable two-dimensional manifold of genus g with a metric

hαβ. Then

1

4π

∫

M

√
hR = χ(M) = 2− 2g (5.2)

is a topological invariant and it coincides with the Euler characteristic

χ(M) = 2− 2g .

Here we briefly discuss one way to prove the Gauss-Bonnet theorem. Recall that

in two dimensions the Riemann tensor has only one independent component which

is the scalar curvature:

Rαβγδ =
R

2
(hαγhβδ − hαδhβγ) .

Let us choose a system of isothermal coordinates. In this coordinate system the line

element is ds2 = 2eφdzdz̄ and, therefore, the metric has two components hzz̄ = hz̄z =

eφ. The Riemann tensor simplifies to

Rzz̄zz̄ = −hzz̄Rzz̄ = −1

2
(hzz̄)

2R = eφ∂∂̄φ .

The scalar curvature is

R = −2e−φ∂∂̄φ =⇒
√

hR = −4∂∂̄φ = −4φ ,

where 4 is two-dimensional Laplacian (the Euclidean analogue of the ¤ operator).

It is also useful to rewrite the integration measure in the complex coordinates

dx ∧ dy =
i

2
dz ∧ dz̄ ,

i.e. we get

√
hR d2x = −4

∂2φ

∂z∂z̄
dx ∧ dy = −2i

∂2φ

∂z∂z̄
dz ∧ dz̄ = 2i

(
dz̄

∂

∂z̄

)
dz

∂φ

∂z
.
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The last formula can be understood in the sense of calculus of exterior differential

forms ∂f = ∂f
∂z

and ∂̄f = ∂f
∂z̄

. In particular, the de Rahm operator d = dx ∂
∂x

+ dy ∂
∂y

can be written as

d = ∂ + ∂̄ ≡ dz
∂

∂z
+ dz̄

∂

∂z̄
.

Also one has ∂∂ = ∂̄∂̄ = 0. Therefore, we can rewrite our formula as

√
hR = 2id(∂φ) .

This shows that
√

hR is locally a total derivative and therefore, we see again that

eq.(5.2) cannot change under smooth variations of the metric, i.e. it is a topological

invariant.

On a compact Riemann surface M we consider an abelian differential Ω, which is

a meromorphic differential form. It means that in a given coordinate patch (Uα, zα)

it can be written in the form Ω = fαdzα, where fα is a meromorphic function15.

We can also suppose that the coordinate patches are chosen in such a way that

every Uα contains at most one pole or one zero of Ω. In a patch Uα the metric is

ds2 = 2eφα|dzα|2. Thus, on the intersections of the patches Uα ∩ Uβ we have

eφα

eφβ
=

∣∣∣fα

fβ

∣∣∣
2

.

Thus, there exists a globally defined function

ϕ =
eφα

|fα|2 on Uα for all α .

This function is smooth except for singularities at zeros and poles of Ω. Since log |fα|2
is harmonic outside zeros and poles of Ω we have

√
hR = 2id(∂ log ϕ) .

Let Mε = M − ∪Dk,ε, where Dk,ε are small disks around the singularities of Ω.

Then, by Stokes’s theorem we have
∫

M

√
hR = 2i lim

ε→0

∫

Mε

d(∂ log ϕ) = −2i
∑

k

lim
ε→0

∫

∂Dk,ε

∂ log ϕ .

To evaluate the integrals over the circles we note that at a zero or pole of Ω the

function ϕ is of the form ϕ = ψ/|z|2m with a smooth function ψ without zeros and

m is the order of zero or pole (m < 0 in the latter case). Therefore,

lim
ε→0

∫

∂Dk,ε

∂ log ϕ = lim
ε→0

∫

|z|=ε

∂ log |z|−2m = −m lim
ε→0

∫

|z|=ε

dz

z
= −2πim .

15A function f(z) is called meromorphic if it does not have any other singularities except poles.
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Summing up we obtain ∫

M

√
hR = −4π deg Ω ,

where deg Ω is defined as the difference of the number of zeros and the number of

poles of Ω:

deg Ω = # zeros−# poles .

It is now the Poincaré-Hopf theorem that states that deg Ω = 2g − 2, where g is the

genus of the Riemann surface. Thus, the Gauss-Bonnet theorem follows from the

Poincaré-Hopf theorem.

Finally we note that due to the identity

εαβεγδ = hαγhβδ − hαδhβγ

the Euler characteristic can be rewritten in the form16

χ(M) =
1

8π

∫

M
εαβεγδRαβγδ .

2

+

g g

g  +  g g=0

1 2

1

Fig. 7. If there are two surfaces of genera g1 and g2 then by removing from
each surface a half-sphere we can glue the resulting surfaces into a surface
of genus g1 + g2 and the Riemann sphere of genus zero.

To illustrate the Gauss-Bonnet theorem, we compute the topological invariant

eq.(5.2) for a sphere. We will take a model of a sphere which represent it as the

complex plane (including the point at infinity) with the metric

ds2 =
4dzdz̄

(1 + |z|2)2
= 2eφdzdz̄ ,

16This is a non-trivial characteristic class of the tangent bundle to M known as the Euler class.
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i.e the conformal factor φ and the action of Laplacian on it are

φ = ln 2− 2 ln(1 + |z|2) =⇒ −4φ =
8

(1 + |z|2)2
.

Therefore,
1

4π

∫

C
dxdy

√
hR =

1

4π

∫ ∞

0

2πrdr
8

(1 + r2)2
= 2 ,

which is indeed the Euler characteristic for sphere, a compact orientable manifold

with genus g = 0. It is also known that on a torus, a manifold of genus g = 1, there

exists the globally defined flat metric. Therefore, the Euler characteristic of torus

is χ = 0. In fact, the Euler characteristic χ(g) for a Riemann surface of arbitrary

genus g can be found by using the recurrent formula

χ(g1 + g2) = χ(g1) + χ(g2)− χ(0) = χ(g1) + χ(g2)− 2

and the fact that χ(1) = 0. This again leads to the formula χ(g) = 2− 2g.

5.3 Moduli space

The moduli space of all the metrics is the same as the moduli space of Riemann

surfaces and it is defined as the space of all metrics devided by diffeomorphisms and

Weyl rescalings

Mg =
all metrics

diffeomorphisms×Weyl rescalings
.

The moduli space is finite-dimensional and it is parametrized by a finite number of

complex parameters τi called moduli. The dimension of the moduli space is another

topological invariant and it depends on the genus g only.

Complex geometry

Since we have a system of well-defined complex coordinates on a Riemann surface

we can consider general tensors

V z...zz̄...z̄
z...zz̄...z̄(z, z̄) ,

in particular, V z∂z and V z̄∂z̄ are vector fields and Vzdz and Vz̄dz̄ are one-forms. All

these tensors are one component objects. The metric hzz̄ and hzz̄ can be used to

convert all z̄ indices into z-indices. Tensors with one type of indices (for example,

z indices) are called holomorphic. Holomorphic tensors which depend on z variable
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only are called analytic. A holomorphic tensor with p lower and q upper indices has,

by definition, the rank n = p− q:

V

z . . . z︸ ︷︷ ︸
q

z . . . z︸ ︷︷ ︸
p

(z, z̄) ⇐ holomorphic tensor of rank n = p− q;

V z...z
z...z(z) ⇐ analytic tensor;

Under analytic coordinate transformations z → f(z) a holomorphic tensor of rank n

transforms as follows

V (z, z̄) →
(

∂f(z)

∂z

)n

V (f(z), f̄(z̄)) .

Denote by V (n) the space of all holomorphic tensors of rank n. This space can be

supplied with the scalar product

(V
(n)
1 |V (n)

2 ) =

∫
d2z

√
h (hzz̄)n

(
V

(n)
1

)∗
V

(n)
2 , V

(n)
1 , V

(n)
2 ∈ V (n)

and the associated norm ||V (n)||2 = (V n|V (n)). This scalar product is Weyl-invariant

for n = 1 only.

In the analytical coordinate system the Christoffel connection has only two non-

vanishing components

Γ z
zz = ∂φ , Γ z̄

z̄z̄ = ∂̄φ .

This connection allows to define two covariant derivatives

∇(n)
z : V (n) → V (n+1), ∇(n)

z T (n)(z, z̄) = (∂ − n∂φ)T (n)(z, z̄)

∇z
(n) : V (n) → V (n−1), ∇z

(n)T
(n)(z, z̄) = hzz̄∇z̄T

(n)(z, z̄) = hzz̄∂̄T (n)(z, z̄) .

These two differential operators defined on holomorphic tensors of a fixed rank n

commute with the analytic coordinate transformations z → f(z). One can compute

an adjoint of ∇(n)
z and find that

(∇(n)
z )† = −∇z

(n+1) .

The elements of the complex geometry we introduced above allows one to obtain

some information about the moduli space. Consider an arbitrary infinitesimal change

of the metric

δhαβ = Λhαβ︸ ︷︷ ︸
Weyl

+∇αVβ +∇βVα︸ ︷︷ ︸
diff

+
∑

i

δτi
∂

∂τi

hαβ

︸ ︷︷ ︸
moduli

.
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The last term here reflects the dependence of the metric on moduli which cannot be

compensated by diffeomorphisms and Weyl rescalings. We can split this variation

into trace and traceless parts

δhtrace
αβ =

(
Λ +∇γVγ +

1

2
hγδ

∑
i

δτi
∂

∂τi

hγδ

)
hαβ

δhtraceless
αβ = ∇αVβ +∇βVα − hαβ∇γVγ︸ ︷︷ ︸

Operator P

+
∑

i

δτi

( ∂

∂τi

hαβ − 1

2
hαβhγδ ∂

∂τi

hγδ

)
.

We see that we can always shift the Weyl rescaling parameter Λ as

Λ → Λ−∇γVγ − 1

2
hγδ

∑
i

δτi
∂

∂τi

hγδ

so that the trace part of the variation will transform as

δhtrace
αβ = Λhαβ .

In the complex coordinates we have hzz = hz̄z̄ = 0 and therefore rewriting the

variation formulae in these coordinates we find

δhzz̄ = Λhzz̄ ,

δhzz = 2∇(1)
z Vz︸ ︷︷ ︸

Operator P

+
∑

i

δτ iµi
zz ,

where µi
zz = ∂τi

hzz = hzz̄µ
iz̄
z . We see, in particular, that an infinitesimal change of

hzz̄ can always be written as a Weyl rescaling. Also the covariant derivative ∇(1)
z

introduced above should be naturally identified with the operator P . Finally, we

note that decomposition into sum of two terms

δhzz = 2∇(1)
z Vz +

∑
i

δτ iµi
zz

is not orthogonal w.r.t. to the scalar product we introduced above. Denote by φi
zz a

basis of the orthogonal complement of ∇(1)
z :

(φi
zz|∇(1)

z Vz) = −(∇z
(2)φ

i
zz|Vz) for any Vz ∈ V (1).

The last equation is equivalent to

∇z
(2)φ

i
zz = 0 =⇒ ∂̄φi

zz = 0 .

Thus, the kernel (or, in other words, the space of zero modes) of the operator P † =

∇z
(2) consists of global analytic tensors of the second rank. Such tensors are of special

importance and they are called quadratic differentials. Thus, the dimension of the

– 86 –



moduli space is equal to the number of lineally independent quadratic differentials

on a given Riemann surface of genus g. The theory of quadratic differentials was

developed by Kurt Strebel (I will add more on Strebel theory in due course).

The kernel of the operator ∇(1)
z is spanned by vectors from V (1):

∇(1)
z Vz = hzz̄∂V z̄ = 0 =⇒ ∂V z̄ = 0 .

The globally defined vector fields which span a kernel of ∇(1)
z are called conformal

Killing vectors. They generate conformal Killing group (or the group of conformal

isometries, i.e. globally defined diffeomorphisms which can be completely absorbed

by the Weyl rescalings).

Riemann-Roch theorem

An important question of how many moduli for a Riemann surface of genus g exists

is answered by the Riemann-Roch theorem. Define the index of ∇(n)
z as the number of

its zero modes minus the number of zero modes of its adjoint ∇z
(n+1). The Riemann-

Roch theorem states that

ind∇(n)
z = dim ker∇(n)

z − dim ker∇z
(n+1) = −(2n + 1)(g − 1) =

1

2
(2n + 1)χg .

For n = 1 we therefore have

#complex moduli−#conformal Killing vectors = 3g − 3

One can find the number of conformal Killing vectors for a compact Riemann

surface in an independent way. These are globally defined analytic vector fields whose

norm is finite

||V ||2 =

∫

Mg

√
hhzz̄V

zV z̄ < ∞ .

Here V z = Vnzn. For the case of sphere with metric ds2 = 4dzdz̄
(1+|z|2)2

one finds that

there exists three independent conformal Killing vectors

∂z , z∂z , z2∂z .

Indeed, for the norm we have

||V ||2 = 2π

∫ ∞

0

rdr
8

(1 + r2)4
r2k =





8π
3

k = 0
4π
3

k = 1
8π
3

k = 2

where k = 0, 1, 2 for the three vector fields in question. We see that if k ≥ 3 the

integral becomes divergent, therefore, for instance, the field z3∂z has an infinite norm,
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i.e. it is not normalizable. The three conformal Killing vectors are well behaved at

∞ as can be seen by making conformal transformation w = 1/z under which

−w2∂w , − w∂w − ∂w .

The limit z → ∞ corresponds now to w → 0 and we see that these fields are well-

behaved at this point17. The three conformal Killing vectors we found correspond to

the Virasoro generators L0 and L±1 and they span (over the complex field) the Lie

algebra sl(2,C). Therefore, sl(2,C) is the Lie algebra of analytic globally defined

maps of the Riemann sphere onto itself.

Thus, the Riemann sphere has three conformal Killing vectors and, according to

the Riemann-Roch theorem, no moduli. That means that all metrics on the sphere

are conformally equivalent, or, in other words, there is a unique Riemann surface of

genus zero.

One can count the number of conformal Killing vectors for higher genus Riemann

surfaces as well. To this end one has to use the Ricci identity

∇z
(n+1)∇(n)

z −∇(n−1)
z ∇z

(n) =
1

2
nR .

