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Self-replicating systems based on information-coding polymers are of crucial importance in biology.
They also recently emerged as a paradigm in material design on nano- and micro-scales. We present a
general theoretical and numerical analysis of the problem of spontaneous emergence of autocatalysis
for heteropolymers capable of template-assisted ligation driven by cyclic changes in the environment.
Our central result is the existence of the first order transition between the regime dominated by free
monomers and that with a self-sustaining population of sufficiently long chains. We provide a simple,
mathematically tractable model supported by numerical simulations, which predicts the distribution
of chain lengths and the onset of autocatalysis in terms of the overall monomer concentration and two
fundamental rate constants. Another key result of our study is the emergence of the kinetically limited
optimal overlap length between a template and each of its two substrates. The template-assisted
ligation allows for heritable transmission of the information encoded in chain sequences thus opening
up the possibility of long-term memory and evolvability in such systems. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4922545]

I. INTRODUCTION

Life as we know it today depends on self-replication
of information-coding polymers. Their emergence from non-
living matter is one of the greatest mysteries of fundamental
science. In addition, the design of artificial self-replicating
nano- and micro-scale systems is an exciting field with
potential engineering applications.1,2 The central challenge in
both of these fields is to come up with a simple physically
realizable system obeying laws of thermodynamics, yet
ultimately capable of Darwinian evolution when exposed
to non-equilibrium driving forces. Chemical networks of
molecules engaged in mutual catalysis is a popular candi-
date for such a system.3–6 One of the most successful ex-
perimental realizations of an autonomous self-replication
involves a set of mutually catalyzing RNA-based enzymes
(ribozymes)7 that show evolution-like behavior.8 This is
viewed as a major evidence for RNA-world hypothesis (see,
e.g., Refs. 9–11).

The ribozyme activity requires relatively long polymers
made of hundreds of nucleotides with carefully designed
sequences. Polymers of sufficient length can be generated,
e.g., by traditional reversible step-growth polymerization
that combines random concatenation and fragmentation of
polymer chains. Furthermore, the polymer length in this type
of process can be drastically increased in non-equilibrium
settings such as temperature gradients.12 However, even when
long chains are formed, the probability of the spontaneous
emergence of a sequence with an enzymatic activity remains
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vanishingly small, due to the exponentially large number of
possible sequences.

Thus, there is a strong need for a mechanism that com-
bines the emergence of long chains with dramatic reduction
of informational entropy of the sequence population. A prom-
ising candidate for such mechanism is provided by template-
assisted ligation. In this process, pairs of polymers are brought
together by hybridization with a complementary polymer
chain serving as the template and eventually ligated to form a
longer chain. Unlike the non-templated reversible step-growth
polymerization used in Ref. 12, this mechanism naturally
involves the information transmission from a template to the
newly ligated chain, thus opening an exciting possibility of
long-term memory and evolvability. An early model involving
template-assisted polymerization was proposed by Anderson
and colleagues.13,14 It also has been the subject of more
recent experimental and theoretical studies.15,17 In particular,
in Ref. 15, it has been demonstrated that, for a specific choice
of parameters, a combination of non-template and template-
assisted ligation can lead to the emergence of long (around
100 monomers) oligonucleotides.

In this work, we carried out the theoretical and numerical
analysis of a generic system in which the polymerization
is driven solely by template-assisted ligation. Unlike in
the models with significant contribution of non-templated
concatenation, the emergence of long chains in our system
represents a non-trivial chicken-or-egg problem. Indeed, the
formation of long chains depends on the presence of other
chains serving as templates.

In our model, the “primordial soup” of monomers is
driven out of equilibrium by cyclic changes in physical
conditions such as temperature, salt concentration, pH, etc.
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FIG. 1. The schematic representation of fundamental processes in our sys-
tem. (a) The “day” phase during which all hybridized complexes between
heteropolymers dissociate and ligation completely stops, while fragmentation
continues in all phases of the cycle. (b) The “night” phase during which some
polymer chains hybridize and then undergo template-assisted ligation. The
ends of substrates S1 (green) and S2 (red) hybridized with a template T
(purple) are ligated at a constant rate with the newly formed bond shown
in blue. (c) If the “night” phase is sufficiently long, heteropolymers enter the
aggregation regime in which ligation effectively stops.

