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Prebiotic network evolution: six key parameters

Philippe Nghe,†a Wim Hordijk,†b Stuart A. Kauffman,c Sara I. Walker,d

Francis J. Schmidt,e Harry Kemble,a Jessica A. M. Yeatesf and Niles Lehman*f

The origins of life likely required the cooperation among a set of molecular species interacting in a

network. If so, then the earliest modes of evolutionary change would have been governed by the

manners and mechanisms by which networks change their compositions over time. For molecular

events, especially those in a pre-biological setting, these mechanisms have rarely been considered. We

are only recently learning to apply the results of mathematical analyses of network dynamics to

prebiotic events. Here, we attempt to forge connections between such analyses and the current state of

knowledge in prebiotic chemistry. Of the many possible influences that could direct primordial network,

six parameters emerge as the most influential when one considers the molecular characteristics of the

best candidates for the emergence of biological information: polypeptides, RNA-like polymers, and

lipids. These parameters are viable cores, connectivity kinetics, information control, scalability, resource

availability, and compartmentalization. These parameters, both individually and jointly, guide the aggregate

evolution of collectively autocatalytic sets. We are now in a position to translate these conclusions into a

laboratory setting and test empirically the dynamics of prebiotic network evolution.

Abiogenesis is an unresolved phenomenon that has received
significant attention.1–10 In the past half century the focus of
much research has been on the elucidation of mechanisms by
which self-replicating molecules could have arisen from some
type of prebiotic environment.11–14 In recent years however,
excitement has been generated by a somewhat alternative
viewpoint, that a network of interdependent molecular species
could have sparked the transition from chemistry to biology. In
this view, the critical unit of origin and evolution is a cooperative
collection of molecules rather than a single ‘‘selfish’’ replicating
entity. Such a collection has been proposed in a variety of frame-
works. For example, Gánti in one of the earliest descriptions of the
protocell, proposed a chemoton in which the molecular compo-
nents responsible for replication and metabolism together formed
an autocatalytic system.15 Eigen and Schuster envisioned a hyper-
cycle in which cooperative interactions among its components led
to a dramatic (hyperbolic) growth of each member.16–19 In parallel
Kauffman put forth the notion of a collective autocatalytic set

(CAS),20,21 a system whose critical characteristic is that catalytic
closure of all components could be possible such that the set
could self-replicate. The CAS concept has been extended and
formalized as a reflexively autocatalytic and food-generated
(RAF) set by Hordijk and Steel.22 There, the importance of the
environment in providing raw materials (i.e., food) for the network
was made mathematically explicit. These constructs typically refer
to information-bearing networks, rather than the energy-producing
ones such as those discussed by Wächtershäuser, Russell, and
others.23–25 But they should also apply to metabolic cycles – even if
networks may be easier to conceptualize in the viewpoint that the
critical transition for life was the advent of information-rich
biopolymers;16,26,27 similar organizational principles may apply in
both cases.

The idea of a network as an early manifestation of life brings
several advantages. First, as noted earlier,20,21,28 networks allow
distributed function. Not all catalytic function need reside in
any one component, so long as the network (CAS) as a whole
contains enough functionality to allow for the synthesis of each
component. This is important in a prebiotic context because
the early Earth was harsh and ‘‘hard’’ reactions were not likely
to arise de novo.29 Second, by definition, networks are highly
cooperative interactions. Although a common view of the origin
of life focuses on the advent of single self-replicating species,
new evidence suggests that cooperation among molecular ele-
ments is not only possible but can grant fitness benefits to
individual species.30 And third, networks by definition distri-
bute their composite function over several members, imbuing
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them with an buffering quality that allows them to lose indivi-
duals and yet persist even in fluctuating environments.31 The
prebiotic milieu was chaotic by all accounts, and thus having
resilience from its very origins would have been an indispensible
feature of life.

Despite the potential of networks in illuminating life’s
origins, we have not yet been able to realize their full promise
in that role. This is in large part because, though networks have
been extensively discussed from a theoretical point of view, two
important aspects of their function in the origin of life are
severely underexamined. The first is a concrete discussion of
the chemical and physical realities of such networks and how
the environment would have been key in fashioning the advent
and propagation of molecular networks that led eventually to
life. The second is how such networks could have evolved: what
critical parameters govern selective forces in networks, keeping
in consideration the first aspect. In this paper, we examine
specifically the evolvability of prebiotic networks with an eye to
plausible chemistry. As a result, our intent is to make network
evolution a prebiotic plausibility and set the stage for empirical
studies in the laboratory that can support, refine, or refute our
conclusions.

What is chemical evolution?

As early as Miller3 and Oparin,4 it had been realized that
chemical evolution must have preceded biological evolution.
Chemical evolution entailed the heritable alteration of the
identities of a collection of molecular species prior to formal
genotype–phenotype relationships. As such, it must have had
some capacity to encode information (i.e., some reduction in
ambiguity about all possible molecular ensembles), but clearly
without the coding specificity available to biological systems.
Chemical evolutionary settings have been described as ‘‘pre-life’’
in which information can be generated through selection in the
absence of formal replication.32 In this model, monomers
become activated and polymerize into polymers with certain
transition probabilities, and the dynamics of the system can be
governed by a set of differential equations that convey the
relative frequencies of polymer strings. This approach is very
productive, and can foreshadow key evolutionary phenomena –
such as selection and the existence of an error threshold – even
without self-replication.