Let V (n) ∈ ker∇(n)
z . Then we have

0 = (∇(n)
z V

(n)|∇(n)
z V

(n)
) = −(V

(n)|∇z
(n+1)∇(n)

z V
(n)

) =

= − 1

2
(V

(n)|∇z
(n+1)∇(n)

z V
(n)

)− 1

2
(V

(n)|∇z
(n+1)∇(n)

z V
(n)

)

= − 1

2
(V

(n)|∇(n−1)
z ∇z

(n) +
1

2
nR)− 1

2
(V

(n)|∇z
(n+1)∇(n)

z V
(n)

)

=
1

2

[
(∇(n)

z V
(n)|∇(n)

z V
(n)

) + (∇z
(n)V

(n)|∇z
(n)V

(n)
)− 1

2
nR(V

(n)|V (n)
)
]

.

Therefore, for any vector from the kernel of ∇(n)
z the following equality is valid

(∇(n)
z V (n)|∇(n)

z V (n))︸ ︷︷ ︸
non−negative

+ (∇z
(n)V

(n)|∇z
(n)V

(n))︸ ︷︷ ︸
non−negative

−1

2
nR(V (n)|V (n)) = 0 .

Consider the case of a torus g = 1. On a torus there is a globally defined flat metric

ds2 = dzdz̄ which gives R = 0. Therefore, the equality above leads to two equations

∂V (n) = ∂̄V (n) = 0 ,

i.e. V (n) = const and, therefore, dim ker∇(n)
z = 1. Thus, there is a unique generator

of conformal isometries, it corresponds to the rigid U(1)×U(1) rotations of the torus.

The Riemann-Roch theorem gives for g = 1

#complex moduli−#conformal Killing vectors︸ ︷︷ ︸
=1

= 3− 3 = 0 ,

17According to our general discussion of Riemann surfaces the sphere requires at least two coor-
dinate patches to make an atlas. Transformation from one patch to another is analytic and is given
by w = 1/z.
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i.e. the torus is characterized by one complex modulus τ .

For g ≥ 2 there is theorem that states that the corresponding manifold always admits

a metric with constant negative curvature. For n 6= 0 this means that −1
2
nR > 0 and,

therefore, dim ker∇z
(n) = 0. The Riemann surfaces with g ≥ 2 have no conformal

isometries and by the Riemann-Roch theorem that means that the number of complex

moduli n = 1 is 3g − 3.

For n = 0 we have dim ker∇(0)
z = 1, because the corresponding kernel is spanned by

constants. The Riemann-Roch theorem implies then that

dim ker∇z
(1) − dim ker∇(0)

z︸ ︷︷ ︸
=1

= (2n + 1)︸ ︷︷ ︸
n=0

(g − 1) = g − 1 ,

i.e. dim ker∇z
(1) = g. The kernel of ∇z

(1) is spanned by one forms

∇z
(1)ωz = hzz̄∂̄ωz = 0 =⇒ ∂̄ωz = 0 .

Thus we arrive at another important consequence of the Riemann-Roch theorem:

on a Riemann surface of the genus g there exists precisely g linearly independent

(globally defined) analytic one-forms. These analytic differential forms are called

abelian differentials of the first kind.

The information we obtained by using the Riemann-Roch theorem is summarized

in the Table below.

g dim ker∇(n)
z dim ker∇z

(n+1)

0 2n + 1 0

1 1 1

> 1 1 for n = 0 g

0 for n > 0 (2n + 1)(g − 1)

Moduli space of tori

Here we would like to look more closely at the moduli space which describes confor-

mally non-equivalent tori – the Riemann surfaces of the genus g = 1. The torus can

be obtained by performing the following identification on the complex plane

z ≡ z + nλ1 + mλ2 , n,m ∈ Z , λ1, λ2 ∈ C .

The parameters λ1,2 are subject to conformal transformations z → λz and, therefore,

only their ratio τ = λ2

λ1
is scale-invariant. By using this freedom (the U(1)-rotation

+ real rescaling) one can always bring the parallelogram defining the torus upon
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gluing the opposite sides to the canonical form depicted on Fig.9, which corresponds

to Imτ > 0.

z
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Fig. 8. Defining the torus by factorizing the complex z-plane.

The parameter τ takes values in the upper half-plane which is called Teichmüller

space. The parameter τ itself is named the modular or Teichmüller parameter. The

Teichmüller parameter is not yet a parameter describing the moduli space.

0

 +1

1
Fig. 9. Canonical representation of the torus by parameter τ taking values
in the Techmüller space which is identified with the upper half-plane.

The reason is that there are global diffeomorphisms which are not smoothly connected

to the identity; they leave the torus invariant but they act non-trivially on the

Teichmüller parameter. They correspond to the so-called Dehn twists

• λ1 → λ1, λ2 → λ1 + λ2, which gives τ → τ + 1;

• λ1 → λ1 + λ2, λ2 → λ2, which gives τ → τ
τ+1

;

It turns out that these two transformations generate the group SL(2,Z). It is a group

of matrices (
a b

c d

)
,
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where a, b, c, d ∈ Z and ad − bc = 1. The action on the modular parameter τ is in

the form of the fractional-linear transformation

τ → τ ′ =
aτ + b

cτ + d
.

One can check that these transformations preserve the area of the parallelogram.

Since two SL(2,Z)-matrices

+

(
a b

c d

)
−

(
a b

c d

)

act on τ in the same way, the modular group of the torus is PSL(2,Z) = SL(2,Z)/Z2.
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Fixed points of S and ST

0 1−1 −1/2 1/2

8

Fig. 8. Fundamental domain Mg=1 of the Teichimüller space describing the
moduli space of conformally non-equivalent tori.

The moduli space of conformally non-equivalent tori is then the quotient of the

Teichmüller space of the modular group

Mg=1 =
Teichmüller space

modular group
.

One usually uses the following generators of the modular group

T : τ → τ + 1 , S : τ → −1

τ
.

Any element of SL(2,Z) is a composition of a certain number of S and T generators:

SSTSTTTST....SST
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Any point in the upper-half plane is related by a modular transformation to a point

in the so-called fundamental domain F ≡ Mg=1 of the modular group. It can be

chosen as

Mg=1 =
{
− 1

2
≤ Reτ ≤ 0, |τ |2 ≥ 1 ∪ 0 < Reτ <

1

2
, |τ |2 > 1

}
.

The modular group does not act freely on the upper-half plane because some of the

modular transformations have fixed points. The point τ = i is the fixed point of S:

τ → − 1
τ

and τ = e
2πi
3 = −1

2
+ i

√
3

2
is the fixed point of ST . The existence of the

fixed points implies that Mg=1 is not a smooth manifold, rather it has singularities

of the orbifold type.

Since it does not matter which fundamental region to choose in order to integrate

over in the one-loop path integral the integrand the corresponding string amplitude

should be invariant under modular transformations. The requirement of the modular

invariance is one of the most important principles of string theory. In particular, it

leads to strong restrictions on the possible gauge groups for the heterotic string.

6. Classical fermionic superstring

Introduction of the world-sheet fermionic degrees of freedom requires understanding

of how spinors on curved manifolds (world-sheets) are defined. The discussion in the

next paragraph is general and can be applied to a manifold of an arbitrary dimension

d.

6.1 Spinors in General Relativity

It is not straightforward to introduce spinors in General Relativity. If we have a

tensor field T
i1...ip
j1...jq

of rank (p, q) on a manifold M then under general coordinate

transformations of the coordinates xi on M: xi → x′i(xj), this field transforms as

follows

T
′k1...kp

l1...lq
(x′) =

∂x′k1

∂xi1
· · · ∂x′kp

∂xip

∂xj1

∂x′l1
· · · ∂xjq

∂x′lq
T

i1...ip
j1...jq

(x) .

Here tensor indices are acted with the matrices ∂x′i
∂xj which form a group GL(d,R).

This is a group of all invertible real d× d matrices. This group does not have spinor

representations.
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Tangent plane at a point x
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x

Fig. 9. Vielbien ea
α is a collection of d orthogonal vectors forming a basis

of the tangent space at any point x on the d-dimenional manifold. In string
theory M with d = 2 is the string world-sheet and x ≡ (σ, τ).

On the other hand, spinors are objects which transform under the spinor repre-

sentations of the Lorentz group. The Lorentz group in d-dimensions is SO(d− 1, 1)

and it is not GL(d,R). At each point of the manifold there is an inertial frame. In

this inertial frame the Lorentz transformations are well defined. One can think that

the Lorentz transformations act in the flat Minkowski space tangent to the manifold

M at any given point x. In the tangent plane we introduce a basis ea
α(x), a = 1, . . . , d

of orthonormal vectors:

(ea, eb) ≡ hαβea
αeb

β = ηab ,

where ηαβ is the flat Minkowski metric. In fact, ea
α is an invertible d×d x-dependent

matrix which is called vielbein. The index α is called “curved” and its acted by

the general coordinate transformations (diffeomorphisms) as the usual vector index,

while the index a is called “flat” and its acted by the local (i.e. x-dependent) Lorentz

transformations as we will see in a moment. The inverse matrix is eα
a and it obeys

ea
αeα

b = δa
b . Because of this relation, we also have that

ηabe
a
αeb

β = hαβ .

There is no a preferred choice of the basis in the tangent space and one orthonormal

set of tangent vectors can be transformed into the other by means of local Lorentz

transformations

ea
α → Λa

be
b
α .

Introduction of the vielbein in favour of the metric introduces additional degrees

of freedom. Indeed, the vielbein being d × d-matrix has d2 components, while the

metric hαβ has only d(d+1)
2

components in d dimensions. On the other hand, if we

require that the theory we consider has the local Lorentz symmetry, then there are
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d(d−1)
2

local Lorentz transformations which should allow to remove the additional

(unphysical) components of the vielbein:

d2︸︷︷︸
vielbein

− d(d− 1)

2︸ ︷︷ ︸
local Lorentz

=
d(d + 1)

2︸ ︷︷ ︸
metric

Thus, the vielbein brings new degrees of freedom, but they can be removed by a

new symmetry which is the local Lorentz transformations. On the other hand, the

vielbein allows one to introduce coupling of the gravitational degrees of freedom with

spinors.

Spinor representations

(Pseudo-)orthogonal groups (SO(d − 1, 1)) SO(d) in addition to the usual tensor

representations have also spinor representations. These are not single-valued but

rather double-valued representations of SO(d).

Consider, for instance, the group SO(3). This group has the so-called universal

covering group which is SU(2). The relation between them is as follows

SO(3) → SU(2)/Z2 .

The group SO(3) is not simply connected, while SU(2) is. Here

Z2 =

{(
1 0

0 1

)
,

(−1 0

0 −1

)}

is the center of SU(2), i.e. a set of matrices from SU(2) which commute with all other

SU(2)-matrices. Due to existence of the discrete center Z2 representations of SU(2)

split into two different classes of integer and half-integer spin. Only representations

with integer spin are those of (single-valid) SO(3). Representations of SU(2) with

half-integer spin are spinor (double-valid) representations of SO(3). Indeed, rotation

by the angle φ around the axes given by a fixed 3dim unit vector n = (n1, n2, n3),

n2
i = 1, corresponds the transformation

g(φ, n) = exp
(
− i

2
φniσi

)
=

(
cos φ

2
− in3 sin φ

2
− (in1 + n2) sin φ

2

(−in1 + n2) sin φ
2

cos φ
2

+ in3 sin φ
2

)
,

where σi are three Pauli matrices. One can easily verify that g(φ, n) ∈ SU(2).

Rotation by the angle φ = 2π is an identity transformation in SO(3) but it is not

the identity in SU(2). Indeed, one can see that

g(φ + 2π, n) = −g(φ, n) ,

g(φ + 4π, n) = g(φ, n) .
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Another example is provided by the Lorentz group of the 4dim Minkowski space-

time, which is O(3, 1). The spinor representation of O(3, 1) is realized on the space

C4, which is called a space of 4-component spinors.18 This representation looks as

g(ω) = exp
(1

2
γabωab

)
,

where γab is the anti-symmetric product of the 4dim γ-matrices and ωab = −ωba are

parameters of the Lorentz transformation. It is important to note that in general

dimension d the spinor has 2

[
d
2

]
complex components.

The spinor ψ̄ = ψ†γ0 is called the Dirac conjugate of ψ. Its importance is explained

by the fact that the quantity ψ̄ψ = ψ†γ0ψ is an invariant of O(3, 1).

In any dimension one can define the charge conjugation matrix C. Indeed, the

Clifford algebra of γ-matrices transforms into itself under operation of transposition

{γa, γb}t = {(γa)t, (γb)t} = 2ηab ,

therefore by irreducibility of the corresponding representation of the Clifford algebra

there should exists a matrix C which intertwines the original and the transposed

representation of the algebra, namely:

(γa)t = −CγaC−1 .

Matrix C is called the charge conjugation matrix.

Sometimes (depending on the dimension and signature od space-time) it is possible

to define the notion of Majorana spinor. Majorana conjugate spinor is, by definition,

ψtC. The Majorana spinor is then the spinor for which the Dirac conjugate is equal

to the Majorana conjugate:

ψ†γ0 = ψtC .

Spinor algebra in two dimensions

18The group O(3, 1) is not connected and it has four connected components, which however are
not simply connected. The component which contains an identity coincides with SO(3, 1), which
are the transformations preserving orientation of the vierbein. The transformations which preserve
the direction of time are called orthochronous and they form the subgroup SO+(3, 1). The quotient
group O(3, 1)/SO+(3, 1) is the Klein four-group Z2×Z2, which is the semidirect product of SO+(3, 1)
with an element of the discrete group {1, P, T, PT}, where P and T are the space inversion and
time reversal operators

P = diag(1,−1,−1,−1) , T = diag(−1, 1, 1, 1) .

The covering (or spin) group of SO+(3, 1) coincides with SL(2,C). One can show that SO+(3, 1) =
SL(2,C)/{I,−I} ≡ PSL(2,C). Thus, SL(2,C) is the double-cover of SO+(3, 1).
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The two-dimensional Dirac matrices ρa, a = 0, 1 obey the algebra

{ρa, ρb} = 2ηab , ηab =

(−1 0

0 +1

)
.

A particular basis foe the Clifford algebra is given by

ρ0 =

(
0 1

−1 0

)
, ρ1 =

(
0 1

1 0

)
.

We also define a matrix ρ̄

ρ̄ = ρ0ρ1 =

(
1 0

0 − 1

)

being a 2dim analogue of the 4dim matrix γ5. The charge conjugation matrix can be

taken to be C = ρ0. The Majorana spinor is then ψ†ρ0 = ψtC = ψtρ0, i.e. ψ = ψ∗

which simple means that the spinor is real. Thus, in 2dim Majorana spinor is just a

spinor with real components.