(see Figs. 1(a) and 1(b)). Polymerization occurs during the
“night” phase of each cycle when the existing heteropolymers
serve as templates for formation of progressively longer
chains. During the “day” phase of each cycle, all multi-chain
structures separate and the system returns to the state of
dispersed individual polymers.

We consider a general case of information-coding het-
eropolymers composed of z types of monomers capable of
making z/2 mutually complementary pairs. For example,
RNA is made of z = 4 monomers forming 2 complementary
pairs A–U and C–G responsible for double-stranded RNA
structure. Similarly, we assume that hybridization between
complementary segments of our generalized polymers results
in formation of a double-stranded structure. During the night
phase of each cycle, chains form a variety of hybridized
complexes. The ligation takes place in a special type of
such complexes shown in Fig. 1(b). The end groups of two
“substrate” chains S1 and S2 are positioned next to each
other by the virtue of hybridization with the third, “template”
polymer T . Once the substrates are properly positioned, the
new covalent bond joining them together is formed at a
constant rate. We further assume that each of the intra-polymer
bonds can spontaneously break at a constant rate making the
overall fragmentation rate of a chain proportional to its length.
If one were to leave a mixture of polymers in the night phase
long enough, hybridization of multiple chains would result
in the formation of a gel-like aggregate shown in Fig. 1(c),
effectively stopping ligation. During the day phase of the cycle
(Fig. 1(a)), all structures of hybridized polymers dissociate
while keeping their stronger internal bonds intact. Thus, the
day phase plays the role of the “reset” returning the system to
a mixture of free polymers ready for the next night phase.

One of the major assumptions used in our study is the
Random Sequence Approximation (RSA) according to which
each monomer in every chain can be of any type with equal
probability 1/z. On the one hand, the RSA greatly simplifies
the problem and allows us to get a concise analytical solution.
On the other hand, in order to understand the transmission of
sequence-encoded information and the long-term memory in
our system, this approximation needs to be relaxed in future
studies.

II. RESULTS

A. Optimal overlap length k0

In general, the interaction strength between any two chain
segments increases with the overlap length k of the region over
which they are complementary to each other. Here, we assume
a simple linear relationship in which the binding free energy
is given by ∆G0 + k · ∆G, where ∆G is the (negative) binding
free energy between two complementary monomers, while
∆G0 is the initiation free energy.

The equilibrium hybridization probability emerges out of
the competition between two opposing kinetic processes of
association and dissociation. On the one hand, the association
rate exponentially decreases with the overlap length k since the
probability of finding a pair of polymers with complementary
sequences of length k is proportional to 1/zk. On the other
hand, the dissociation rate between a substrate and its template
also exponentially decreases with k as exp(−k · ∆G/kBT) due
to greater thermodynamic stability of longer complementary
duplexes. The net result is that the hybridization probability is
proportional to exp(k · ϵ), where

ϵ = −∆G/kBT − log(z) (1)

is the effective parameter combining thermodynamic and
combinatorial factors. Template-assisted ligation happens at
appreciable rates only for ϵ > 0, i.e., when∆G < −kBT log(z).
For a finite time window t, only the duplexes with short
overlaps will reach this equilibrium. Duplexes with longer
overlaps have lifetimes much longer than t. Thus for them,
the hybridization probability is limited by the association rate
alone ∼1/zk. Therefore, the overall hybridization probability
as a function of k is strongly peaked (see Fig. 2 and
Appendix A for details). As time t increases, this peak slowly
(logarithmically in t) shifts towards larger values of k with its
final value k0 set by either the end of the night phase or (in
case of long nights) by the onset of the aggregation regime
(Fig. 1(c)).