Yet the pre-life construct and others33,34 often focus on the
notion of polymers competing with each other for dominance.
Should chemical cooperation among information-bearing mole-
cules be required to crystallize replication and fend off parasitic
side reactions,30 then we need to consider the dynamics of network
evolution as a priority. Jain & Krishna35 provided a mathematical
model and simulation study that has been perhaps the most direct
analysis of this scenario to date. The model considered the
reaction dynamics of a system of interconnected nodes (undefined
molecular species) that may be able to catalyze the ligation of
reactant molecules to produce other catalytic species. In that study,
the appearance of autocatalytic sets, though unpredictable, was

shown to be inevitable. Furthermore, one of the more intriguing
patterns that the authors discovered was a tendency for network
members to go nearly extinct through catastrophic stochastic
fluctuations in frequencies but then recover through the appear-
ance of a nascent autocatalytic set.35 Such dynamics imply that
there may be relatively simple rules for the growth and evolution of
molecular networks in the absence of Darwinian-type replicator
evolution. This is the sort of chemical evolution we envisage as
preceding biological evolution, yet the vague nature of this model
vis-à-vis known prebiotic chemistry needs to be clarified using
more realistic abiochemistry and replicating species.

What are the features of a molecular
network?

Networks are collections of interconnected entities: proteins
that recognize other proteins, neurons that connect to other
neurons, etc. In the language of graph theory they are described
as nodes (entities) and edges (connections) (Fig. 1a; Table 1).
For example, the yeast protein interaction network – its inter-
actome – is composed of protein nodes that interact with each
other, with the interactions represented as edges. In what
follows, we are specifically concerned with what we call cata-
lysis graphs. A catalysis graph is a network in which the nodes
represent molecular species, and the edges represent catalytic
interactions. In particular, if molecular species i catalyzes a
reaction that produces molecular species j, then there is a
(directed) edge from node i to node j. Examples of such
catalysis graphs are presented in Fig. 2. Alternatively, the
catalysis graph can be defined in terms of chemical reactions,
where the nodes represent reactions and there is a (directed)
edge from node i to node j if reaction i produces a molecule that
can catalyze reaction j. For most practical purposes, and for our
discussions below, these two representations can be considered
equivalent. However it should be noted that they are not
necessarily formally equivalent in all cases.36

The number of edges to which a node is connected is the
node’s degree. Moreover, in any network there will be cores,
which are subsets of nodes in which every node is reachable
from any other, i.e., any pair of nodes is connected by a
sequence of edges (a path) in each direction. In the language
of graph theory, cores are strongly connected components
(SCC) in the network. Cores can be as simple as a single loop
of interconnected nodes. A core can also be so encompassing
that any other species within the graph is not strongly con-
nected to it, meaning that such outliers are either ‘‘upstream’’
or ‘‘downstream’’ of this core. Such cores are termed maximal
cores. Finally, the maximal core that displays the highest net
growth rate is termed the dominant core.

For networks to evolve, i.e., change the frequencies and
identities of their composite members as a function of time,
there must be some means to describe explicitly how fitness
can be realized in the context of a network. Unlike a typical
biological scenario, this fitness can be manifest both within
and between networks. This is because networks can overlap;
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members of one network can also be members of others. In an
evolutionary setting, successful, or fit, networks are those that
persist and grow over time. We posit that this growth can be

measured in terms of the proportion of polymers in a given
environment that participate in a particular network, which
in turn relates to the number and density of nodes within a
network. However one can also assess the number of distinct
environments into which a network has articulated itself. Both
of these measures relates to the success of a network, and
hence are reflections of its evolutionary past. Networks would
compete with each other in a group selection process and
perhaps a ‘‘quasi-species’’16,17 of self-sustaining autocatalytic
sets is a plausible unit of selection.

Molecular networks from the
perspective of known chemistry

Let us now consider the features of candidate molecules in prebiotic
networks. Given an assumption that these are information-bearing
polymers, then the most often discussed are polypeptides, lipids, or
nucleic acids and their derivatives. The common feature that all
three of these classes of molecules possess is the ability to form
multiple non-covalent bonding interactions with other mole-
cules of their own class. For peptides, this means hydrogen
bonding, electrostatic interactions, and hydrophobic inter-
actions among informational motifs (amino acid side chains).
For lipids, this means hydrophobic interactions among struc-
tural motifs (aliphatic chains). For nucleic-acid-like molecules,
this means hydrogen bonding between informational motifs
(nucleobase edges)37 and hydrophobic stacking among infor-
mational motifs (e.g., p–p interactions between nucleobase
planar surfaces). Of course, molecules of all three types can

Fig. 1 Networks in prebiotic chemistry. (a) Example simple network among
six molecular species. Here, each circle is a node, which represents a distinct
molecule. Arrows are edges between nodes, and represent chemical
transformations that can occur between molecular species. In this diagram,
there is no catalysis or reactions among two or more molecules, only 1st-
order interconversions. However the strengths (i.e., rate constants) of the
reactions can be depicted by the thickness of the arrow. Nodes c and f can
interconvert in either direction. Nodes a, b, and c form a viable core, which is
a closed set, and represents the smallest self-sustaining sub-network.
(b) Three consequences of weak (e.g., hydrogen) bonds in prebiotic networks.
Top: A sensing function by polymers for other polymers. Middle: A complex
structure formation. Bottom: An iteration function: multiple edges connected
to a single node. In a molecular setting this could be a molecule, a, which is
simultaneously (or sequentially) binding one substrate, b, while catalyzing the
conversion of another, c to d, as depicted.