Finally, with the help of the vielbein (“zweibein” in 2dim) one can define the

“curved” ρ-matrices:

ρα = eα
aρa .

They satisfy the following algebra

{ρα, ρβ} = 2hαβ .

Spinors in 2dim have various interesting properties. One of them is the so-called

spin-flip identity. If we have two Majorana spinors ψ1 and ψ2, then the following

identity is valid

ψ̄1ρ
α1 · · · ραnψ2 = (−1)nψ̄2ρ

αn · · · ρα1ψ1 .

It is proved as follows.

ψ̄1ρ
α1 · · · ραnψ2 = (ψ̄1ρ

α1 · · · ραnψ2)
t = −ψt

2(ρ
αn)t · · · (ρα1)t(ρ0)tψ1

= (−1)nψt
2CραnC−1 · · ·Cρα1C−1Cψ1 = (−1)nψ̄2ρ

αn · · · ρα1ψ1 .

Another identity is

ραρβρα = 0 . (6.1)

Indeed, one has from the Clifford algebra that ρaρ
α = 2 and, therefore

ραρβρα = −ραραρβ + 2ρβ = −2ρβ + 2ρβ = 0 .
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Finally, we discuss the completeness condition for the ρ-matrices. The matrices ρa,

ρ̄ and the identity matrix I form a basis in the space of all 2 × 2-matrices. Any

2× 2-matrix M can be expanded as

M = qaρ
a + q̄ρ̄ + qI .

The coefficients of this expansion are found as follows

qa = 1
2
Tr(Mρa) , q̄ = 1

2
Tr(Mρ̄) , q = 1

2
Tr(M) .

Plugging this back we obtain

2M = Tr(Mρa)ρ
a + Tr(Mρ̄)ρ̄ + Tr(M)I

or, more explicitly,

2Mαβ = Mγδ

[
(ρa)δγρ

a
αβ + ρ̄δγ ρ̄αβ + δδγδαβ

]
.

Since M is an arbitrary matrix from here we derive the following completeness rela-

tion

(ρa)δγρ
a
αβ + ρ̄δγ ρ̄αβ + δδγδαβ = 2δαγδβδ .

Spin connection

We would like to introduce a new local symmetry which is the Lorentz symmetry.

However, we have to guarantee that the the theory we are after should be invariant

w.r.t. these local transformations. As for the case of any local gauge invariance,

the local Lorentz invariance can be achieved by introducing q gauge field ωa
α b(x) for

SO(d − 1, d). Here a, b are SO(d − 1, d)-indices and α is the “curved” vector index.

Under the local Lorentz transformations with the matrix Λ this field transforms as

follows

ωα → ΛωαΛ−1 − ∂αΛΛ−1 .

The gauge field of the local Lorentz symmetry is usually called the spin connection.

The spin connection plays the same role for the “flat” indices as the Christoffel

connection plays for the “curved” ones. We have the following substitution of the

basic objects in the theory
(
haβ(x), Γδ

αβ(x)
)
→

(
ea

α(x), ωa
α b(x)

)
.

Introduction of the spin connection should not change the gravitational content of

the theory. This means that the spin connection should not be a new independent

field, rather it should be determined in terms of vielbein. The simplest and elegant

way to do it is to notice that we have the covariant derivatives

DαV β = ∂αV β + Γβ
αδV

δ

DαV a = ∂αV a + ωa
α bV

b
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The “flat” and “curved” indices of the vector are related as V a = ea
αV α. This way of

transforming “flat” to “curved” indices should be valid for any tensor, in particular,

one has to have

DαV a = ea
βDαV β .

This is possible only if

Dαea
β = ∂αea

β − Γλ
αβea

λ + ωa
α be

b
β = 0 .

This equation can be solved for ωα expressing it through the vielbein:

ωab
α =

1

2
eβa(∂αeb

β − ∂βeb
α)− 1

2
eβb(∂αea

β − ∂βea
α)− 1

2
eλaeγb(∂λeγc − ∂γeλc)e

c
α .

Since the connection is completely expressed via the dynamical vielbein and, by this

means, is not an independent field, it is called sometimes composite.

Spin manifolds

On which manifolds one can introduce spinors? This is rather non-trivial ques-

tion. Vielbein can always be introduces locally in a coordinate patch Uα. It is quite

rare that the vielbein can be also globally defined. In the latter case such manifolds

are called parallelizable. Examples of parallelizable manifolds are Lie groups. On the

other hand, two-sphere is not parallelizable because there is no globally defined vec-

tor field (not talking about the vielbein) which vanishes nowhere. Thus, the vielbein

is defined locally and in the intersection of the coordinate patches Uα ∩ Uβ one has

e(α)(x) = Λ(αβ)(x)e(β)(x) .

Here Λ(αβ)(x) is the local Lorentz transformation (i.e. a matrix from SO(d − 1, 1))

which is called the transition function. In the region of triple intersection Uα ∩Uβ ∩
Uγ = Uαβγ the transition functions should satisfy the following condition

Λ(αβ)Λ(βγ)Λ(γα) = 1 .

Now if we introduce locally a spinor field ψ(α) then passing from one coordinate patch

to another one the field must transform according to

ψ(α)(x) = Λ̄(αβ)ψ(β)(x) .

Here Λ̄(αβ) is the SO(d − 1, 1) matrix in the spinor representation. For spinorial

transition functions Λ̄ it also makes sense to require that in the triple intersection

region the following relation is satisfied

Λ̄(αβ)Λ̄(βγ)Λ̄(γα) = ±1 . (6.2)

However, since the spinor representation is double-valued, instead of Λ̄ one can

equally use −Λ̄. Thus, to define spinors on a non-parallelizable manifold one has
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to pick up the signs for Λ̄(αβ) such that relation (6.2) is satisfied. When it is possible,

the corresponding manifold M is said to admit the spin structure and it is called the

spin manifold. Note that M may admit several inequivalent spin structures.

String theory contains world-sheet fermions and therefore it can be defined on

spin-manifolds. It turns out that in 2 and 3dim any orientable manifold is the spin

manifold. It is not so in 4dim and higher. Finally, we state without proof that on a

Riemann surface of genus g there are 22g inequivalent spin structures.

6.2 Superstring action and its symmetrices

The superstring action is based on two multiplest of 2dim supersymmetry. The first

one is the matter multiplet (
Xµ, ψµ, F µ

)
.

Here Xµ is a bosonic field of the Polyakov string, ψµ is the Majorana spinor in 2dim

and F µ is the real scalar, which is an auxiliary field to guarantee the equality of

the bososnic and fermionic degrees of freedom off-shell (i.e. without usage of the

equations of motion). Also the target space-time index µ is just a label so that for

µ = 0, . . . , d−1 we have d matter multiplets. the second multiplet is the supergravity

multiplet (
ea

α, χα, A
)

.

Here χα is the gravitino, i.e. the Majorana spinor which is also a vector of the 2dim

world-sheet. The field A is an auxiliary scalar field which is needed to guarantee the

equality of the bososnic and fermionic degrees of freedom off-shell. We note that the

kinetic term for the gravitino in any dimension is χ̄αγαβγDβχγ and it is absent in

two dimensions (because there are only two ρ -matrices while the anti-symmetrized

product γαβγ requires at least three to exist). Finally we introduce e ≡ |detea
α| =

√
h.

The superstring action is a generalization of the bosonic Polyakov action to in-

clude the include the world-sheet fermionic degrees of freedom in the supersymmetric

way. It has the following structure

S = − 1

8π

∫
d2σe

(
hαβ∂αXµ∂βXµ + 2iψ̄µρα∂αψµ − iχ̄αρβραψµ

(
∂βXµ − i

4
χ̄βψµ

))
.

This action has five local symmetries

1. Local supersymmetry. Let ε is the Majorana spinor. We consider it as the

infinitezimal parameter of local supersymmetry transformations

δεX
µ = iε̄ψµ , δεe

a
α =

i

2
ε̄ρaχα ,

δεψ
µ =

1

2
ρα

(
∂αXµ − i

2
χ̄αψµ

)
ε , δεχα = 2Dαε .
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Here Dαε = ∂αε− 1
2
ωαρ̄ε and ωα is the connection with torsion:

ωα = ωα(e) +
i

4
χ̄αρ̄ρβχβ ,

where ωα(e) = −1
e
eαaε

βγ∂βea
γ is the standard composite spin connection (it has

only one-non-trivial component in 2dim).

2. Weyl invariance. Let Λ be a bosonic local parameter Λ = Λ(σ, τ). The Weyl

transformations are

δΛXµ = 0 , δΛea
α = Λea

α ,

δΛψµ = −1

2
Λψµ , δΛχα =

1

2
Λχα .

3. Super Weyl invariance. Let η be the Majorana spinor. Under the super Weyl

transformations only the gravitino transforms as

δηχα = ραη .

The invarince of the action easily follows from the identity ραρβρα = 0.

4. Local Lorentz symmetry. Let ` be a bosonic local parameter ` = `(σ, τ). The

local Lorentz transformations are

δ`X
µ = 0 , δ`e

a
α = `εa

be
b
α ,

δ`ψ
µ =

1

2
`ρ̄ψµ , δ`χα =

1

2
`ρ̄χα .

5. Reparametrizations. Let ξα be a bosonic vector parameter ξα = ξα(σ, τ). The

reparametrizations (diffeomorphisms) are

δξX
µ = ξβ∂βXµ , δξe

a
α = ξβ∂βeb

α + ea
β∂αξβ ,

δξψ
µ = ξβ∂βψµ , δξχα = ξβ∂βχα + χβ∂αξβ .

6.3 Superconformal gauge and supermoduli

The gravitino field is the reducible representation of the Lorentz group. To decom-

pose it into irreducible representations one can use the following trick:

χα = δβ
αχβ =

(
δβ
α −

1

2
ραρβ

)
χβ +

1

2
ραρβχβ =

1

2
ρβραχβ

︸ ︷︷ ︸
χ̃α

+
1

2
ραρβχβ

Here χ̃α part is called ρ–traceless because, due to the identity ραρβρα = 0 we get

ραχ̃α = ρaeα
a χ̃α = ρaχ̃a = 0. Indeed the gravitino χa transforms under local Lorentz
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transformations as the spin-vector:19

δ`χa = −`ε b
a χb +

1

2
`ρ̄χa .

Condition ρaχa = 0 remains invariant under these transformations, i.e. ρaδ`χa = 0.

Decomposition of the gravitino into the ρ-trace and ρ-traceless part is decomposition

into two irreducible representations of the Lorentz group corresponding to helicities

±3/2 and ±1/2 respectively. This decomposition is orthogonal w.r.t. the scalar

product (φ|ψ) =
∫

d2σφ̄αψα.

The local supersymmetry transformation for the gravitino filed can be also de-

composed into the traceless- and the trace-parts:

δεχα = 2Dαε = 2(Πε)α + ραρβDβε︸ ︷︷ ︸
trace part

Here we defined the operator

(Πε)α =
1

2
ρβραDβε , =⇒ ρα(Πε)α = 0 .

Locally one can show that there always exists a spinor κ such that χ̃α = ρβραDβκ.

Comparing this with the supersymmetry transformation for χα we conclude that κ

can always be eliminated (locally!) by a supersymmetry variation. The possibility

to eliminate κ globally depends on the existence of a globally defined spinor ε which

solves the equation

(Πε)α = τα

for arbitrary τα satisfying the condition ρατα=0. Global solvability of the last ex-

pression relies on the absence of zero modes of the operator Π†: (Π†τ) = −2Dατα.

This equation is the supercousin of the bosonic equation

(Pξ)αβ = tαβ

whose global solvability relies on the absence of zero modes of P †. According to our

discussion of the bosonic case it makes sense to call

dim kerP † = moduli

dim kerΠ† = supermoduli

and also

dim kerP = conformal Killing vectors

dim kerΠ = conformal Killing spinors .

19The element ε b
a = ηacε

cb is the following matrix ε b
a =

(−1 0
0 1

)(
0 1
−1 0

)
=

(
0 − 1
−1 0

)
.
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By using reparametrizations and local Lorentz transformations the zweibein can

be brought to the form ea
α = eφδa

α which is locally always possible. The gauge

ea
α = eφδa

α , χα = ραλ

is called superconformal gauge. In classical theory the Weyl symmetry and super

Weyl symmetry can be used to eliminate the remaining gravitational degrees of

freedom φ and λ. In quantum theory it will be possible in critical dimension only.

6.4 Action in the superconformal gauge

In the superconformal gauge the action becomes rather simple

S = − 1

8π

∫
d2σ

(
∂αXµ∂αXµ + 2iψ̄µρα∂αψµ

)
. (6.3)

The world-sheet indices are now raised and lowered with the help of the flat world-

sheet metric ηaβ and ρα = δα
a ρa. This action is invariant w.r.t. local reprametrizations

and supersymmetry transformations which satisfy the requirement

Pξ = 0 , Πε = 0 .

We would like to check directly that the action (6.3) is invariant under the super-

symmetry transformations

δεX
µ = iε̄ψµ ,

δεψ
µ =

1

2
ρα∂αXµε

δεψ̄
µ = −1

2
ε̄ρα∂αXµ

provided the parameter ε satisfies the following equation

ρβρα∂βε = 0 . (6.4)

To check the invariance we perform the variation

δεS = − 1

8π

∫
d2σ

(
2∂αXµ∂α(iε̄ψµ) + iψ̄µρα∂α(ρβ∂βXµε)− ε̄ρα∂αXµρβ∂βψµ

)
.

Now we integrate by parts the first term and write out the second term more explicitly

δεS = − 1

8π

∫
d2σ

(
− 2i¤Xµ ε̄ψµ + iψ̄µ ραρβ

︸︷︷︸
ηαβ

∂α∂βXµε

+ iψ̄µραρβ∂βXµ∂αε− ε̄ρα∂αXµρβ∂βψµ

)
.
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Now we apply the spin-flip identity in the second and the third term and get

δεS = − 1

8π

∫
d2σ

(
− 2i¤Xµ ε̄ψµ + iε̄ψµ¤Xµ

+ i∂αε̄ρβραψµ∂βXµ − ε̄ρβρα∂βXµ∂αψµ

)
.

Finally, we integrate the last term by parts and get

δεS = − 1

8π

∫
d2σ 2i∂αε̄ρβραψµ∂βXµ .

This vanishes as the consequence of eq.(6.4).