B. Major parameters of the model

In what follows, we focus on slow dynamical processes
taking place over multiple day/night cycles. The main input
parameter from the intra-night kinetics to the multi-cycle
dynamics is the hybridization cutoff length k0 discussed above.
The multi-cycle dynamics can be described in terms of time-
averaged ligation and fragmentation rates, λ and β, respec-
tively. We define λ as the rate of bond formation provided that
the ends of the two substrates are already properly positioned
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FIG. 2. Time evolution of the hybridization probability. The probability that
a segment of length k is hybridized to its complementary partner (Eq. (A8)
in Appendix A) is strongly peaked at k = k0∼ logt (see Eq. (A9) in Ap-
pendix A). Different colors from red to violet correspond to linearly increas-
ing times t since the beginning of the night phase of the cycle.

next to each other due to their hybridization with the template.
We further assume that the characteristic fragmentation time
1/β is much longer than the duration of the day-night cycle
ensuring the separation between short and long timescales in
the problem. Both λ and β are averaged over the duration of
the day-night cycle with the understanding that fragmentation
happens continuously throughout the cycle (possibly with
different day and night rates), while the ligation only occurs
during the night phase. Thus, λ implicitly depends on relative
durations of night and day phases.

Let C be the overall monomer concentration including
both free monomers and those bound in all chains. In
the case of random sequence composition, the population
of heteropolymers is fully characterized by their length
distribution f l defined in such a way that C · f l is the
concentration of all polymers of length l. By this definition,
f l is subject to the normalization condition

∞
l=1 l f l = 1. The

fraction of polymers with a specific sequence is then given by
z−l · f l.

C. Detailed balance ansatz

For template-assisted ligation, the effective two-polymer
merger rate µ is given by the ligation rate λ multiplied by the
probability of hybridization of a template T with two substrates
S1 and S2 bringing them into end-to-end configuration shown
in Fig. 1(b). The major step in constructing an approximate
analytical solution of the problem is the assumption of
a detailed balance between template-assisted ligation and
fragmentation in the steady state of the system,

β f l+m = µ f l · fm. (2)

Here, the left-hand side describes the rate at which a chain
of length l + m breaks into two pieces of lengths l and m
correspondingly. Conversely, the right-hand side is the effec-
tive merger rate (hybridization + ligation) at which polymers
of lengths l and m are joined to form a longer chain of length
l + m. Note that according to this description, the rate at which
a polymer breaks into arbitrary two pieces is proportional to
its length or rather its number of intra-polymer bonds.

The detailed balance approximation is not a priori
justified in driven, non-equilibrium systems such as ours.
However, for chains longer than the optimal overlap length
k0, the probability of hybridization and thus the effective
merger rate µ saturate (see Appendix A for derivation and
details). Once both µ and β are independent of polymers’
lengths, our system becomes mathematically equivalent to
the well known reversible step-like polymerization process
for which the detailed balance approximation holds true by
the virtue of laws of equilibrium thermodynamics. In spite
of this superficial similarity, our system remains intrinsically
non-equilibrium since the effective merger rate µ depends on
hybridization between templates and substrates cycled through
day and night phases as shown in Figs. 1(a) and 1(b). In
addition, Eq. (2) is expected to break down for chains shorter
than k0.

To validate our mathematical insights, the analytic solu-
tion shown below was followed by numerical simulations
of the system carried out without the detailed balance
approximation. The agreement between our analytical and
numerical results for polymers longer than k0 confirms the
validity of our approach.

Eq. (2) is satisfied by the exponential length distribution,

f l = (β/µ) exp(−l/L̄), (3)

where the characteristic chain length, L̄, is determined by
the normalization condition

∞
l=1 l f l = 1 or (β/µ)L̄2 = 1. This

result was obtained by replacing the discrete sum with the
integral, which works in the limit L̄ ≫ 1 (see Eq. (B2) in
Appendix B for the exact formula in which this approximation
is relaxed). Hence, the characteristic chain length in the steady
state exponential distribution is given by

L̄ =


µ

β
. (4)

D. Onset of autocatalysis

µ is an effective two-polymer merger rate proportional
to the probability of finding two terminal ends attached to a
template followed by ligation. This probability depends on
(a) the overall concentration C and the length distribution
of potential templates and (b) the strength and kinetics
of interactions between the complementary segments on a
template and its two substrates.