Table 1 Terminology for networks and their evolution

Concept Definition

Node An information-bearing entity (e.g., a molecular species),
or input (food molecule) in a network

Edge A connection between two nodes (either an
intermolecular transformation or a catalytic interaction)

Degree The number of nodes to which a node is connected (k)
Path length The number of edges between two nodes (l)
Core A set of nodes in which every node is reachable from any

other
Viable core A core that is also self-sustaining (given a suitable food

source)
Maximal
core

A core that cannot be extended by the inclusion of any
additional existing node

Dominant
core

A core that displays the highest net growth rate

Evanescent
set

Reactions upstream of the dominant core that can fade
from relevance with time

Hub A node that is highly connected to other nodes
Autocatalytic
set (CAS)

A collection of molecules that catalyze the necessary
chemical reactions to synthesize all members of the set
from an appropriate food source

RAF A reflexively autocatalytic and food-generated set, i.e., the
mathematical formalization of an autocatalytic set

irrRAF An irreducible RAF set, i.e., a RAF set that does not
contain a proper subset which is also RAF

Upstream Specifies nodes outside of a core but that could feed into
a core

Downstream Specifies nodes outside of a core but could be produced
by the core
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Fig. 2 Six key phenomena that govern prebiotic network evolution. (a) Viable cores. An example of a viable core – a catalytically closed and self-sustaining reaction
network – in a simple polymer model where molecules are represented by circles, as in Fig. 1a. However, here boxes represent reactions among two or more of
these molecules.43 Solid arrows indicate reactants going into and products coming out of a reaction, while dashed arrows indicate which molecules catalyze which
reactions. The food set consists of the species a–e. This particular autocatalytic set consists of five reactions (denoted r1–r5), and can be decomposed into two
autocatalytic subsets {r1, r2} and {r3, r4, r5}, the first of which (in shaded box) is an irreducible autocatalytic set, i.e., a viable core. (b) Connectivity and kinetics. Prebiotic
networks can expand by four modes (M1–M4; red arrows) within a dominant set and its upstream and downstream sets. A new node can be added in either the
periphery (M1) or in the dominant core (M2) without affecting existing connections. Alternatively the dominant core can either expand by assimilating reactions in the
periphery (M3) or shift to a new subset (M4). (c) Information control. The addition of negative feedback (dashed line) is critical for the establishment of stable
networks. Figure adapted from ref. 92. (d) Scalability by preferential attachment.61 The random network on the left has six nodes and a total of six edges, distributed
binomially. One node has k = 1, four have k = 2, and one has k = 3. The exact nature of the nodes is undetermined: they could be either single chemical species, sets
of redundant ones, cores, or networks. On the right, the network has grown by addition of one new node, 7, added to the previously existing node of highest
degree. The average degree remains unchanged at 2.0 by this process; however, the degree distribution deviates from binomial. Four nodes of degree k = 2 remain.
Two nodes, however, now have k = 1, and one has k = 4. Although the average degree of the network, hki, remains equal to 2.0, the distribution has become
skewed toward nodes of lower and higher degree, eventually leading recursively to a scale-free topology, as shown in Fig. 3. (e) Resource availability. Food
molecules (Greek letters) in prebiotic information networks can be non-information bearing compounds (e.g., sugars to feed the synthesis of nucleotides) that can
support (gray arrows) the maintenance, growth, and evolvability of networks both by driving preferential attachment42,43,70 and by serving as control agents: minority
molecules.73 (f) Compartmentalization. The existence of a chemical or physical boundary within prebiotic networks can promote cooperation by excluding selfish
replicators (s) that otherwise grow at the expense of altruists (a); this phenomenon is well established theoretically.15,30,35,42
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interact non-covalently with members of other classes, and this
may have been prebiotically important, but for simplicity we
will only consider intra-class interactions here.

These weak bonds influence network formation in three discrete
ways (Fig. 1b). First, low energy bonds can form and break rapidly,
engendering a sensing function by polymers for other polymers.
Second, they allow complex structure formation, such as secondary,
tertiary, and quaternary contacts. And third, they allow for an
iteration function in that multiple simultaneous or sequential
interactions can form both in time and space, e.g., multiple edges
connected to a single node in the reaction graph. The combined
effect of all three of these traits means that such polymers can
interact with one another dynamically, iteratively, and through more
than one type of mechanism. For example, a small coalition of
polypeptides can transiently bind with each other via specific
recognition rules determined by the identities of their composite
amino acids (sensing). They concomitantly form catalytic structures
that operate on other members of the coalition (structure for-
mation). And they also simultaneously move from one interaction
to another in a dynamic and measurable fashion (iteration). If the
peptides possess certain subsets of amino acid sequences, then the
net result is that autocatalytic sets can be established, as shown
experimentally by Ghadiri and co-workers.38,39 Importantly, without
all three of these traits, either networks would not be able to form,
or if they did, they would have very different characteristics. This can
be seen in the case of sugar interconversions as in the formose
reaction. Monosaccharides and their composite units such as
formaldehyde and glyceraldehyde lack (to a large extent) sensing
and complex structure formation. Although they can form catalytic
networks, informational cohesion is not facile and the networks
tend to expand in a chaotic fashion as time progresses.26