We can write equation (6.4) more explicitly

ρβρ0∂βε =
(
ρ0ρ0∂0 + ρ1ρ0∂1

)
ε =

(
− ρ0ρ0∂0 + ρ0ρ1∂1

)
ε =

(
∂0 + ρ̄∂1

)
ε = 0 ,

ρβρ1∂βε =
(
ρ0ρ1∂0 + ρ1ρ1∂1

)
ε =

(
ρ0ρ1∂0 + ρ1ρ1∂1

)
ε =

(
ρ̄∂0 + ∂1

)
ε = 0 .

Since ρ̄2 = 1 the second equation is obtained from the first by multiplying with ρ̄

and by this reason it is redundant. To analyze the first equation it is convenient to

denote the components of any spinor as follows

ψ =

(
ψ+

ψ−

)
and ε =

(
ε+

ε−

)
.

We thus see that the first equation reduces to

(∂0 + ∂1)ε+ = ∂+ε+ = 0 , (∂0 − ∂1)ε− = ∂−ε− = 0

One cab define the spinors with upper indices by using the following convention

ψ− = ψ+ , ψ+ = −ψ− .

With this convention we obtain that components of the Majorana spinor which is a

parameter of the supersymmetry transformations satisfy the equations

∂+ε− = ∂−ε+ = 0 =⇒ ε± ≡ ε±(σ±) .

This equations should be contracted with the equations defining the conformal Killing

vectors, i.e. reparametrizations which do not destroy the conformal gauge choice:

∂+ξ− = ∂−ξ+ = 0 =⇒ ξ± ≡ ξ±(σ±) .

On-shell closer of the supersymmetry algebra
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Consider first the commutator of two supersymmetry variations applied to a bosonic

field Xµ:

[δε1 , δε2 ]X
µ = iε̄1δε2ψ

µ − iε̄1δε2ψ
µ =

i

2

(
ε̄1ρ

αε2 − ε̄2ρ
αε1

)
∂αXµ = iε̄1ρ

αε2∂αXµ ,

where the last formula stems from the spin-flip property. We see that the commutator

of two super-symmetry transformations generates a diffeomorphism transformation

[δε1 , δε2 ]X
µ = ξα∂αXµ

with the parameter ξα = iε̄1ρ
αε2. In fact, this is not an arbitrary diffeomorohism,

rather it is a conformal transformation, because ξα is nothing else as a conformal

Killing vector! Thus, bilinear combinations made of conformal spinors

Consider now the commutator of two supersymmetry variations applied to a

fermion ψµ:

[δε1 , δε2 ]ψ
µ =

1

2
∂α(δε1X

µ)ραε2 − 1

2
∂α(δε2X

µ)ραε1 =
i

2
∂α(ε̄1ψ

µ)ραε2 − i

2
∂α(ε̄2ψ

µ)ραε1

Therefore,

[δε1 , δε2 ]ψ
µ =

i

2
(∂αε̄1ψ

µ)ραε2 − i

2
(∂αε̄2ψ

µ)ραε1 +

+
i

2
(ε̄1∂αψµ)ραε2 − i

2
(ε̄2∂αψµ)ραε1 (6.5)

Constraints

In the original (gauge-unfixed) theory we have a world-sheet metric (vielbein) and

the gravitino field. They are removed upon imposition of the superconformal gauge.

However, before we fix the gauge, the metric and the gravitino have their equations

of motion which become the constraints on the other fields of the theory after fixing

the gauge. The stress tensor in now defined as

Tαβ = −2π

e

δS

δeβ
a

eαa .

We can also define the supercurrent as response of the action for variation of the

gravitino field

Gα = −i
2π

e

δS

δχ̄α
.

Analogously to what was in the bosonic case the stress tensor Tαβ will generate

conformal transformations, while the new object Gα appears to be a generator of the

supersymmetries. Equations of motion

Tαβ = 0 = Gα
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are constraints on the dynamics of our system. Using the action we find

Tαβ =
1

2
∂αXµ∂βXµ − 1

4
ηαβ∂γXµ∂

γXµ +
i

4
ψ̄ρα∂βψµ +

i

4
ψ̄ρβ∂αψµ

Gα =
1

4
ρβραψµ∂βXµ

Note that Gα is ρ-traceless, i.e.

ραGα = 0 .

This equation is an analog of T α
α = 0. Finally, by using equations of motion one can

show that the stress tensor and the supercurrent are conserved

∂αTαβ = 0 , ∂αGα = 0 .

These conservation laws lead to existence of infinite number of conserved charges. To

analyze the algebra of contraints in more detail it is convenient to use the world-sheet

light-cone coordinates σ±. In the light-cone coordinates the action becomes

S =
1

2π

∫
d2σ

(
∂+X∂−X + i(ψ+∂−ψ+ + ψ−∂+ψ−)

)
.

Equations of motion are

∂+∂−Xµ = 0 , ∂−ψµ
+ = ∂+ψµ

− = 0 .

Solving equations of motion for fermions we get

ψµ
+ = ψµ

+(σ+) , ψµ
− = ψµ

−(σ−) .

This, it appears that two components of the Majorana fermion are left- and right-

moving fields on the world-sheet.

The components of the stress-tensor T+− = 0 = T−+, while the other components

are

T++ =
1

2
∂+X∂+X +

i

2
ψ+∂+ψ+ ,

T−− =
1

2
∂−X∂−X +

i

2
ψ−∂−ψ− .

The components of the supercurrent are

G+ =
1

2
ψ+∂+X ,

G− =
1

2
ψ−∂−X .

The conservation laws look in the light-cone coordinates as

∂−G+ = ∂+G− = 0 , ∂−T++ = ∂+T−− = 0 .
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Now we note that in addition to the conserved charges generated by the stress tensor:

Qξ± =

∫
dσ ξ±(σ±)T±±(σ, τ)

we will have the conserved charges generated by the supercurrent

Gε± =

∫
dσ ε±(σ±)G±(σ, τ) .

6.5 Boundary conditions

Varying the action to derive the equations of motion we will get the following bound-

ary term ∫
dσ∂σ

(
ψ+δψ+ − ψ−δψ−

)
.

For the case of closed string, to make this term vanishing one has to impose the

following condition

(
ψ+δψ+ − ψ−δψ−

)
(σ)−

(
ψ+δψ+ − ψ−δψ−

)
(σ + 2π) = 0 .

Since the fermions ψ+ and ψ− are independent this equation implies that

ψ+(σ) = ±ψ+(σ + 2π) ,

ψ−(σ) = ±ψ−(σ + 2π) .

The following terminology is standard

• Periodic boundary conditions in σ are called Ramond boundary conditions and

they are denoted by the letter “R”.

• Anti-periodic boundary conditions in σ are called Nevew-Schwarz boundary

conditions and they are denoted by the letter “NS”.

Universally, all fermionic quantities on the world-sheet have the following boundary

conditions

ψ(σ + 2π) = e2πiθψ(σ) ,

where θ = 0 in the R-sector and θ = 1/2 in the NS sector.

Boundary conditions for ψ+ and ψ− can be chosen independently, which gives in

total four possibilities

(R, R) , (NS, NS) , (R, NS) , (NS, R)

The boundary conditions for the two components of the supersymmetry parameter

should be chosen in such a way as to make the variation δXµ = iε̄ψµ periodic.
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As we will see the states in the R sector give the space-time fermions, while the

states in the NS sector are the space-time bosons. This further gives that (R,R) and

(NS,NS) sectors are space-time bosons while (R,NS) and (NS,R) are fermions.

For the open string case we have that

ψ+δψ+ − ψ−δψ−

must vanish at σ = 0 and σ = π. If we assume that ψ+ = αψ− at the end point of

string, then

(α2 − 1)ψ−δψ− = 0

which allows for α = ±1. Thus, at each end of the string we should have ψ+ = ±ψ−.

We can always agree to choose ψ+(0, τ) = ψ−(0, τ) as it is a matter of convention,

then on the other hand of the string we have two possibilities

ψ+(π, τ) = ψ−(π, τ) (Ramond) ,

ψ+(π, τ) = −ψ−(π, τ) (Neveu− Schwarz) .

6.6 Superconformal algebra

In order to compute the Poisson bracket between the components of the stress tensor

and the supercurrent we need the fundamental Poisson bracket for the fermions. The

Dirac action leads to the following bracket

{ψµ
+(σ), ψν

+(σ′)} = −2πiδ(σ − σ′)ηµν

{ψµ
−(σ), ψν

−(σ′)} = −2πiδ(σ − σ′)ηµν .

Using these brackets together with brackets between the bosonic fields one find the

following Poisson algebra of the constraints

{T++(σ), T++(σ′)} = −2π
(
2T++(σ′)∂′ + ∂′T++(σ′)

)
δ(σ − σ′) ,

{T++(σ), G+(σ′)} = −2π
(3

2
G+(σ′)∂′ + ∂′G+(σ′)

)
δ(σ − σ′) ,

{G+(σ), G+(σ′)} = −iπT++(σ)δ(σ − σ′) .

This is the so-called N = 1 superconfomal algebra in 2dim. Here N = 1 refers to

the fact that supersymmetry transformations are performed with the help of one

Majorana spinor.

The action of the supercurrent on the bosonic and fermionic fields generate supersym-

metry transformations (bosonic field transforms into fermionic one and vice-versa):

{G+(σ), Xµ(σ′)} = −π ψµ
+(σ)δ(σ − σ′) ,

{G+(σ), ψµ(σ′)} = −iπ ∂+Xµ
+(σ)δ(σ − σ′)
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One can also check that the world-sheet fermion transforms under conformal trans-

formations as the conformal field with weigh 1/2.

Consider closed strings. Using the mode expansion

ψ+(σ, τ) =
∑

r∈Z+θ

b̄µ
r e
−ir(τ+σ) ,

ψ−(σ, τ) =
∑

r∈Z+θ

bµ
r e
−ir(τ−σ) ,

where θ = 0 in the R-sector and θ = 1
2

in the NS-sector, we obtain the Poisson

algebra of oscillators

{bµ
r , b

ν
s} = −iηµνδr+s ,

{b̄µ
r , b̄

ν
s} = −iηµνδr+s ,

{bµ
r , b̄

ν
s} = 0 .

The reality of the Majorana spinor implies that

(bµ
r )† = bµ

−r , (b̄µ
r )† = b̄µ

−r .

Introducing the modes of the stress tensor and the supercurrent

Lm =
1

2π

∫ 2π

0

dσe−imσT−− , Gm =
1

π

∫ 2π

0

dσe−irσG− .

Notice that the supercurrent G− satisfies the same boundary condition as the fermion

ψ−. Substituting the mode expansion we get

Lm =
1

2

∑

n∈Z
α−nαm+n +

1

2

∑
r

(
r +

m

2

)
b−rbm+r ,

Gr =
∑

n∈Z
α−nbr+n .

These generators generate the classical super-Virasoro algebra

{Lm, Ln} = −i(m− n)Lm+n ,

{Lm, Gr} = −i
(1

2
m− n

)
Gm+r ,

{Gr, Gs} = −2iLr+s .

7. Quantum fermionic string

Canonical quantization is again performed by substituting the Poisson bracket for

the (anti)-commutator: { , }pb → 1
i
[ , ]. Therefore, the anti-commutators for the

quantum fermionic fields are

{ψµ
+(σ), ψν

+(σ′)} = 2πδ(σ − σ′)ηµν

{ψµ
−(σ), ψν

−(σ′)} = 2πδ(σ − σ′)ηµν .
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Anti-commutators of the modes are

{bµ
r , b

ν
s} = ηµνδr+s .

We again see that we can split oscillators into creation and annihilation operators

according to the sign of their index, namely

• Oscillators with r > 0 are annihilation operators ,

• Oscillators with r < 0 are creation operators .

However, the modes with r = 0 which occur in the Ramond sector only require

special care. Indeed, in the bosonic modes αµ
0 and ᾱµ

0 correspond to the center of

mass momentum of the string. Analogously, bµ
0 and b̄µ

0 are distinguished from all the

other modes, in particular, they form the Clifford algebra

{bµ
0 , b

ν
0} = ηµν

and analogously for b̄µ
0 .

The super-Virasoro generators are again defined as normal ordered expressions

Lm =
1

2

∑

n∈Z
: α−nαm+n : +

1

2

∑
r

(
r +

m

2

)
: b−rbm+r : ,

Gr =
∑

n∈Z
α−nbr+n .

Only the generator L0 is ambiguous doe to the undetermined normal ordering con-

stant. Ignoring this constant for the moment we obtain the following answer for the

quantum super-Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
d

8
m(m2 − 2ω)δm+n ,

[Lm, Gr] =
(1

2
m− n

)
Gm+r ,

{Gr, Gs} = 2Lr+s +
d

2

(
r2 − ω

2

)
δr+s .

Here ω = 0 for the R-sector and ω = 1
2

for the NS-sector. Both the R- and NS-

algebras formally agree except the linear terms in anomalies. The linear term can

be changed by shifting the L0 generator. Indeed, one can see that if one shifts

LR
0 → LR

0 + d
16

then both algebras have formally the same structure with ω = 1
2
. Still

the R- and NS-algebras are very different. For instance, in the NS-sector the five

generators L1, L0, L−1, G1/2, G−1/2 form a closed superalgebra known as OSp(1|2). In

the R-sector just adding to the generators L1, L0, L−1 the generator G0 one generates

the whole infinite-dimensional algebra.
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The oscillator ground state is defined in both sectors as

αµ
m|0〉 = bµ

r |0〉 = 0 , m, r > 0 .

Here the dependence on the center of mass momentum is suppressed. In the Ramond

sector one also has the zero mode bµ
0 . The level number operator is

N = N (α) + N (b) ,

where

N (α) =
∞∑

m=1

α−mαm ,

N (b) =
∞∑

r∈Z+θ>0

rb−rbr .

Note that the zero mode in the Ramond sector does not contribute to the number

operator! This leads to the fact the mass operator commutes with bµ
0 : [bµ

0 ,M
2] = 0,

i.e. the states |0〉 and bµ
0 |0〉 have the same mass. These states are degenerate. On the

other hand, all other oscillators αµ
n, bµ

r with n, r < 0 increase α′M2 by 2n and 2r units

respectively. This means that in the NS-sector the ground state is unique and it has

Lorentz spin zero. In the R-sector the ground state is degenerate and since bµ
0 form

the Clifford algebra the ground state is a spinor of the Lorentz group SO(d − 1, 1).