For short overlaps k ≤ k0, the hybridization probability
follows the equilibrium formula, ∼exp(k · ϵ). This increase
is followed by an abrupt drop for k > k0 (see Fig. 2). By
neglecting the contribution of overlap lengths longer than k0,
one gets

µ = λ

(
C
C0

)2 k0
k1=1

exp(k1 · ϵ)
k0

k2=1

exp(k2 · ϵ)

·
∞

l=k1+k1

(l − k1 − k2 + 1) f l . (5)

Here, λ is the bare ligation rate and k1 and k2 are the
overlap lengths between the template and each of the two
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substrates. We also introduced the reference concentration
C0 = exp[−∆G0/kBT] (in molar) absorbing the initiation free
energy. The term (C/C0)2 reflects the fact that the template-
assisted ligation is a three-body interaction involving two
substrates and one template. The last sum in the rhs of
Eq. (5) is equal to the probability of finding a template
region of length k1 + k2 within a longer heteropolymer. It
takes into account that a chain of length l ≥ k1 + k2 has
l − k1 − k2 + 1 sub-sequences of length k1 + k2. Requirements
of sequence complementarity between the template and each
of two substrates were absorbed into the definition of ϵ within
the RSA.

Substituting the exponential distribution f l given by
Eq. (3), performing the triple summation in Eq. (5), and
neglecting the terms ∼1/L̄ (but not ∼k0/L̄) within the
exponents approximately gives µ = λ(C/C0)2 exp(2k0 · (ϵ
− 1/L̄))/[1 − exp(−ϵ)]2. Substituting this expression into
Eq. (4) results in the self-consistency equation for L̄,

L̄ exp
(

k0

L̄

)
=

C
C0
·


λ

β
· exp (k0ϵ)

1 − exp(−ϵ) , (6)

(see Eq. (B6) in Appendix B for a more precise expression
derived without the large L̄ approximation). The lhs of this
equation reaches its minimal value of e · k0 at L̄ = k0. As a
result, the equation has solutions only for concentrations C
above a certain threshold value given by

Cdown = k0C0


β

λ
exp(1 − k0ϵ) · (1 − exp(−ϵ)). (7)

For C significantly larger than this threshold, one can neglect
the exponential term in the lhs of Eq. (6) so that the char-
acteristic polymer length L̄ linearly increases with the con-
centration as

L̄ =
C
C0
·


λ

β
· exp(k0ϵ)

1 − exp(−ϵ) . (8)

For monomer concentrations C below the threshold, we do
not expect long heteropolymers to form. This suggests a
first-order transition between the regimes dominated by free
monomers and that with a self-sustaining population of long
heteropolymeric chains.

To verify and refine our predictions we approach this
transition from below, starting with the state dominated by
monomers i.e., f1 ≃ 1. We explore the stability of the monomer
mixture with respect to formation of dimers. In this limit, the
dimer fraction f2 obeys the following kinetic equation:

df2

dt
= −β f2 + λ

(
C
C0

)2

exp(2ϵ) f 2
1 f2, (9)

where the second term in the rhs reflects the fact that a
dimer can be formed out of two monomers and this process
needs to be catalyzed by a complementary dimer. The critical
concentration Cup above which dimers would exponentially
self-amplify is given by

Cup = C0


β

λ
exp(−ϵ). (10)

Thus, we confirm the existence of an instability in a mixture
of monomers with respect to template-assisted formation of
longer chains. Note that, as expected for a first-order phase
transition, the instability threshold Cup (Eq. (10)) approached
from below exceeds the instability threshold Cdown (Eq. (7)) ap-
proached from above. Thus, as expected for a first-order phase
transition, the system will be hysteretic for Cdown < C < Cup.