With these three traits, the critical role of the environment
becomes apparent. The degree to which non-covalent interactions
form within and among polymers is particularly dependent in a
predictable fashion on polymer concentration, temperature, and
local ionic conditions. Networks should be favored under conditions
where polymer concentrations are high enough to allow repeated
encounters with other polymers but not so high as to promote
uncontrolled aggregation. The same is true of temperature and
ionic (pH and salt) conditions. While there will be a broad region of
parameter space that would satisfy these conditions, certainly there
will be ‘‘goldilocks’’ regions where network formation – and evolu-
tion – will be the most productive. For single-stranded nucleic acids,
for instance, concentrations in the low micromolar range at pH 5–8
should promote interactions frequent enough and yet strong
enough to engender simple catalytic networks.17,40,41 The key point
is that for a given polymer, one can anticipate how environmental
changes will modulate network dynamics.

Six key parameters for prebiotic
network evolution

In their groundbreaking simulation-based study of evolution
in autocatalytic sets, Vasas et al.42 considered what exactly
(Darwinian) evolvability means in a network setting. They agreed

with previous authors15,22 that alternative networks can coexist
in the same environment, and proposed certain features, such as
subsets that are ‘‘attractors’’ for reaction pathways, as being
a requisite for evolution. Vasas et al. concluded that compart-
mentalization was an absolute requirement for evolvability.
Taking those results as a foundation, and by considering a
broad, eclectic swath of studies on network dynamics that exist
in the literature – and by incorporating the chemical realities of
likely polymer candidates – we have arrived at six key parameters
that will determine how networks evolve, in a broader sense,
once formed (Fig. 2).

1. Viable cores

A viable core42 is a core (a strongly connected component of a
network) in a chemical reaction system’s catalysis graph that is
also self-sustaining. In other words, a viable core is a collection
of molecular species that mutually catalyze each other’s forma-
tion. This property is termed catalytic closure. But to be a viable
core a second requirement exists: that all relevant components
can be constructed through sequences of such mutually cata-
lyzed reactions starting from a suitable food source; i.e., it must
be self-sustaining. The food source is a collection of molecular
species that can be assumed to be directly available from the
environment. In many prebiotic scenarios of polymerization
events, this food source would be amino acid or nucleotide
monomers, for example. This notion of a catalytically closed
and self-sustaining subset of molecules and reactions is formalized
mathematically in terms of reflexively autocatalytic and food-
generated (RAF) sets,22 and efficient computer algorithms exist
to detect and analyze such RAF sets in arbitrary44 and realized45

reaction networks.
It was previously shown that autocatalytic (RAF) sets can

often be decomposed into smaller subsets which themselves
are autocatalytic, in an iterative fashion until the smallest
subsets (i.e., the irreducible RAFs, or irrRAFs) are reached.43

These subsets thus form a hierarchical structure or, more
formally, a partially ordered set (POSET), with the union of all
possible autocatalytic subsets at the top, and the individual
irrRAFs at the bottom (Fig. 2a). Viable cores (i.e., autocatalytic
subsets) are essentially the primary unit of heredity in a net-
work setting;42 the eventual transition from network-based
evolution to individual-based evolution may have mirrored
the transition from cores to genes as the target for selection.

In principle there can be an exponentially large number of
irrRAFs (or viable cores) within any given autocatalytic set.43 In
other words, it is possible to construct autocatalytic sets with n
reactions that contain on the order of 2n irrRAFs. In practice
there also seem to exist large numbers of irrRAFs (possibly even
thousands, although with a certain amount of overlap) in
random instances of a simple polymer model, even with a
maximum polymer length of only 10, and also in empirical
systems44,45 (infra vide). Thus, one of the main conditions for
evolvability of autocatalytic sets as outlined in Vasas et al.,42

namely the existence of multiple viable cores in the underlying
reaction network on which selection can act, seems to be
satisfied in several well-studied systems, both theoretical and
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empirical. Recently a basic but formal example was provided of
how this condition is satisfied in a simple reaction model, and
how the possible viable cores (irrRAFs) can exist in different
combinations inside compartments, thus potentially giving rise
to different ‘‘phenotypes’’ and competition among them.46

An autocatalytic set will almost always be a system governed
by non-linear dynamics and can display metastability. In fact,
one common result of theoretical analyses is that such sets
will often either settle into one or more oscillatory attractors
(i.e., steady states) each of which ‘‘drains’’ a basin of attraction
states that flow to that attractor.21,35 In other words, we would
expect some collections of prebiotic molecules to assimilate
other nearby collections and grow through accretion. We are
now in a position to emphasize that cores can expand and
contract by topological constraints (see parameter #2 below),
and that having a core should lead networks to be scale-free
(see parameter #4 below).