This explains why in the NS-sector all the states are space-time bosons, while in the

R-sector they are all fermions. Indeed, all creation operators have vector Lorentz

index and by this reason they cannot convert a space-time boson into a space-time

fermion or vice versa. If we will write the Ramond ground state as |a〉, where a is a

SO(d− 1, d) spinor index, the bµ
0 act on it as the usual Γ-matrices

bµ
0 |a〉 =

1√
2
(Γµ)a

b|b〉 .

Here Γµ are the usual Γ-matrices of the d-dimensional Minkowski space and they

satisfy the Clifford algebra {Γµ, Γν} = 2ηµν .

We will not go into discussion of the covariant quantization but will just state

that consistency of the quantum theory will impose the following restrictions on the

constant a of the normal ordering ambiguity (for the Ramond and Neveu-Schwarz

sectors) and the dimension d of the target space-time:

aNS =
1

2
, aR = 0 , d = 10 .

The same result follows from the condition of non-anomalous Lorentz algebra in the

light-cone gauge. Instead of d = 26 found for bosonic string, quantum fermionic

string chooses to live in a ten-dimensional world.
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7.1 Light-cone quantization and superstring spectrum

As we have established imposition of the superconformal gauge does not completely

remove the gauge (unphysical) degrees of freedom. The superconformal transforma-

tions which do not destroy the superconformal gauge choice are left. In order to

remove the remaining unphysical degrees of freedom one can try to fix the light-cone

gauge, similar to as was done for bosonic string. We can also fix

X+ = α′p+τ

in our fermionic theory and this choice will completely remove the reparametrization

invariance. However, the local supersymmetry transformations obeying the equations

∂+ε− = ∂−ε+ = 0

are still left over. These transformations can be used in order to completely elimi-

nate the fermionic field ψ+, where this time ψ± refer to the target-space light-cone

components

ψ± =
1√
2
(ψ0 ± ψd−1) .

This is equivalent to putting to zero the modes b+
r for all r. After this gauge choice

is done we can solve the super-Virasoro constraints and find the longitudinal modes

(remember that T = 1
2πα′ )

∂±X− =
1

α′p+

(
(∂±X i)2 + iψi

±∂±ψi
±
)

ψ−± =
2

α′p+
ψi
±∂±X i .

This shows that only the transversal components X i and ψi are physical degrees of

freedom. In terms of oscillators the previous equations read

α−m =
1√

2α′p+

(
: αi

nαi
m−n : +

∑
r

(m

2
− r

)
: bi

rb
i
m−r : −2aδm

)

b−r =
2

α′p+

∑
q

αi
r−qb

i
q .

For the case of closed strings these expressions must be supplemented by the analo-

gous ones for the left-moving modes. Here we also include a normal ordering constant

a which is a = 1
2

in the NS sector and a = 0 in the R sector.

The mass operator is

M2 = M2
R + M2

L ,

where

α′M2
R = 2

( ∑
n>0

αi
−nαi

n +
∑
r>0

rbi
−rb

i
r − a

)
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and similar for M2
L. For the case of open string we have

α′M2
R =

( ∑
n>0

αi
−nαi

n +
∑
r>0

rbi
−rb

i
r − a

)
.

α′mass2 rep of SO(8) little (−1)F rep of little

group group

NS− sector

−1
2

|0〉 SO(9) −1 1

0 bi
−1/2|0〉︸ ︷︷ ︸

8v

SO(8) +1 8v

+1
2

αi
−1|0〉︸ ︷︷ ︸
8v

, bi
−1/2b

j
−1/2|0〉︸ ︷︷ ︸
28

SO(9) −1 36

bi
−1/2b

j
−1/2b

k
−1/2|0〉︸ ︷︷ ︸

56v

+1

+1 SO(9) 84 + 44

αi
−1b

j
−1/2|0〉︸ ︷︷ ︸

1+28+35v

, bi
−3/2|0〉︸ ︷︷ ︸

8v

+1

R− sector

|a〉︸︷︷︸
8s

+1 8s

0 SO(8)

|ȧ〉︸︷︷︸
8c

−1 8c

αi
−1|a〉︸ ︷︷ ︸

8c+56c

, bi
−1|ȧ〉︸ ︷︷ ︸

8s+56s

+1 128

+1 SO(9)

αi
−1|ȧ〉︸ ︷︷ ︸

8s+56s

, bi
−1|a〉︸ ︷︷ ︸

8c+56c

−1 128

Tab. 5. The lowest levels of the open fermionic string spectrum.
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In the closed string case we have in addition the condition of level-matching

which requires that for physical states

M2
L = M2

R .

Finally, we give expressions for the light-cone action

Sl.c =
1

8π

∫
d2σ

(
(Ẋ i)2 − (X ′i)2 − 2iψ̄iρa∂αψi

)
(7.1)

and the Hamiltonian

H = (pi)2 +
∑
n>0

(αi
−nαi

n + ᾱi
−nᾱ

i
n) +

∑
r>0

r(bi
−rb

i
r + b̄i

−rb̄
i
r)− 2a .

Note that every sector, R and NS, has its own Hamiltonian.

Let us now analyze the closed string spectrum. We first discuss the right-moving

part which (up to a mass rescaling by 2) is equivalent to the spectrum of open

fermionic string.

• NS-sector. The ground state is the oscillator vacuum |0〉 with α′M2 = −a. The

first excited state is bi
−1/2|0〉 with α′M2 = 1

2
− a. This is a vector of SO(d− 2),

where the critical dimension d = 10. Since the little Lorentz group for massless

states in d-dimensions is SO(d− 2) this state must be massless which gives the

normal ordering constant to be a = 1
2
. At the next level one has the states

αi
−1|0〉 and bi

−1/2b
j
−1/2|0〉 with α′M2 = 1

2
. The number of these bosonic states

is 8 + 28 = 36 = 9×8
2

, they are comprise an antisymmetric representation of

SO(9), the little Lorentz group for massive states.

• R-sector. The Ramond ground state is a spinor of SO(9, 1). The dimension

of the Dirac spinor in d = 10 is 2
d
2 = 25 = 32, i.e. it has 32 complex or 64

real components. In ten dimensions it is possible to impose both Majorana

and Weyl conditions20 which reduce the number of independent components

to 64
2×2

= 16. On shell the number of components is further reduced by two

because the Dirac equation Γµ∂µψ relates half of the components to the other

half (which satisfies the Klein-Gordon equation). The 8 remaining components

can be viewed as the components of the Majorana-Weyl spinor of SO(8), the

latter being the little Lorentz group for massless states in d = 10. Indeed, the

spinor of SO(8) should have

(2
8
2 complex components)/(Majorana×Weyl) = 32/4 = 8

20In general, for the groups SO(p, q) the Majorana and Weyl conditions can be simultaneously
imposed if and only if p − q = 0 mod 8. For Minkowski space, p = d − 1, q = −1, this gives
d = 2 + 2n and for Euclidean space, p = d, q = 0, this gives d = 2n.
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real components. Thus, the Ramond ground state is massless.

It turns out that the group SO(8) has three inequivalent representations of

dimension 8: two of them are spinor representations and another is the vec-

tor one. Spinor representations are commonly denoted by 8s and 8c and the

corresponding representation bases are depicted as

|a〉 and |ȧ〉 .
The vector representation is 8v and the basis is |i〉.

The first excited level consist of states αi
−1|a〉 and bi

−1|a〉 and their chiral part-

ners with α′M2 = 1. Once again, for d = 10, all the massive light-cone states

can be uniquely assembled into representations of SO(9), the little Lorentz

group for massive states.

GSO projection

It turns out that fermionic string with all the states we found in the R and NS

sectors is inconsistent. This can seen, for instance, from the fact that the 1-loop

amplitude is not modular invariant. In order to construct a consistent modular

invariant theory one should truncate the string spectrum in a specific way. This

truncation is known as the GSO (Gliozzi-Scherk-Olive) projection. It restores the

modular invariance, removes from the theory the tachyon and, in addition, provides

the space-time supersymmetry of the resulting string spectrum. Below we will use

an inverse argument to motivate the GSO projection – we will show that it allows

to achive a spectrum which exhibits space-time supersymmetry.

Looking at the massless states in the Ramond sector we see that one has two SO(8)

spinors 8s and 8c. On the other hand, the massless states of the NS sector comprise

a vector 8v. If we project one of the two spinors out then there will be match of NS

bosonic (8) and R fermionic (also 8) degrees of freedom. These massless vector and

the massless spinor is indeed a content of the N = 1 super Yang-Mills theory in ten

dimensions.

One has also to get rid of tachyon which is in the NS sector. This all can be achieved

if one first defines an operator

G = (−1)F , F =
∞∑

r= 1
2

bi
−rb

i
r − 1

and then requires that all allowed states should have G = 1:

G|Φ〉 = |Φ〉.
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α′mass2 rep of SO(8) little (−1)F (−1)F̄ rep of little

group group

(NS,NS)− sector

−2 |0〉L × |0〉R SO(9) −1 −1 1

0 bi
−1/2|0〉L︸ ︷︷ ︸

8v

× bj
−1/2|0〉R︸ ︷︷ ︸

8v

SO(8) +1 +1 1 + 28 + 35v

(R,R)− sector

|a〉L︸︷︷︸
8v

× |b〉R︸︷︷︸
8v

+1 +1 1 + 28 + 35s

|ȧ〉L︸︷︷︸
8c

× |ḃ〉R︸︷︷︸
8c

−1 −1 1 + 28 + 35c

0 SO(8)

|ȧ〉L︸︷︷︸
8c

× |b〉R︸︷︷︸
8s

−1 +1 8v + 56v

|a〉L︸︷︷︸
8s

× |ḃ〉R︸︷︷︸
8c

+1 −1 8v + 56v

(R,NS)− sector

|a〉L︸︷︷︸
8s

× bi
−1/2|0〉R︸ ︷︷ ︸

8v

+1 +1 8c + 56c

0 SO(8)

|ȧ〉L︸︷︷︸
8c

× bi
−1/2|0〉R︸ ︷︷ ︸

8v

−1 +1 8s + 56s

(NS,R)− sector

b̄i
−1/2|a〉L︸ ︷︷ ︸

8v

× |a〉R︸︷︷︸
8s

+1 +1 8c + 56c

0 SO(8)

b̄i
−1/2|a〉L︸ ︷︷ ︸

8v

× |ȧ〉R︸︷︷︸
8c

+1 −1 8s + 56s

Tab. 6. The lowest levels of the closed fermionic string spectrum.
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Since a general state in the NS sector has the form

|Φ〉 = αi1
−n1

· · ·αiN−nN
bj1
−r1

· · · bjM
−rM

|0〉

we get

G|Φ〉 = (−1)M−1|Φ〉.
Thus, all states with M even are projected out, in particular, the tachyon. This

removes the tachyon and all the states with half-integer α′M2. Indeed,

α′M2 =

rM∑
i=1

ri − 1

2︸︷︷︸
a

and for M even the sum of half-integers is always an integer α′M2 is half-integer

number.

In the Ramond sector the operator G is defined as follows

G = (−1)F = b1
0 · · · b8

0(−1)
∑∞

n=1 bi
−nbi

n .

The transversal zero modes bi
0 form the Clifford algebra {bi

0, b
j
0} = δij. Thus, these

operators can be represented by SO(8) γ-matrices Γi which have size 16 by 16. These

matrices act on the 16-dimensional Majorana (i.e. real) spinor whose components

can be thought to combine two Weyl projections, which are precisely |a〉 and |ȧ〉:

|ψ〉 =

( |a〉8s

|ȧ〉8c

)
.

In the Majorana representation these matrices Γi can be taken in the block-diagonal

form as

Γi =

(
0 γi

(γi)t 0

)
.

The fact that Γi obey the standard Glifford algebra {Γi, Γj} = 2δij implies that 8×8

real matrices γi satisfy the following algebra

γi(γj)t + γj(γi)t = 2δij .

If we introduce the standard Pauli matrices

σ1 =

�
0 1

1 0

�
, σ2 =

�
0 −i

i 0

�
, σ3 =

�
1 0

0 −1

�

then the matrices γi can be defined as

γ
1

= −iσ2 ⊗ σ2 ⊗ σ2 , γ
2

= iI⊗ σ1 ⊗ σ2 ,

γ
3

= iI⊗ σ3 ⊗ σ2 , γ
4

= iσ1 ⊗ σ2 ⊗ I ,
γ
5

= iσ3 ⊗ σ2 ⊗ I , γ
6

= iσ2 ⊗ I⊗ σ1 ,

γ
7

= iσ2 ⊗ I⊗ σ3 , γ
8

= I⊗ I⊗ I .
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The matrix γi cab be understood as carrying the matrix indices a and ȧ: γi
aȧ. The chiral and anti-chiral representations of SO(8) are

constructed then with the help of matrices

γ
ij
s =

1

2

�
γ

i
(γ

j
)
t − γ

j
(γ

i
)
t
�

,

γ
ij
c =

1

2

�
(γ

i
)
t
γ

j − (γ
j
)
t
γ

i
�

,

The operator Γ9 = b1
0 · · · b8

0 is the chirality operator (the analog of the γ5-matrix

in 4dim.) and it projects out one of the two Weyl components of the Ramond

ground state |ψ〉. We see that G anti-commutes with any mode b−n: {G, bi
−n} = 0

and, therefore, the eigenvalues of G in the Ramond sector are ±1, depending on their

chirality, if we define G|a〉 = |a〉 and G|ȧ〉 = −|ȧ〉. Further, a general state in the R

sector is

|Φ〉a = αi1
−n1

· · ·αiN−nN
bj1
−m1

· · · bjM
−mM

|a〉
or

|Φ〉ȧ = αi1
−n1

· · ·αiN−nN
bj1
−m1

· · · bjM
−mM

|ȧ〉
We therefore find that

G|Φ〉a = (−1)M(−1)
∑

i δmi,0|Φ〉a ,

G|Φ〉ȧ = −(−1)M(−1)
∑

i δmi,0|Φ〉ȧ .

The GSO projection consists in leaving the states which have either G = 1 or G = −1.

To construct the spectrum of the closed superstring we have to tensor left and

right-moving states (such that the level matching constraint M2
L = M2

R is satisfied)

and then impose the GSO projection. Here we have to distinguish four different

sectors

(R, R) , (NS, NS)︸ ︷︷ ︸
space−time bosons

, (R, NS) , (NS, R)︸ ︷︷ ︸
space−time fermions

The GSO projection is imposed separately for the left- and right-moving modes. In

the NS sector one keeps the states with

G = (−1)F = +1 , Ḡ = (−1)F̄ = +1 .