E. Numerical results

To check our calculations, we carried out the detailed
numerical simulations of our system. Specifically, we numer-
ically solved a system of coupled kinetic equations describing
the template-assisted ligation and fragmentation processes and
calculated the steady state distribution f l,

1
2β

ḟn = −


n
2
+ Γ2


m

µn,m fm


fn +

m>n

fm

+ Γ2

m<n

(1 + δn−m,m)
2

µm,n−m fm fn−m. (11)

Here, Γ is the dimensionless control parameter of the model
proportional to the monomer concentration,

Γ =

(
C
C0

) 
λ

β
, (12)

and µnm is the merger matrix, which itself linearly depends
on the distribution f l as described in Eqs. (C4) and (A1)
in Appendices A and C. Note that these simulations (unlike
our analytical theory) allow for overlap length dependence of
merger rates that do not use the detailed balance ansatz.

The results of these numerical simulations are in excellent
agreement with our analytical calculations. For high enough
concentrations C, the length distribution f l has a long
exponential tail covering the region l > k0. Chains of length
shorter than k0, which do not obey the detailed balance, exhibit
a much faster decay as a function of l (see Fig. 3).

Our simulations also confirmed the existence of a first-
order transition to a regime dominated by monomers as

FIG. 3. Chain length distributions. A set of chain length distributions fl

plotted for different values of the control parameter Γ= C
C0


λ
β as found by

numerical simulations with k0= 3 and ϵ = 1. Distributions in the autocatalytic
regime are characterized by long exponentially distributed tails for chains
with l > k0. Note a sharp transition between monomer-dominated and auto-
catalytic regimes.
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FIG. 4. A hysteretic first order transition between the monomer-dominated
and autocatalytic regimes. Different lines/symbols show the characteristic
length L̄ in our numerical simulations with k0= 3 for increasing (diamonds),
and decreasing (circles) concentration C , correspondingly. The dashed line
is the prediction of our simplified model given by Eq. (B6). Arrows indicate
Cup and Cdown given by Eqs. (10) and (7) correspondingly.

concentration C was reduced (the red line in Fig. 4). The
decay length L̄ of the exponential tail of f l for l ≥ k0 plays
the role of the order parameter in this transition. When
plotted as a function of concentration C in Fig. 4, it exhibits
sharp discontinuities and hysteretic behavior. Our analytical
results given by Eq. (B6) (black dashed line in Fig. 4) are
in a good agreement with our numerical simulations. The
transitions from monomers to long-chained polymers and
back in our numerical simulations occur at concentrations
somewhat higher than their theoretically predicted values Cup

(Eq. (10)) and Cdown (Eq. (7)) marked in Fig. 4 by the blue and
red arrows, respectively.

F. Long-night limit

Our model assumes cyclic changes between “day” and
“night” phases. In the beginning of each night phase, all
polymers are unhybridized, but as time progresses, they
start forming duplexes of progressively longer lengths. The
probability of finding any given segment in a duplex remains
low at the early stage of this process. However, if the duration
of the night phase is long enough, there would be a time
point at which individual polymers would on average have
around one hybridized partner. Note that a single polymer
may simultaneously have more than one hybridized partner as
long as the duplexes with different partners do not overlap with
each other. Around this time, most polymers in our pool would
become immobilized in a gel-like structure schematically
depicted in Fig. 1(c). At this point, the formation of new
hybridized complexes effectively stops and the value of k0
stops growing. An indirect experimental evidence for such
aggregation phase was recently reported by Bellini et al.16

According to our results, the characteristic chain length
L̄ given by Eq. (8) exponentially increases with k0. In the
presence of aggregation, this growth is eventually arrested.
The upper bound on L̄ reached in this case can be determined
self-consistently by requiring that individual polymers on
average have around one hybridized partner. A chain of length
L̄ ≫ k0 contains L̄ − k0 + 1 ≃ L̄ segments of length k0. The
probability of each of these segments to be hybridized at any
particular time is (C/C0) · exp(k0 · ϵ). Thus, the transition to

the aggregated state is expected when

L̄
C
C0

exp(k0ϵ) ≃ 1. (13)

Combining this expression with Eq. (8) and ignoring the
factors of order of 1, one gets the upper bound L̄max on
the characteristic polymer length that could, in principle, be
reached by increasing the duration of the night phase,

L̄max ≃
(
λ

β

) 1
4

. (14)