2. Connectivity kinetics

It is clear from the previous section that autocatalytic networks
are characterized by their cores. However, it is not immediately
obvious how the growth of the participating species is deter-
mined by connectivity. Which nodes are connected to which
others – and the strengths of such connections – can impact the
ability of a network to add or subtract members and hence
change with time (Fig. 2b). We can examine the minimum
requirements for such an analysis when the production rate of
every species has a first-order dependence on the concentra-
tions of upstream catalysts.31 For now, we confine our con-
sideration to positive catalytic links in the absence of resource
limitations, these influences being further discussed below for
parameters #3 and #5.

Note that a RAF set, as described above, necessarily contains
one or more cores in the catalysis graph, but that such a core
is not always a RAF set itself. For example, a core might not
be self-sustaining, that is, might not be food-generated.47

However, in the original model of Jain & Krishna35 it is implicitly
assumed that the relevant molecular species are directly produced
from an unspecified food source. In other words, in such a
simplified model the food-generated part of the definition of a
RAF set is always (trivially) satisfied. As such, autocatalytic (RAF)
sets and cores are equivalent, and thus any core is automatically
also a viable core.

In this context, the Perron–Frobenius theory of linear algebra,
applied to network dynamics, ensures the existence of a well
defined steady exponential growth state that is governed by the
structure of its maximal cores,48 which we define here as the
most inclusive subsets of species in which every pair is con-
nected by a forward and backward reaction path. The growth rate
of such a core taken in isolation, its intrinsic growth rate, is
determined by a certain measure of cooperativity, and relates to
the concept of ‘‘eigenvector centrality’’.49 Precisely, for a length l,
say l = 3, count the number of alternative catalytic paths of length
3 (=a3) leading to a given species, then take its average over all

species ha3i. The value
ffiffiffiffiffiffiffiffi
alh il

p
converges rapidly to the exact

growth rate with increasing l (ref. 50). For weighted networks,
this scheme can be intuitively pictured by replacing a link of
weight W by W parallel links of weight 1 (ref. 51).

Within an isolated reaction vessel, or ‘‘warm little pond’’, this
model shows that a network possesses three categories of mem-
bers: (i) those that participate in the core with the highest intrinsic
growth rate, the dominant core, whose connectivity determines
the overall growth rate; (ii) species catalyzed downstream of the
dominant core, i.e., those in the periphery, that inherits the growth
rate of the dominant core; and (iii) structures upstream of the
dominant core, the evanescent set, which tends to be exponentially
negligible in the long run (Fig. 2b). Together, (i) and (ii) form an
autocatalytic set (i.e., a RAF set, given the caveat mentioned above
that the food-generated part is trivially satisfied). Its species all
grow at a same rate, but do so in different proportions determined
by the connectivity and the strength of the catalytic links52 overall
defining a compositional identity of the network. These links may
vary as the environment changes (see parameters #5 and #6), thus
leading to a rudimentary form of chemical evolution. For example,
temperature fluctuations would affect the KD values of any
polymers that interact through hydrogen bonding, and cause
variations in the compositional identity of the network. Food-
set variations and internal random events can lead to even
larger-scale events such as random core shifts.35

In a more elaborate pre-biotic set-up, any form of compart-
ment dynamics (see parameter #6 below) would induce competi-
tion between networks. Compartments that possess the fastest
growing networks, i.e., those which possess the most cooperative
dominant core, would take over the population. Evolution could
proceed in a quasi-Darwinian way, by stochastic and heritable
transitions between networks.42 At a certain evolutionary stage,
potentially before generalist templated replication, networks
may have developed the ability to acquire novel activities while
maintaining extant useful ones. In this case, the classification
above implies that only a few elementary modes of network
expansion are compatible with network growth based on com-
petition (red arrows in Fig. 2b). In Fig. 2b, M1 is periphery
expansion: a new link appears in the periphery, without modify-
ing the connectivity of the dominant core. This mode is neutral
in terms of growth rate, but can prepare further evolution
according to modes M3 or M4. M2 is core enhancement: new
links are added between species within the dominant core. This
leads to a growth rate increase by increasing the number of
alternative paths. M3 is core expansion: a feedback is created
from the periphery to the dominant core. The growth rate
increase is then a consequence of an assimilation of new species
in the dominant core that increase the overall cooperativity. And
M4 is core shift: new links are added between species of the
periphery and give rise to a new dominant core. The former
dominant core is then by definition upstream of the new
dominant core, and thus it is evanescent and disappears.

3. Information control

The limited availability of biological building blocks on the
primitive Earth has led to a significant amount of work on feed-
forward reaction networks in prebiotic chemistry, where the
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express goal is to obtain as high a yield as possible of a desired
biopolymer. Much less studied are inhibition, degradation, and
other negative feedback control mechanisms. However, nega-
tive feedback plays an important role in biological robustness
and evolution52 and may have played an equally prominent role
in the origins of life. Networks with strictly feed-forward net-
work architecture are unstable. A prebiotically relevant example
could be the hypercycle – cooperative sets of molecules where
each molecule can self-replicate and catalyze the replication of
another member of the same set.17 Hypercycles are well-known
to undergo oscillatory behavior in the population size of
replicators for sets of four or more cooperative catalysts. This
instability leads hypercycles to be vulnerable to perturbations
including mutation in members of the hypercycle network and
parasitism by other replicators. Despite the fact that each
member of the hypercycle is capable of self-replication, these
instabilities can lead to population collapse and extinction of
the entire set. Perhaps as a consequence, an empirical demon-
stration of a strict hypercycle in the laboratory is so far lacking.