In the Ramond sector there are essentially two possibilities which lead to super-

symmetric and tachyonic-free spectrum. One of them is to take G = Ḡ = 1. The

massless spectrum is

Bosons :
[
(1) + (28) + (35)v

]
+

[
(1) + (28) + (35)s

]

Fermions :
[
(8)c + (56)c

]
+

[
(8)c + (56)c

]
.

In total there are 128 bosonic and 128 fermionic states. The GSO projection imposed

in this way defines the so-called Type IIB superstring and its massless spectrum is
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that of Type IIB supergravity in ten dimensions. In particular, 35v are on-shell

degrees of freedom of the graviton, two 28 are two anisymmetric tensor fields and

35s is a rank four antisymmetric self-dual tensor. In addition one has two real scalars.

The fermionic degrees of freedom are two spin-3/2 gravitinos, 56c, and two spin-1/2

fermions. The presence of two gravitinos indicates that the corresponding theory

has N = 2 supersymmetry. Since the gravitions and the fermions are of the same

chirality this theory is chiral.

One can make another choice of the GSO projection by requiring that G = −Ḡ = 1.

This gives the following massless spectrum

Bosons :
[
(1) + (28) + (35)v

]
+

[
(8)v + (56)v

]

Fermions :
[
(8)c + (56)c

]
+

[
(8)s + (56)s

]
.

There are on-shell degrees of freedom of the graviton (35v), antisymmetric rank three

tensor (56v), an antisymmetric rank two tensor (28), one vector 8v) and one real

scalar, which is called dilaton. The fermionic degrees of freedom comprise two spin-

3/2 gravitinos and two spin-1/2 fermions. Gravitions and fermions are of opposite

chirality. Thus, this theory has N = 2 supersymmetry also but it is non-chiral. This

string theory is called Type IIA, and the corresponding supergravity is Type IIA

supergravity.
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Appendices

A. Dynamical systems of classical mechanics

To motivate the basic notions of the theory of Hamiltonian dynamical systems con-

sider a simple example.

Let a point particle with mass m move in a potential U(q), where q = (q1, . . . qn)

is a vector of n-dimensional space. The motion of the particle is described by the

Newton equations

mq̈i = −∂U

∂qi

Introduce the momentum p = (p1, . . . , pn), where pi = mq̇i and introduce the energy

which is also know as the Hamiltonian of the system

H =
1

2m
p2 + U(q) .

Energy is a conserved quantity, i.e. it does not depend on time,

dH

dt
=

1

m
piṗi + q̇i ∂U

∂qi
=

1

m
m2q̇iq̈i + q̇i ∂U

∂qi
= 0

due to the Newton equations of motion.

Having the Hamiltonian the Newton equations can be rewritten in the form

q̇j =
∂H

∂pj

, ṗj = −∂H

∂qj
.

These are the fundamental Hamiltonian equations of motion. Their importance lies

in the fact that they are valid for arbitrary dependence of H ≡ H(p, q) on the

dynamical variables p and q.

The last two equations can be rewritten in terms of the single equation. Introduce

two 2n-dimensional vectors

x =

(
p

q

)
, ∇H =

(
∂H
∂pj

∂H
∂qj

)

and 2n× 2n matrix J :

J =

(
0 −I
I 0

)

Then the Hamiltonian equations can be written in the form

ẋ = J · ∇H , or J · ẋ = −∇H .
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In this form the Hamiltonian equations were written for the first time by Lagrange

in 1808.

Vector x = (x1, . . . , x2n) defines a state of a system in classical mechanics. The

set of all these vectors form a phase space M = {x} of the system which in the present

case is just the 2n-dimensional Euclidean space with the metric (x, y) =
∑2n

i=1 xiyi.

The matrix J serves to define the so-called Poisson brackets on the space F(M)

of differentiable functions on M :

{F,G}(x) = (∇F, J∇G) = J ij∂iF∂jG =
n∑

j=1

(∂F

∂pj

∂G

∂qj
− ∂F

∂qj

∂G

∂pj

)
.

Problem. Check that the Poisson bracket satisfies the following conditions

{F, G} = −{G,F} ,

{F, {G, H}}+ {G, {H, F}}+ {H, {F,G}} = 0

for arbitrary functions F, G, H.

Thus, the Poisson bracket introduces on F(M) the structure of an infinite-

dimensional Lie algebra. The bracket also satisfies the Leibnitz rule

{F, GH} = {F, G}H + G{F, H}

and, therefore, it is completely determined by its values on the basis elements xi:

{xj, xk} = J jk

which can be written as follows

{qi, qj} = 0 , {pi, pj} = 0 , {pi, qj} = δi
j .

The Hamiltonian equations can be now rephrased in the form

ẋj = {H, xj} ⇔ ẋ = {H, x} = XH .

A Hamiltonian system is characterized by a triple (M, {, }, H): a phase space

M , a Poisson structure {, } and by a Hamiltonian function H. The vector field XH

is called the Hamiltonian vector field corresponding to the Hamiltonian H. For any

function F = F (p, q) on phase space, the evolution equations take the form

dF

dt
= {H, F}
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Again we conclude from here that the Hamiltonian H is a time-conserved quantity

dH

dt
= {H, H} = 0 .

Thus, the motion of the system takes place on the subvariety of phase space defined

by H = E constant.

In the case under consideration the matrix J is non-degenerate so that there

exist the inverse

J−1 = −J

which defines a skew-symmetric bilinear form ω on phase space

ω(x, y) = (x, J−1y) .

In the coordinates we consider it can be written in the form

ω =
∑

j

dpj ∧ dqj .

This form is closed, i.e. dω = 0.

A non-degenerate closed two-form is called symplectic and a manifold endowed

with such a form is called a symplectic manifold. Thus, the phase space we consider

is the symplectic manifold.

Imagine we make a change of variables yj = f j(xk). Then

ẏj =
∂yj

∂xk︸︷︷︸
Aj

k

ẋk = Aj
kJ

km∇x
mH = Aj

kJ
km ∂yp

∂xm
∇y

pH

or in the matrix form

ẏ = AJAt · ∇yH .

The new equations for y are Hamiltonian if and only if

AJAt = J

and the new Hamiltonian is H̃(y) = H(x(y)).

Transformation of the phase space which satisfies the condition

AJAt = J

is called canonical. In case A does not depend on x the set of all such matrices form

a Lie group known as the real symplectic group Sp(2n,R) . The term “symplectic
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group” was introduced by Herman Weyl. The geometry of the phase space which

is invariant under the action of the symplectic group is called symplectic geometry.

Symplectic (or canonical) transformations do not change the symplectic form ω:

ω(Ax,Ay) = −(Ax, JAy) = −(x,AtJAy) = −(x, Jy) = ω(x, y) .

In the case we considered the phase space was Euclidean: M = R2n. This is not

always so. The generic situation is that the phase space is a manifold. Considera-

tion of systems with general phase spaces is very important for understanding the

structure of the Hamiltonian dynamics.

Dynamical systems with symmetries

Let g(t) will be a one-parametric group of transformations of the phase space:

x → g(t)x. This group does not need to coincide with the one generated by the

Hamiltonian H. The action of this group is called Hamiltonian if there exists a

function C such that
d

dt
g(t)x|t=0 = J · ∇C .

The flow of any function F under the one-parameter group generated by C is then

δF ≡ d

dt
F (g(t)x)|t=0 = ∇F · d

dt
g(t)x|t=0 = (∇F, J · ∇C) = {F, C}

If we take F = H, we get

δH ≡ {H, C} .

Thus, if Ċ = {H,C} = 0, i.e. if C is an integral of motion, then it generates the

symmetry transformations which leave the Hamiltonian invariant. Infinitezimally,

the symmetry transformations are realized as

δF = {F, C} .

There could be several one-parametric groups which are one-parametric subgroups of

a non-abelian Lie G, the latter being the symmetry of the Hamiltonian. Accordingly,

there are the integrals of motion Ci, i = 1, . . . , dim G. Since Ci are integrals of

motion, from the Jacobi identity

{{Ci, Cj}, H}+ {{H, Ci}, Cj}+ {{Cj, H}, Ci} = 0

we conclude that {{Ci, Cj}, H} = 0, i.e. {Ci, Cj} is an integral of motion. If one can

chose the functions Ci is such a way that they form the Lie algebra of G under the

Poisson bracket:

{Ci, Cj} = fk
ijCk ,

then the corresponding action of G on the phase space is called Poisson. Here fk
ij

are the structure constants of the Lie algebra of G.
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B. OPE and conformal blocks

Every conformal (primary) operator enters in the Operator Product Expansion with

its conformal family (descendants). Contribution of the entire conformal family

associated to a primary operator O into the OPE is called the conformal block.

Conformal blocks are completely fixed by conformal symmetry. As an example, let

us show how to find the conformal block associated to the scalar primary operator O

of conformal dimension ∆O, which arises in the OPE of two scalar operators A and

B of conformal dimensions ∆A and ∆B, respectively.

Assume the Operator Product Expansion

A(x)B(0) =
1

(x2)
1
2
(∆A+∆B−∆O)

∞∑

k=0

1

k!
Λk(x, ∂)O(0) + . . . (B.1)

Here dots indicate the conformal families of other primary operators. We assume

that all primary operators are orthogonal w.r.t. to the two-point functions

〈O(0)O(y)〉 =
CO

(y2)∆O
.

The three-point functions are fixed by conformal symmetry. In particular,

〈A(x)B(0)O(y)〉 =
CABO

(x2)
1
2
(∆A+∆B−∆O)(y2)

1
2
(∆B+∆O−∆A)((x− y)2)

1
2
(∆A+∆O−∆B).

Plugging the OPE into the tree-point function we get

〈A(x)B(0)O(y)〉 =
1

(x2)
1
2
(∆A+∆B−∆O)

∞∑
r=0

1

r!
Λr(x,−∂y)〈O(0)O(y)〉.

Thus, compatibility of the 3-point function with the OPE results into

CABO

C0

1

(y2)
1
2
(∆B+∆O−∆A)((y − x)2)

1
2
(∆A+∆O−∆B)

=
∞∑

k=0

1

k!
Λk(x,−∂y)

1

(y2)∆O
.

Taking into account that e−x∂y is the shift operator acting as

e−x∂yf(y) = f(y − x) ,

the last relation may be written as

CABO

C0

∑

k=0

1

k!

1

(y2)
1
2
(∆B+∆O−∆A)

(−x · ∂y)
k 1

(y2)
1
2
(∆A+∆O−∆B)

=
∞∑

k=0

1

k!
Λk(x,−∂y)

1

(y2)∆O
.

It suggests to define

Λk(x, ∂y) =
CABO

C0

Qa,b
k (x, ∂y),
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where the operator Qk(x, ∂y) is defined by the relation

(y2)a(x · ∂y)
k(y2)b = Qk(x, ∂y)(y

2)a+b (B.2)

and a, b are given by

a = −1

2
(∆B + ∆O −∆A), b = −1

2
(∆A + ∆O −∆B).

The explicit form of the operator Qk(x, ∂y) is found by the Fourier transform. Indeed,

we have

(y2)a = 22a+dπd/2 Γ(a + d
2
)

Γ(−a)

1

(2π)d

∫
e−ip·y

(p2)a+d/2
(B.3)

and similar for the others. Substituting the Fourier transform of every function of

y2 one gets

1

πd/2

Γ(a + d
2
)Γ(b + d

2
)

Γ(a + b + d
2
)

Γ(−a− b)

Γ(−a)Γ(−b)

∫
dpdq

e−ipy

(p2)a+d/2(q2)b+d/2
(−ixq)k (B.4)

=

∫
dp

e−ipy

(p2)a+b+d/2
Qa,b

k (x,−ip),

where Qa,b
k (x,−ip) is defined by

Qa,b
k (x, ∂y)e

ipy = Qa,b
k (x,−ip)eipy,

and we have used the change of variables p → p− q.

From here one gets that Qa,b
k (x,−ip) is given by the integral

Qa,b
k (x,−ip) =

1

πd/2

Γ(a + d
2
)Γ(b + d

2
)

Γ(a + b + d
2
)

Γ(−a− b)

Γ(−a)Γ(−b)
(p2)a+b+d/2

∫
dq

(−ixq)k

((p− q)2)a+d/2(q2)b+d/2
.

Thus, the problem is reduced to evaluation of the integral

I(α1, α2) =

∫
dq

(−ixq)k

((p− q)2)α1(q2)α2
. (B.5)

One has

I(α1, α2) =
Γ(α1 + α2)

Γ(α1)Γ(α2)

∫ 1

0

dttα1−1(1− t)α2−1(−i)k

∫
dq

(xq)k

[(q − tp)2 + t(1− t)p2]α1+α2

=
Γ(α1 + α2)

Γ(α1)Γ(α2)

∫ 1

0

dttα1−1(1− t)α2−1(−i)k

∫
dq

(xq + txp)k

[q2 + t(1− t)p2]α1+α2

=
Γ(α1 + α2)

Γ(α1)Γ(α2)

∫ 1

0

dttα1−1(1− t)α2−1(−i)k

[k/2]∑
m=0

C2m
k (txp)k−2m

∫
dq

(xq)2m

[q2 + t(1− t)p2]α1+α2
,
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where C2m
k = k!

(2m)!(k−2m)!
. There appear only even powers 2m since for odd powers

the internal integral is zero. Thus, we now need to evaluate the integral

L =

∫
dq

(xq)2m

[q2 + h]γ
.

Under the integral the symmetric product qi1 ...qi2m may be substituted for

qi1 ...qi2m =
(q2)m

d(d + 2)...(d + 2(m− 1))
(δi1i2 ...δi2m−1i2m + permutations), (B.6)

where on the r.h.s. all non-trivial permutations are present. The total number of

this permutations is (2m)!
2mm!

. Therefore, under the integral one may substitute

(xq)2m = xi1 ...xi2mqi1 ...qi2m =
(x2)m(q2)m

d(d + 2)...(d + 2(m− 1))

(2m)!

2mm!
.

Now we have

∫
dq

(q2)m

[q2 + h]γ
=

πd/2

Γ(d/2)

∫ ∞

0

dq2 (q2)m+d/2−1

[q2 + h]γ
,

Performing the change of variables t = h
q2+h

, we arrive at

∫
dq

(q2)m

[q2 + h]γ
=

πd/2

Γ(d/2)
hm+d/2−γ

∫ 1

0

dttγ−m−d/2−1(1− t)m+d/2−1

=
πd/2

Γ(d/2)

Γ(γ −m− d/2)Γ(m + d/2)

Γ(γ)
hm+d/2−γ.