III. DISCUSSION

To summarize, above we considered a general case of
random heteropolymers capable of template-assisted ligation.
As such, our model is applicable to both nucleic acids at the
dawn of life as well as to artificial self-replicating nano- or
micro-structures.1,2 The major conclusions of our study are
as follows. We demonstrated that a population of long chains
can be sustained by mutual catalysis sustained exclusively
by template-assisted ligation. This state is separated from
the monomer-dominated one by a hysteretic first order phase
transition (Eqs. (7) and (10)) as a function of the concentration.
We also demonstrated that the template-assisted ligation in our
system is dominated by contributions from template-substrate
pairs complementary over a well-defined length k0 that is
kinetically limited. The average length of heteropolymers
exponentially increases with k0, with the upper bound given
by a very simple expression, Eq. (14), depending only on the
ratio between the ligation and the breakage rates.

The spontaneous emergence of long polymers demon-
strated in our study is of conceptual importance to the long-
standing problem of the origin of life. Indeed, we offer a
physically plausible path leading from the primordial soup
dominated by monomers to a population of sufficiently
long self-replicating chains. This transition is one of the
least understood processes in the RNA-world hypothesis. It
is known that functional RNA-based enzymes (ribozymes)
need to be sufficiently long, which makes their spontaneous
formation prohibitively unlikely. According to our analysis,
both the characteristic chain length and the minimal monomer
concentration required for autocatalysis depend on the ratio
of ligation and breakage rates. Large values of this ratio
λ/β ≫ 1 would allow long chains to form at physically
possible concentrations C ≪ 1M. One of the reasons that
such spontaneous emergence of long-chained polymers has
never been observed is that in experimental systems studied
so far, the ratio λ/β remained low due to a very slow ligation
process.17 Note that ligation and breakage processes in our
system are not direct opposites of each other. Indeed, the
ligation of, e.g., nucleic acids requires activated terminal
bases carrying free energy sufficient to form a new intra-
polymer bond. To achieve the conditions necessary for our
autocatalytic regime, one needs to either use heteropolymers
chemically different from modern nucleic acids or to develop
new activation pathways different from what has been used in
experiments so far. The ligation can be further assisted, e.g., by
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the absorption of polymers onto properly selected crystalline
interfaces.

The present study was limited to the simplest version
of the problem in which sequences of all heteropolymers
were assumed to be completely random. It provides a useful
analytically solvable null-model against which future variants
can be benchmarked. Even though the informational entropy
of the pool of polymers in our model is at its maximal
value, the template-assisted ligation provides a mechanism for
faithful transmission of information to the next generation. We
demonstrated that the spontaneous emergence of long chains
is possible even in the limit where direct (non-templated)
bond formation is negligible. This is especially important
since non-templated polymerization is a regular equilibrium
phenomenon and as such has a short memory. In contrast,
heritable transmission of sequence information via template-
assisted ligation opens up an exciting possibility of long-term
memory effects and ultimately of the Darwinian evolution in
the space of polymer sequences. Incorporation of sequence
effects is the logical next step in the development of our
model, and we are currently working on it. There are several
conceptually distinct yet non mutually exclusive scenarios
giving rise to over-representation of certain sequences in the
pool of heteropolymers. The first one is driven by the sequence
dependence of model parameters such as hybridization free
energies, fragmentation and ligation rates, and monomer
composition of the primordial soup. The other scenario is the
spontaneous symmetry breaking in the sequence space.13,18

Specifically, our results obtained within the random sequence
approximation need to be checked for local and global sta-
bility. The local stability analysis deals with small deviations
from a state in which populations of all sequences are equal
to each other, while the global one perturbs the system
by strongly over-representing a small subset of sequences.
This can be interpreted, correspondingly, as weak and strong
selection limits. Evidence of local or global instability would
signal a symmetry breaking and would provide a scenario
for the dramatic decrease in informational entropy of the
population of polymers. This is analogous to replica symmetry
breaking suggested by Anderson13 leading to a population
dominated by a relatively small subset of mutually catalyzing
sequences.
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APPENDIX A: k -MERS AND THEIR HYBRIDIZATION
DYNAMICS