A possible resolution to the instabilities that arise in net-
work expansion and evolution is to balance positive feedback,
which enables growth, with negative feedback, which contri-
butes to robustness and stability (Fig. 2c). In prebiotic systems
with a limited supply of resources negative feedback may also
be essential to selection.53–56 Our study of recycling in a system
of recombining RNA fragments demonstrated that negative
feedback could provide a robust selection mechanism for
prebiotic replicators.54 In the study, simulations demonstrated
that selection can favor a ribozyme that catalyzes degradation
in systems with a limited supply of resources by selectively
degrading unfavorable reaction products. This suggests that
the catalytic landscape of RNAs – which is dominated by
ribozymes that catalyze bond-cleaving reactions – could in fact
play a beneficial role in early evolution under conditions of
limited resource availability likely present on early Earth.
Clearly negative feedback is critical in maintaining the opera-
tion of contemporary biology networks; the ubiquination path-
way in protein regulation stands out as a good parallel. Thus, it
is perhaps not paradoxical but an essential facet of the success
of chemical evolution that many primitive catalysts perform
degradative reactions.

Negative feedback may also play an important role in estab-
lishing a separation of timescales and the emergence of
‘‘memory’’ in chemical networks. The hierarchical structures
observed in topological studies of autocatalytic networks
should be characterized by different dynamical timescales for
nested structural components.57,58 Within such hierarchies,
slower components can act as memory for construction of the
entire network. Separation of timescales may have driven the
emergence of the first hereditary units in prebiotic networks.15

This is supported by computational simulations performed by
Kaneko and colleagues,59 which demonstrated that recursive
reproduction of protocells enclosing catalytic networks relied
on the presence of a ‘‘minority molecule’’ that is produced on a
much slower timescale than other molecules in the network.
Minority molecules, or slow components in a network, can

dynamically acquire the role of hereditary information carriers,
controlling reproduction of the entire network. These heredity
units could be either template replicators or viable cores
depending on the network architecture. In fact the notion
of a ‘‘genotype’’ in the case of evolving networks is perhaps
premature. The networks we describe here dispatch sequence
information over several cooperative entities, a situation that is
intermediate between the compositional genomes of abstract
chemical reaction networks and templated replication. Cooperative
information bearing molecules thus likely allowed the transition
from compositional dynamics to a purely sequence-encoded one.

Reverse reactions also promote autocatalytic sets. In the
simple binary polymer model already mentioned above, each
possible pair of a molecule (bit string) and a reaction has a
probability p of being included in the catalysis set (i.e., the
corresponding edge is added to the catalysis graph). Consider
bi-directional reactions in which a molecule catalyzes both the
forward (ligation) and the reverse (cleavage) reaction of a polymer
such as protein or RNA. In that case, for n = 10 (i.e., maximum bit
string length of 10), each molecule needs to catalyze 2.6 reactions
on average to have about a 50% chance of having a RAF set in a
random instance of the model. Now, if one takes only forward
(ligation) reactions, an average of 4.3 reactions catalyzed per
molecule is needed to find RAF sets with 50% probability, i.e.,
about 1.6 times more than in the previous case. Thus using only
ligation reactions (not cleavages) requires a higher level of
catalysis to get the same probability of finding RAF sets. In
other words, cleavage (recycling) reactions clearly provide an
advantage,54,55 one that can even be seen in the unbounded
formose reaction where the cleavage of longer sugars is the
source of autocatalytic dynamics.60

4. Scalability

The properties of some networks scale with the size of the
networks. Yet many do not, so it is worth asking whether one
should consider scalability in prebiotic networks. We posit that
the nascent forms of life would have the greatest potential for
niche invasion in Earth’s history, and clearly it would be of
interest to investigate what would be the topology of a prebiotic
molecular network as it expands to include many biochemical
components, regardless of the order in which those components
were added.

Most, although not all, networks in Biology are sparse,
small-world (or ultra-small-world), and scale-free. Sparseness
refers to the fact that most species (i.e., nodes) are not con-
nected to each other. Small-world networks are those where the
path between two connected nodes can be traversed through a
limited number of edges. The scale-free property refers to the
distribution of connections (i.e., edges) among nodes. In any
network, some nodes have many more connections (are of
higher degree) than others; these would be hubs. A hub usually
refers to a node in the network that happens to have a very high
degree (i.e., it is connected to many other nodes), but does not
necessarily refer to a fully connected subset. A core by contrast
is a connected sub-network such as in a catalytically closed RAF
set; hubs refer to just single nodes.
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The property of being scale-free has not only been observed
in many existing networks of many kinds, but it has also been
discovered as a property of growing under rather general
mathematical conditions, including common versions of pre-
ferential attachment. The key point is that a scale-free network
should exhibit a particular power law that relates the number of
connections to a node (its degree, k) to the probability that a
node has this degree (Fig. 3). The relationship P(k) B k�g

defines a scale-free network, and in fact such structures typically
generate g values near 2 (ref. 61). Scale-free networks contrast
with random networks, often called either Erdös-Rényi – after
the mathematicians who developed the model – or Poisson
networks, because the degrees per node follow a Poisson dis-
tribution with a well-defined mean. By contrast, the term ‘‘mean
degree’’ is not meaningful in discussing scale-free networks
except in the trivial sense of