Thus, we evaluate the integral L

L =

∫
dq

(xq)2m

[q2 + h]γ
=

=
(x2)m

d(d + 2)...(d + 2(m− 1))

(2m)!

2mm!

πd/2

Γ(d/2)

Γ(γ −m− d/2)Γ(m + d/2)

Γ(γ)
hm+d/2−γ

= πd/2 (2m)!

4mm!

Γ(γ −m− d/2)

Γ(γ)
(x2)mhm+d/2−γ.

Finally, one gets

I(α1, α2) = πd/2 Γ(α1 + α2)

Γ(α1)Γ(α2)

[k/2]∑
m=0

C2m
k (−ixp)k−2m(−1)m

×
∫ 1

0

dttα1+k−2m−1(1− t)α2−1 (2m)!

4mm!

Γ(α1 + α2 −m− d/2)

Γ(α1 + a2)
(x2)m(t(1− t)p2)m+d/2−α1−α2 ,
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where we have substituted γ = α1 + α2 and h = t(1− t)p2. This is simplified to

I(α1, α2) =
πd/2

Γ(α1)Γ(α2)

[k/2]∑
m=0

C2m
k

(2m)!

4mm!
(−ixp)k−2m(−x2)m(p2)m+d/2−α1−α2

×
∫ 1

0

dttk−m+d/2−α2−1(1− t)m+d/2−α1−1Γ(α1 + α2 −m− d/2).

Thus, the final formula reads as

I(α1, α2) =
πd/2

Γ(α1)Γ(α2)

[k/2]∑
m=0

C2m
k

(2m)!

m!
(−ixp)k−2m

(
−1

4
x2p2

)m

(p2)d/2−α1−α2

× Γ(k −m + d/2− α2)Γ(m + d/2− α1)

Γ(k + d− α1 − α2)
Γ(α1 + α2 −m− d/2).

For Qa,b
k (x,−ip) one therefore finds

Qa,b
k (x,−ip) =

1

Γ(a + b + d/2)

Γ(−a− b)

Γ(−a)Γ(−b)

[k/2]∑
m=0

C2m
k

(2m)!

m!
(−ixp)k−2m

(
−1

4
x2p2

)m

× Γ(k −m− a)Γ(m− b)

Γ(k − a− b)
Γ(a + b + d/2−m).

By using the relation (a)−m = (−1)m

(1−a)m
it can be further simplified to give

Qa,b
k (x, ∂y) =

1
(−a− b)k

[k/2]∑

m=0

k!(−a)m(−b)k−m

m!(k − 2m)!(−d/2− a− b + 1)m
(x · ∂y)k−2m

(
−1

4
x2∆y

)m

.

Further summation gives the conformal block of the scalar field and it is per-
formed by changing the order of the summation and the shift of the summation
variable:

∞∑

k=0

1
k!

Qa,b
k (x, ∂y) =

∞∑

m=0

∞∑

k=2m

1
(−a− b)k

(−a)m(−b)k−m

m!(k − 2m)!(−d/2− a− b + 1)m
(x · ∂y)k−2m

(
−1

4
x2∆y

)m

=
∞∑

m=0

(−a)m

m!(−d/2− a− b + 1)m

(
−1

4
x2∆y

)m ∞∑

k=0

(−b)k+m

(−a− b)k+2m

(x∂y)k

k!
.

Since
(−b)k+m

(−a− b)k+2m

=
(−b)m

(−a− b)2m

(−b + m)k

(−a− b + 2m)k

we finally get
∞∑

k=0

1
k!

Qa,b
k (x, ∂y) =

=
∞∑

m=0

(−a)m(−b)m

(−µ− a− b + 1)mm!
1

(−a− b)2m
1F1(−b + m;−a− b + 2m; x∂y)

(
−1

4
x2∆y

)m

,
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where 1F1 is a degenerate hypergeometric function:

1F1(α, β; x) =
∞∑

k=0

(α)k

(β)k

xk

k!
. (B.7)

C. Useful formulae

In discussion of the central charge of the Virasoro algebra we encounter the sum

Sn =
n∑

q=1

q2 .

Here we present a general method of computing this and similar sums. The method

is based on considering the generating function

℘(x) =
∞∑

n=1

Snxn ,

so that

Sn =
1

n!

(∂n℘

∂xn

)
|x=0 .

For x < 1 we have

℘(x) =
∞∑

n=1

Snxn =
∞∑

n=1

n∑
q=1

q2xn =
∞∑

q=1

q2

∞∑
n=q

xn =
∞∑

q=1

q2xq

1− x
.

We further notice that

∂2

∂x2

∞∑
q=1

xq =
∞∑

q=2

q(q− 1)xq−2 =
1

x2

∞∑
q=2

q2xq− 1

x2

∞∑
q=2

qxq =
1

x2

∞∑
q=1

q2xq− 1

x2

∞∑
q=1

qxq .

Thus,
∞∑

q=1

q2xq = x2
( ∂2

∂x2

x

1− x
+

1

x2

∂

∂x

x

1− x

)
=

x2 + x

(1− x)3

and, therefore, we obtain the generating function

℘(x) =
x2 + x

(1− x)4
=

1

(1− x)2
− 3

(1− x)3
+

2

(1− x)4
.

Finally we compute

1

n!

(∂n℘

∂xn

)
=

1

n!

(
2 · 3 · · · (n + 1)

(1− x)n+2
− 3

3 · 4 · · · (n + 2)

(1− x)n+3
+ 2

4 · 5 · · · (n + 3)

(1− x)n+4

)
.

The last formula results into

Sn = (n + 1)
(
1− 3

2
(n + 2) +

1

3
(n + 2)(n + 3)

)
=

1

6
n(n + 1)(2n + 1) .
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D. Riemann normal coordinates

Consider a Riemannian manifoldM of dimension n with coordinates xi, 1 = 1, . . . , m.

The geodesic equation is

ẍi + Γi
jk(x)ẋjẋk = 0 .

Let us consider two points p and q with coordinates xi and xi + δxi respectively. We

assume that these points are closed so there is a unique geodesic connecting them.

A parameter t on the geodesic can be chosen proportional to the length of the

arc connecting these two points (the natural parameter). The solution xi(t) can be

chosen so that xi(0) ≡ xi and xi(1) = xi + δxi. The tangent vector to the geodesic

at t = 0 is defined by ξi = ẋi(0). Then equation for the geodesic can be solved

perturbatively by assuming the following expansion

xi(t) = xi + ci
1t + ci

2t
2 + · · · .

Plugging this into the geodesic equation one finds

xi(t) = xi + ξit− 1

2
Γi

j1j2
(x)ξj1ξj2t2 − 1

3!
Γi

j1j2j3
(x)ξj1ξj2ξj3t3 − · · · ,

where

Γi
j1j2j3

= ∂j1Γ
i
j2j3

− Γl
j1j2

Γi
lj3
− Γl

j1j2
Γi

j3l .

Here all the quantities are evaluated at xi. At t = 1 we have xi(1) = xi + δxi so that

xi + δxi = xi + ξi − 1

2
Γi

j1j2
(x)ξj1ξj2 − 1

3!
Γi

j1j2j3
(x)ξj1ξj2ξj3 − · · ·

Hence, the point xi + δxi is parameterized by the tangent vector ξi. We can there-

fore take ξi as the new coordinate system on our manifold. The coordinates ξi are

called Riemann normal coordinates. They are used to define a map of an open

neighbourhood U of the zero-vector 0 ∈ TxM to the manifold M:

expx : U ∈ TxM→M

which is well-defined diffeomorphism of U on its image. Now we are parameterizing

the points of the curved manifold with tangent vectors. The image of the geodesic

through a point x in the Riemann normal coordinates is just a straight line.

How metric will look in the new coordinate system? Upon changing the coordi-

nates form xi to ξi the metric transforms in the standard way

g′ij(ξ) =
∂(xk + δxk)

∂ξi

∂(xl + δxl)

∂ξj
gkl(x + δx)

We have
∂(xk + δxk)

∂ξi
= δk

i − Γk
ijξ

j + · · ·
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and also

gkl(x + δx) = gkl

(
xi + ξi − 1

2
Γi

j1j2
ξj1ξj2 + · · ·

)
= gkl(x) + ∂kgijξ

k + · · ·

Thus, at the linearized level we find that

g′ij(ξ) =
(
δk
i − Γk

inξ
n
)(

δl
j − Γl

jmξm
)(

gkl(φ) + ∂pgklξ
p
)

+ · · ·

= gij(x) +
(
∂ngij − Γk

ingkj − Γk
jngki

)

︸ ︷︷ ︸
Dngij

ξn + · · ·

We see that

g′ij(ξ) = gij(x) + Dkgij(x)ξk + · · · (D.1)

It is important to realize that the coordinates ξk depend on x because they define

the tangent vector to the manifold at the point x. Under reparametrizations of

x → x′ the object ξk(x) transforms as a vector! The expansion (D.1) is covariant

under general coordinate transformations x → x′ because it includes the tensorial

quantities only.

In the case of the minimal connection (connection compatible with the metric)

we have Dkgij = 0. This, the expansion of the metric start from the quadratic order

in ξi. Extending this calculation to higher orders in ξ one finds

g′ij(ξ) = gij(x)− 1

3
Rik1jk2ξ

k1ξk2 − 1

3!
Dk1Rik2jk3ξ

k1ξk2ξk3 + · · ·

Also we recall the transformation property of the Christoffel connection

Γk′
p′q′(ξ) =

∂xk′

∂xk

(
Γk

pq

∂xp

∂xp′
∂xq

∂x′q′
+

∂2xk

∂xp′∂xq′

)
,

where xi ≡ φi and x′i ≡ φi + πi. Expanding the r.h.s. of the last equation in ξi it is

easy to see that expansion does not contain the constant piece because the constant

terms in the bracket cancel against each other, in other words, in the Riemann normal

coordinates we have

Γk′
p′q′(ξ) = O(ξ)

In the Riemann normal coordinate system die to the vanishing of Γk
pq at ξ = 0 the

geodesic equation takes a form of the free motion λ̈ = 0. This is coordinate system

corresponds to the rest frame of a freely falling observer.

– 129 –



E. Exercises

Exercise 1. Show that the Hessian matrix associated to the Nambu-Goto Lagrangian

has for each σ two zero eigenvalues corresponding to Ẋµ and X ′µ.

Exercise 2. How reparametrization invariance can be used to bring the equation

∂

∂τ


(ẊX ′)X ′µ − (X ′)2Ẋµ

√
(ẊX ′)2 − Ẋ2X ′2


 +

∂

∂σ


(ẊX ′)Ẋµ − (Ẋ)2X ′µ

√
(ẊX ′)2 − Ẋ2X ′2


 = 0 .

to the simplest form?

Exercise 3. The Polyakov string. Prove that equations of motion for the fields

Xµ imply conservation of the two-dimensional stress-energy tensor

∇µTµν = 0

Exercise 4. Show that Tαβ = 0 implies that the end points of the open string

move with the speed of light.

Exercise 5. Non-relativistic string.

• Consider a string in equilibrium on the x-axis between (0, 0) and (L, 0) and

suppose that the infinitesimal parts of the string can move only in the y-

direction. Derive the Lagrangian with µ the mass density and T the string

tension.

• Derive the equation of motion from this Lagrangian and keep explicit attention

to the boundary conditions.

• Analyze the boundary terms. What must you impose in order to have a sta-

tionary action?

• Construct the momentum function P .

• Calculate the time derivative of the momentum (consider the boundary condi-

tions). What do you conclude?

• Fourier transform the x-coordinate and solve the eom. Do this for both bound-

ary conditions.
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Exercise 6. Show that the Polyakov action is invariant under reparametrizations

δXµ = ξα∂αXµ

δhαβ = ∇αξβ +∇βξα

δ(
√

h) = ∂α(ξα
√

h)

Exercise 7. Show that the Weyl invariance implies the tracelessness of the stress-

energy tensor Tαβ.

Exercise 8. Show that the Gauss-Bonnet term

χ =
1

4π

∫
d2σ

√
hR

is topological, i.e. it vanishes under smooth variations of the world-sheet metric hαβ.

Take into account that in 2dim the Ricci tensor is proportional to Ricci scalar and

also

δ(
√

hR) ∼
(
Rαβ − 1

2
hαβR

)
δhαβ .

Exercise 9. Let S(q, t; q0, t0) be the action of the classical path between (q0, t0)

and (q, t). Show that
∂S

∂q
= p(t) ,

where p(t) is the conjugate momentum of q at time t. Show that

∂S

∂t
= −H(q,

∂S

∂q
) ,

where H is the Hamiltonian. Suppose that H(q, p) = p2

2m
+ V (q) and define

ψ(q, t) = e
i
~S(q,t;q0,t0) .

Show that the schrödinger equation approximately holds for ψ,

i~
∂ψ

∂t
= H

(
q,−i~

∂

∂q

)
ψ + O(~) .

This is of course related to Dirac’s idea that the phase of the wave function is pro-

portional to the classical action.
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Exercise 10.

• Show that the constraints

C1 = PµP
µ + T 2X ′

µX
′µ , C2 = PµX

′µ

have the following Poisson brackets

{C1(σ), C1(σ
′)} = 4T 2∂σC2(σ)δ(σ − σ′) + 8T 2C2(σ)∂σδ(σ − σ′) ,

{C1(σ), C2(σ
′)} = ∂σC1(σ)δ(σ − σ′) + 2C1(σ)∂σδ(σ − σ′) ,

{C2(σ), C1(σ
′)} = ∂σC1(σ)δ(σ − σ′) + 2C1(σ)∂σδ(σ − σ′) ,

{C2(σ), C2(σ
′)} = ∂σC2(σ)δ(σ − σ′) + 2C2(σ)∂σδ(σ − σ′) .

• Define the linear combinations

T++ =
1

8T 2
(C1 + 2TC2) =

1

8T 2
(Pµ + TX ′

µ)2 ,

T−− =
1

8T 2
(C1 − 2TC2) =

1

8T 2
(Pµ − TX ′

µ)2 .

and show that their Poisson algebra is

{T++(σ), T++(σ′)} =
1

2T

(
∂σT++(σ)δ(σ − σ′) + 2T++(σ)∂σδ(σ − σ′)

)
,

{T−−(σ), T−−(σ′)} = − 1

2T

(
∂σT−−(σ)δ(σ − σ′) + 2T−−(σ)∂σδ(σ − σ′)

)
,

{T++(σ), T−−(σ′)} = 0 .