To describe the hybridization dynamics during the night
phase, we introduce the concept of a k-mer defined as the

segment of k monomers with the specific sequence σ within a
longer chain of length l ≥ k. Let C · p(σ)

k
be the concentration

of k-mers with particular sequence σ. Let C · Pk be the
concentration of all k-mers of length k, regardless of their
sequences. By definition, Pk =


σ p(σ)

k
. If all the sequences

are completely random, p(σ)
k
= Pkz−k. Each chain of length l

contains (l + 1 − k) “k-mers,” therefore

Pk =

∞
l=k

(l + 1 − k) f l . (A1)

Note that Pk has the maximum value of 1 which is approached
in the limit when all chains are much longer than k.

We consider a problem of hybridization of polymers since
the start of the night phase of the cycle when all of them
are not hybridized. To describe the hybridization kinetics, we
use the fractions of fully hybridized k-mers 1 ≥ ϕ(σ)

k
(t) ≥ 0

as our dynamic variables. By definition, the concentration of
such pairs of bound k-mers is C · p(σ)

k
ϕ
(σ)
k

(t). We note that
hybridization states of different k-mers are not independent
from each other since some of them overlap. To account for
this, we introduce one more variable ψ(σ)

k
≤ 1 − ϕ(σ)

k
which

is the fraction of all k-mers with a given sequence σ that
are available for hybridization. Now, the binding kinetics of
all k-mers can be described by the following set of coupled
kinetic equations:

τϕ̇
(σ)
k
= C · p(σ

′)
k
ψ
(σ′)
k

ψ
(σ)
k
− exp

(
∆Gσ

kBT

)
ϕ
(σ)
k
. (A2)

Here, 1/τ is the hybridization rate, ∆Gσ is the hybridization
free energy for a given sequence σ, and σ′ is the sequence
complementary to σ. For simplicity, we consider a symmetric
case where mutually complementary k-mers have the same
fraction, p(σ)

k
= p(σ

′)
k

. In order to solve these equation, one
needs to specify a relationship between fraction of available
k-mers ψ(σ)

k
and hybridization probabilities, ϕ(σ)

k
, that would

take into account mutual overlap of the sequences. However,
at early stages, the hybridization probability remains suffi-
ciently low, and one can therefore assume ψ(σ)

k
= ψ

(σ′)
k
≈ 1 in

Eq. (A2). This results in a set of decoupled equation

τϕ̇
(σ)
k
= C · p(σ)

k
− exp

(
∆Gσ

kBT

)
ϕ
(σ)
k
. (A3)

The solution is the exponential relaxation of hybridization
variables ϕ(σ)

k
towards their equilibrium values,

ϕ
(σ)
k

(t) = K (σ)
k

p(σ)
k

*
,
1 − exp *

,
− t

τ
(σ)
k

+
-
+
-
. (A4)

In this expression,

K (σ)
k
= C exp

(
−∆Gσ

kBT

)
, (A5)

τ
(σ)
k
= τ exp

(
−∆Gσ

kBT

)
. (A6)

The single most important factor that determines the
hybridization free energy ∆Gσ is the sequence length k.
For simplicity of the analysis, we will replace K (σ)

k
with its
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sequence- averaged value,

K (σ)
k
≈ Kk = C exp

(
−∆G0 + k∆G

kBT

)
. (A7)

This leads to the following result:

ϕk (t) = CPkz−k exp
(
−∆G0 + k∆G

kBT

)
·
(
1 − exp


− t
τ

exp
(
∆G0 + k∆G

kBT

))
. (A8)

As shown in Figure 4 at any given time t, this expression
is strongly peaked at a single value of k, which weakly
(logarithmically) depends on time,

k ≈ k0 (t) ≃ − kBT
∆G

log
( t
τ

)
, (A9)

ϕk0 ≃ CPk0 exp
(
−∆G0

kBT
+ εk0

)
. (A10)

APPENDIX B: EVALUATING THE EFFECTS
OF A FINITE L̄

Eqs. (3) and (6) in the main text were derived in the limit
L̄ ≫ 1. Below, we will relax these approximations to derive
the exact formula working for arbitrary L̄.