P
ki/N, where N is the number of

nodes and ki the degree of each node. The most common
mechanisms for scale-free networks to arise is in fact through
growth and preferential attachment. In other words, higher-
degree nodes are more likely to form new edges than are
lower-degree nodes (Fig. 2d). Note that formally a network can
only be scale-free as it approaches an infinite number of nodes;62

here we use the term scale-free to approximate this behavior.
The distinction between Poisson and scale-free networks

extends to differences in information content carried by their
structures, which could be measured through the Shannon
entropy or other measures.63,64 Scale-free distributions have
lower entropy than Poisson distributions. This conclusion has
been derived by statistical mechanical calculations of the ensemble
of possible networks;63 however, it is also possible to be visualized
non-mathematically. In the preferential attachment model for the
generation of a scale-free network,61 new nodes that are added to
the network are more likely to add to pre-existing nodes (hubs) of
higher degree (Fig. 2d). Therefore the number of choices available
to a new node is lower in a scale-free network than in one where
all nodes are equivalent – by definition a situation of lower entropy.

In fact, there is some evidence that autocatalytic (RAF) sets
could form even more easily in reaction networks with a power
law (rather than a Poisson) distribution in the degree of
catalytic connections.47

What chemistry permits lower entropy in forming a network?
We suggest three possible mechanisms that have experimental
precedent in evolving from a random to a scale-free topology. In
this case, there must be an advantage to the nodes that become
hubs. This advantage need not be intrinsic to the hub species
itself and may instead originate from connectivity dynamics.
One possible advantage to a pre-hub node would be the luck of
the draw. Any species in a Poisson network that by chance has a
degree higher than the mean has an advantage when selection
follows a preferential attachment dynamic, as in a periphery
expansion described above. In a prebiotic setting, if networks
grow by preferential attachment, a concrete consequence of
these mechanisms could be the inevitability of scale-free net-
works.61 Consider, for example, the origin of templated replica-
tion, a process that must have arisen at some point given its
ubiquity in biology. Any random polymerization process when
followed by a templated process will be captured by selection
because templating can give benefits to those sequences that
could successfully direct it.10,30 One can then conclude that
selection for higher connectivity leads to greater network robust-
ness in that a certain degree of sequence similarity across nodes
is favored.

A second means of preferential attachment could come
through recombination that is directed by limited homology.65–67

In this model, a node sequence or its complement that was over-
represented in a random network would be able to grow by
addition of other sequences, eventually leading to a template-
competent sequence. In other words, short polymers that are
more promiscuous in their interaction partners, for example as a
consequence of ‘‘wobble’’-like hydrogen-bond pairing, might
emerge as hubs. Thus assortment based on the recognition of
a short random sequence will lead to a scale-free network. While
this may be clear in the case of RNA networks, the weak bonds
between nodes in protein or lipid networks, considering too that
such molecules can also recombine, means that this should be a
general phenomenon.27,28

A third mechanism for entropic change is criticality.68

Critical networks have power law distribution of ‘‘avalanches
of change’’ when the dynamics of one variable is altered. Such
critical behavior, found in neural systems and cell genetic
regulatory networks, may optimize the capacity to categorize
the environment (given inputs from it) and respond reliably
without chaotic behavior. For example, a 9-peptide autocatalytic
set has been demonstrated in which all nodes can realize any
Boolean function on its k = 2 inputs.39 In fact, binary variable
networks, with k = 2, with a random choice of Boolean function
for each node, and with random sets of interconnections, are
generically critical. For k greater than 2, a bias in the ratio of
values in the Boolean function – P(k) and k (for Erdös-Rényi
networks), or P(k) and g (for scale-free networks of power law
slope g) – has a one-dimensional line of criticality separating
order from high dimensional chaos. Moreover it has been shown

Fig. 3 Log–log plot of relative occurrence P(k) of RNA hairpin motifs vs.
the degree k of times they appear in the nonredundant RNA structural
database (http://rna.bgsu.edu/rna3dhub/nrlist/).
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that critical nets minimize alteration in attractors when connec-
tions (or logic) are altered slightly, and thus evolve ‘‘gracefully’’,
and has shown that if one starts with chaotic or ordered Boolean
networks and selects over generations only for minimizing
changes to attractors, the population evolves to criticality.69 Even
if a network is Erdös-Rényi in structure at the start, it likely
becomes scale-free eventually.