Exercise 11. For the closed string case define

Lm = 2T

∫ 2π

0

dσ eimσ−T−−(σ, τ)

L̄m = 2T

∫ 2π

0

dσ eimσ+

T++(σ, τ) .

Show that for any integer m the generators Lm and L̄m are time-independent.

Exercise 12. Compute the Poisson brackets of the constraints Lm, L̄m. What

kind of constraints they are, i.e. the first or the second class?

Exercise 13. It is known in curved space-time that we can transform the metric

locally in the neighborhood of a point xµ = 0 to the following form gµν(x) = ηµν −
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1
3
Rµσνρx

σxρ, this are Riemann normal coordinates. So that the deviation of g from

the flat metric η is only second order in x (this is a coordinate system of an observer

in free fall). Suppose we have a coordinate system x with metric expanded around

0,

gµν(x̃) = gµν(0) + ∂σgµν(0)x̃σ +
1

2
∂σ∂ρgµν(0)x̃σx̃ρ .

We want to transform this using a coordinate transformation x̃ → x = x(x̃) to

Riemann normal coordinates. We expand the coordinate transformation to third

order (zeroth order is zero)

xµ =
∂xµ

∂x̃ν
x̃ν +

1

2

∂xµ

∂x̃ν∂x̃σ
x̃ν x̃σ +

1

6

∂xµ

∂x̃ν∂x̃σ∂x̃ρ
x̃ν x̃σx̃ρ .

We can use the first term to bring g to η. Show that after we have done this there

are 1
2
d(d − 1) remaining degrees of freedom left for ∂xµ

∂x̃ν , where d is the dimension.

Where do these remaining degrees of freedom correspond to?

Show that we can bring ∂σgµν to zero using the second term of the transformation,

by counting degrees of freedom.

For arbitrary dimension there are not enough degrees of freedom to put ∂σ∂ρgµν to

zero. Count the number of remaining degrees of freedom and show that it equals
1
12

d2(d2−1). This is precisely the number of independent components of the Riemann

tensor.

Exercise 14. Solve equation of motion ¤Xµ = 0 for the case of open string (take

into account the open string boundary conditions).

Exercise 15. Consider solution of the closed string equations of motion

Xµ(σ, τ) = Xµ
L(τ + σ) + Xµ

R(τ − σ)

where

Xµ
R(τ − σ) =

1

2
xµ +

pµ

4πT
(τ − σ) +

i√
4πT

∑

n 6=0

1

n
αµ

ne−in(τ−σ)

Xµ
L(τ + σ) =

1

2
xµ +

pµ

4πT
(τ + σ) +

i√
4πT

∑

n6=0

1

n
ᾱµ

ne−in(τ+σ)

Derive the Poisson algebra of the variables (xµ, pµ, αµ
n, ᾱµ

n) by using the fundamental

Poisson brackets of Xµ(σ), P µ(σ) variables.
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Exercise 16. Prove that that (closed) string has an infinite set of integrals of

motion: for any function f the quantities

Lf =

∫ 2π

0

dσf(σ−)T−− , L̄f =

∫ 2π

0

dσ f(σ+)T++ ,

are conserved.

Exercise 17. Obtain an expression for the Virasoro generators Lm and L̄m in

terms of string oscillators.

Exercise 18. Show that the operators Dn = −ieinθ d
dθ

obey the Virasoro algebra.

Exercise 19. Consider an open string solution 0 ≤ σ ≤ π:

X0 = t = Lτ

X1 = L cos σ cos τ ,

X2 = L cos σ sin τ ,

X i = 0, i = 3, . . . , d− 1 .

• Show that this solution satisfies the Virasoro constraints and open string bound-

ary conditions.

• Compute the mass of string.

• Compute the angular momentum J ≡ J12 of string.

• Show that J = α′M2, where α′ = 1
2πT

is called a slope of the Regge trajectory.

Exercise 20. By using the Poisson brackets between the generators of the

Poincare group

{P µ, P ν} = 0

{P µ, Jρσ} = ηµσP ρ − ηµρP σ

{Jµν , Jρσ} = ηµρJνσ + ηνσJµρ − ηνρJµσ − ηµσJνρ

show that for a certain choice of a function f the following expression

J2 =
1

2

(
JαβJαβ + f(P 2)PαJαλP βJβλ

)
, P 2 ≡ PµP

µ.
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is an invariant of the Poincare group. Find the corresponding f .

Exercise 21*. Show that for any open classical string solution the following

inequality holds

J ≡
√

J2 ≤ α′M2 ,

(Hint. Make the computation in the static gauge X0 = t = τ and use the Schwarz

inequality |(f̄ , g)|2 ≤ (f̄ , f)(ḡ, g) which holds for any two complex functions f and

g.)

Exercise 22. Show that the generators of the angular momentum commute with

the Virasoso generators

{Lm, Jµν} = 0 .

Exercise 23. By using the first-order formalism and imposing the light-cone

gauge for the open string case

• Solve the Virasoro constraints,

• Find the open string light-cone Hamiltonian.

Exercise 24. Show that Virasoro constraints Tαβ = 0 which we have found in

the conformal gauge can be directly solved in the light-cone gauge without using the

first-order formalism. Show how the conformal gauge Hamiltonian turns into the

light-cone Hamiltonian upon substitution the light-cone gauge conditions and the

Virasoro constraints.

Exercise 25. Rewrite the Poisson algebra of the Poincaré generators in terms of

light-cone coordinates P±, P i and J i±, J ij, J+−.

Exercise 26. For the closed string case in the light-cone gauge compute the

Poisson brackets between the zero mode variables p+, p−, pi, x−, xi . The full answer

is given in the lecture notes.

Exercise 27. Proof the fulfilment of the Poisson algebra relations between the

generators {J i+, J j+} and {J i+, J j−} .

Exercise 28. The Virasoro algebra relation takes the form

[Lm, Ln] = (m− n)Lm+n + A(m)δm+n
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where A(m) is a function of m. The aim of this exercise is to find the constraints on

A(m) that follow from the condition that the relations above define the Lie algebra.

• That does the antisymmetry requirement on a Lie algebra tells you about

A(m)? What is A(0)?

• Consider the Jacobi identity for the generators Lm, Ln and Lk with m+n+k =

0. Show that

(m− n)A(k) + (n− k)A(m) + (k −m)A(n) = 0.

• Use the last equation to show that A(m) = αm and A(m) = βm3, for constants

α and β, yield consistent central extensions.

• Consider the last equation with k = 1. Show that A(1) and A(2) determine all

A(n)

Exercise 29.

• Use the Virasoro algebra to show that if a state is annihilated by L1 and L2

then it is annihilated by all Ln with n ≥ 1.

• Consider the Virasoro generators L0, L1 and L−1. Write out the relevant

commutators. Do these operators form a subalgebra of the Virasoro algebra?

Is there a central term here?

Exercise 30. Consider open string. The fundamental commutation relation is

[Xµ(σ, τ), P ν(σ′, τ)] = iηµνδ(σ − σ′) , σ ∈ [0, π] .

• Show that consistency with the oscillator expansion implies that

δ(σ − σ′) =
1

π

∞∑
n=−∞

cos nσ cos nσ′

• Why the fundamental commutation relation compatible with open string bound-

ary conditions?

• Prove this representation for the δ-function by using the fact that any function

f(σ) with σ ∈ [0, π] and vanishing derivative at σ = 0, π can be expanded as

f(σ) =
∞∑

n=0

An cos nσ .
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Exercise 31. Compute in the light-cone gauge the commutator of the orbital

momenta

[`i−, `j−] =?

Exercise 32. Show that in the quantum theory the eigenvalues of the covariant

number operator

N =
∞∑

n=1

αµ
−nαn,µ

are always nonnegative.

Exercise 33. Using the previous exercise show that for any fixed state all but

a finite number of positively moded Virasoro operators automatically annihilate the

state without imposing any conditions. More precisely, show that any state |Φ〉 with

the number eigenvalue N ≥ 0 automatically satisfies

Ln|Φ〉 = 0 for n > N.

Exercise 34. Compute the open string propagator

〈X(τ, σ)X(τ ′, σ′)〉 = T
(
X(τ, σ)X(τ ′, σ′)

)− : X(τ, σ)X(τ ′, σ′) : .

Exercise 35. Show that the vertex operator of the open string

V (k, τ) = e
1√
πT

∑∞
n=1

kµα
µ
−n

n
einτ

︸ ︷︷ ︸
V−

eikµ(xµ+ pµ

πT
τ)︸ ︷︷ ︸

V0

e
− 1√

πT

∑∞
n=1

kµα
µ
n

n
e−inτ

︸ ︷︷ ︸
V+

is the conformal operator with the conformal dimension ∆ = α′k2.

Exercise 36. Compute the two-point correlation function of the tachyon vertex

operators

〈0|V (k2, τ2)V (k1, τ1)|0〉

Exercise 37. Compute the three-point correlation function of the tachyon vertex

operators

〈0|V (k3, τ3)V (k2, τ2)V (k1, τ1)|0〉
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Exercise 38. Compute the three-point correlation function of the tachyon vertex

operators

〈0|V (k4, τ4)V (k3, τ3)V (k2, τ2)V (k1, τ1)|0〉

Exercise 40. Verify that ∂n
−Xµ is a conformal operator. Find the corresponding

conformal dimension. Find the singular terms of the OPE

T−−(τ, σ) ∂n
−Xµ(τ ′, σ′) .

Exercise 41. Find the singular terms of the OPE

T−−(τ, σ) V (k, τ ′, σ′) ,

where V (k, τ ′, σ′) is the vertex operator of tachyon.

Exercise 42. Find the singular terms of the OPE

T−−(τ, σ) T−−(τ ′, σ′) .

Exercise 43. Suppose that there are i = 1, . . . , n grassman (anticommuting)

variables ηi and η̄i. Let us define the integration rules as
∫

dη = 0 ,

∫
dηη = 1

for any ηi and η̄i. Show that for any n× n matrix M the following formula is valid

detM =

∫
dηdη̄ eη̄Mη .

Here η̄Mη ≡ η̄iMijηj.

Exercise 44. Show that the stress-tensor for the ghost fields implies the following

expression for the ghost Virasoro generators of the closed string

Lgh
m =

∞∑
n=−∞

(m− n) : bm+nc−n :

L̄gh
m =

∞∑
n=−∞

(m− n) : b̄m+nc̄−n :
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Exercise 45. Consider conformal transformations z → z′ = f(z). By definition,

primary fields are the fields which transform as tensors under conformal transforma-

tions

φ(z, z̄) → φ′(z, z̄) =
(∂z′

∂z

)h(∂z̄′

∂z̄

)h̄

φ(z′(z), z̄′(z̄))

Find how a primary field transforms under infinitezimal conformal transformations

φ → φ + δξ,ξ̄φ, where z′ = z + ξ(z).

Exercise 46. Show that conformal fields of weight h have the following mode

expansion

φ(z) =
∑

n∈integer

z−n−hφn .

Exercise 47. In the radial quantization products of fields is defined by putting

them in the radial order. Using the radial order prescription show that the conformal

transformation

δξφ(w) = [Tξ, φ(w)]

can be written in the form

δξφ(w) =

∮

Cw

dz

2πi
ξ(z)T (z)φ(w)

Here Cw is a small contour in a complex plane around point z.

Exercise 48. Using the previous exercise together with the Cauchy-Riemann

formula ∮

Cw

dz

2πi

f(z)

(z − w)n
=

f (n−1)(w)

(n− 1)!

show that any conformal field must have the following R-ordered operator product

with T (z):

T (z)φ(w) =
hφ(w)

(z − w)2
+

∂φ(w)

(z − w)
+ regular terms

Exercise 49. Show that the following operator product of the stress tensor

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
+ regular terms

corresponds to the following transformation law

δξT (z) =
c

12
∂3ξ(z) + 2∂ξ(z)T (z) + ξ(z)∂T (z)
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Exercise 50. Under finite transformations z → f(z) the stress tensor transforms

as

T (z) → T ′(z) = (∂f)2T (f(z)) +
c

12
D(f)z

Here

D(f)z =
∂f(z)∂3f(z)− 3

2
(∂2f(z))2

(∂f)2

is the Schwarzian derivative. Show that if f(z) = az+b
cz+d

then D(f)z = 0.

Exercise 51. Consider a parallelogram on the complex plane determined by the

following identification

z ≡ z + nλ1 + mλ2 , n,m ∈ Z

Show that a general transformation

λ1 → dλ1 + cλ2 , λ2 → bλ1 + aλ2

with the condition ad− bc = 1 preserves the area of the parallelogram.

Exercise 52. Show that the modular transformations

T : τ → τ + 1 , S : τ → −1

τ

applied to the fundamental region of the modular group

Mg=1 =
{
− 1

2
≤ Reτ ≤ 0, |τ |2 ≥ 1 ∪ 0 < Reτ <

1

2
, |τ |2 > 1

}

generate the whole upper-half plane.

Exercise 53. Show that τ = i and τ = e
2πi
3 are the fixed points of S and ST

transformations respectively.

Exercise 54. Verify that the action

S = − 1

8π

∫
d2σ

(
∂αXµ∂αXµ + 2iψ̄µρα∂αψµ

)
.

is invariant under supersymmetry transformations w

δεX
µ = iε̄ψµ ,

δεψ
µ =

1

2
ρα∂αXµε

δεψ̄
µ = −1

2
ε̄ρα∂αXµ
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provided the parameter ε satisfies the following equation

ρβρα∂βε = 0 .

Exercise 55. If in the previous exercise the parameter ε is constant then we

deal with global supersymmetry transformations. Derive the Noether current which

corresponds to this global symmetry of the action.

Exercise 56*. Express the spin connection ω via vielbein e by using the condition

of vanishing of the torsion

T a
αβ = Dαea

β −Dβea
α = 0 .

Exercise 57. Derive the on-shell algebra of supersymmetry transformations

[δ1, δ2] =? .

Exercise 58. Using the Noether method derive the currents corresponding to

the Poincaré symmetry for the fermionic string. Express the corresponding Noether

charges via oscillators for both Neveuw-Schwarz and Ramond sectors.
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