In deriving Eq. (3) in the main text, we replaced the
discrete summation with an integral. This approximation can
be avoided by performing an explicit summation of the discrete
geometric progression,

∞
l=1

l · exp(− l
L̄
) = exp

(
− 1

L̄

)

1 − exp

(
− 1

L̄

)2 =
1

4 sinh
(

1
2L̄

)2 . (B1)

This amounts to replacing L̄ in Eq. (3) with 1
2 sinh

(
1

2L̄

) ,

1

2 sinh
(

1
2L̄

) =
µ

β
. (B2)

The exact triple summation of Eq. (5) in the main text,

µ = λ

(
C
C0

)2 k0
k1=1

exp(k1 · ϵ)
k0

k2=1

exp(k2 · ϵ)

·
∞

l=k1+k1

(l − k1 − k2 + 1) f l, (B3)

for f l ∼ exp(−l/L̄) can be carried out in two steps. First, the
sum over l combined with normalization


l l · f l = 1 gives

rise to

µ = λ

(
C
C0

)2

exp(1/L̄)
k0

k1=1

exp
�
k1 · (ϵ − 1/L̄)�

·
k0

k2=1

exp
�
k2 · (ϵ − 1/L̄)� . (B4)

The discrete summation over k1 and k2 results in

µ = λ

(
C
C0

)2

exp(1/L̄)
(

exp[k0(ϵ − 1/L̄)] − 1
1 − exp(−ϵ + 1/L̄)

)2

. (B5)

Eq. (6) then becomes

1

2 sinh
(

1
2L̄

) exp
(

k0 − 1/2
L̄

)

=
C
C0
·


λ

β
·

exp (k0ϵ) − exp
�
k0/L̄

�

1 − exp(−ϵ + 1/L̄) . (B6)

Here, we neglected the exponentially small term in the
enumerator of the rhs of Eq. (B5). The dashed line in Fig. 4
shows L̄ defined by this equation plotted as a function of C.

APPENDIX C: LIGATION-FRAGMENTATION KINETICS

Eq. (6) describes the effective merger rate µwhen lengths
n and m of two substrate chains hybridized to a template are
longer than k0. In a more general case, one needs to introduce
length-dependent effective merger rate µnm. Under RSA, this
rate is given by

µnm = λC2
min(n,k0)

k1=1

min(m,k0)
k2=1

Pk1+k2

zk1+k2

· exp
(
−2∆G0 + (k1 + k2) · ∆G

kBT

)
= λ

(
C
C0

)2

·
min(n,k0)

k1=1

min(m,k0)
k2=1

Pk1+k2

· exp ((k1 + k2) · ϵ) . (C1)

Here, µnm corresponds to a particular order in which chains n
and m merge into a longer chain. Note that for directed chains
such as nucleic acids, there are two ways of merging chains,
while for undirected polymers, there are four.

For nucleic acids, when two chain segments are bound
to the same template and are directly adjacent to each
other (Figs. 1(a) and 1(b)), there is an additional gain in
free energy ∆Gst due to stacking. It is straightforward to
incorporate ∆Gst into our formalism by redefining C0 as
C0 = exp[−(∆G0 + ∆Gst/2)/kBT] (in molar).

For directed polymers, the resulting set of kinetic equa-
tions can be written as

1
2β

ḟn = −


n
2
+ Γ2


m

µn,m fm


fn +

m>n

fm

+ Γ2

m<n

(1 + δn−m,m)
2

µm,n−m fm fn−m. (C2)

Here, Γ is the dimensionless control parameter of the model
which is proportional to monomer density,

Γ =

(
C
C0

) 
λ

β
(C3)

and µnm is the “k-mer”- dependent ligation matrix,

µnm =

min(n,k0)
k1=1

min(m,k0)
k2=1

Pk1+k2 exp (ϵ · (k1 + k2)) . (C4)
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This set of kinetic equations gives a complete description of the
system in question and was numerically integrated to compare
with our analytical results.
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