5. Resource availability

Because information polymers are in fact polymers, their
synthesis – prebiotic or biotic – will require the availability of
‘‘food’’ molecules, typically monomers. The density and avail-
ability of such molecules will determine the evolvability of a
network. In systems with a finite supply of resources, recycling
rates will also be important for evolvability.54,70 As described
above, the RAF concept explicitly accommodates the interplay
between food molecules and the polymers that they support.
This interaction, often overlooked, is an important considera-
tion for network stability. In fact, it can allow for multiple stable
states; for example, food-generated sets spontaneously colonize
the space of successively catalytic species, but rare random events
that lead to open access to non-food generated sets are typical
events that trigger heritable novelties and jumps in complexity.43

Importantly, the evolvability of networks differs between
food-rich scenarios and those in which resources are limiting
(Fig. 2e). There can be common resources for the different
members of a given network, so that a balance appears between
cooperativity (parameter #2 above) and resource titration; this
could favor certain cores. Also the diversity of the food has been
shown to be important. For example, consider the random
polymerization of small oligonucleotides. Here their flux may
be biased toward some types of sequences.32,71 Moreover upstream
phenomena in the autocatalytic network can be considered as
being a ‘‘proto-metabolism’’ that pre-processes input chemicals.
At some point, the autocatalytic set could incorporate feedback
(positive or negative, see parameter #3 above) by catalyzing
upstream events and integrating the proto-metabolism. Finally
it should be noted that an additional necessary feature for the
selection of replicators with resource-dependent replication rates
is that the replicators – and the environment they are in – first
synchronize their composition.72

6. Compartmentalization

The advantages of compartments to primordial networks were
emphasized by Vasas et al.42 Cell-like structures could be
protocells with some type of polymeric boundary, lipid vesicles,
or more rigid compartments such as rock fissures. They also
may display many different types of dynamics, from unstable
compartments with large pooling events and reformation of
smaller compartments (think small ponds on an uneven surface),
to a mother-daughter situation (think membrane-bound spheres
swelling and budding). In fact, the dynamics of minority mole-
cules mentioned above59,73 can induce spatial clustering, so that
the compartment arises as a consequence of information control
in the reaction network structures.74

Compartmentalization can also refer to phase partitioning,
as realized on solid surfaces at a solid–liquid interface as noted
by Bernal,2 or in aerosols at the air–water interphase as proposed
by Woese.74 For an evolving network, physico-chemical adsorption
may enhance the concentration of marginal chemical species. This
phenomenon has been noted as an enhancement for abiotic
polymerization reactions,33,75 and molecular crowding can speed
up the rate of RNA-directed catalysis.33,76 As a consequence, rare
or minority members of a network can be recruited more easily,
thereby affecting the connectivity kinetics (parameter #2 above)
and information control (parameter #3 above). Unless phase
partitioning results in a complete barrier to the supply of ‘‘food’’
molecules, our prediction would be that network growth and
diversity would be promoted in these scenarios.

In any format, compartmentalization provides protection
for networks against parasitic reactions that can prevent
growth and adaptation, and they provide the potential for
inter-compartmental competition that can drive evolution (Fig. 2f).
Here we reiterate these advantages, but also posit that networks may
form and evolve in the absence of compartments. For this to occur,
new members and/or changes in strengths of connections among
nodes must take place, as we describe especially under parameter
#2 above. At first glance such alterations seem impossible if the
networks are not physically separated from each other. Yet one can
imagine a collection of polymers that are forming a network that is
determined by the weak bonding interactions that persist under the
prevailing environmental conditions. If these are peptides, for
example, then the KD values that determine which peptides
interact through ionic interactions among amino acid side
chains would be strongly dependent on salt concentrations or
pH. Should the environment suddenly change through the
increase of ionic strength as, say, a prebiotic pool evaporates,
then new members (i.e., periphery expansion) could be added
to the network that were previously present in the milieu but
not influential. At the same time the strengths of the connec-
tions within cores would be affected (core enhancement). With
nucleic acids, temperature changes – and these would have
been daily and severe in many primordial environments at
4 Gya – would affect Tm values between polymers, leading to the
same sorts of phenomena. Evolution in this sense would be
primarily kinetic in nature, and yet this type of change has been
postulated on theoretical grounds45,77,78 and seen in empirical
studies of RNA networks in the laboratory.66

Setting the stage for empirical
experiments

It should be apparent from the above descriptions that all of
these parameters are highly interdependent. But can any of
these patterns be tested empirically? As early as 1998 with the
graded autocatalysis replication domain (GARD) model, Lancet
and colleagues realized that lipids should form information-
bearing networks,79 and later simulations have shown that
many systems in which mutual catalysis exists in excess over
self-catalysis should be evolutionarily favored.80,81 This result
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has been challenged,82 and without some means of translating
such ideas into measurable phenomena, our understanding of
chemical evolution is rather limited.

Some work has already been done to examine networks in
this context. Peptide replicators can operate in a network
format in which positive feedback exists.38,39,83 The number
of coexisting nodes with replicator peptides has recently been
extended to six,84 and there is evidence that diverse networks
based on structure can form with peptides.85 Networks have
also been established with short tri-mer RNA fragments86 and
with up to 48 RNAs cooperating to form ribozymes.66,87 There is
also evidence that RNA can form scale-free networks, at least in
contemporary Biology. We examined distribution of hairpin
motifs in a non-redundant RNA structural database and found
that most hairpin motifs are represented only 1–2 times in the
database, while a few, especially the GNRA tetraloop, are
represented many times more than the mean. The linear
portion of a log–log plot of this relationship has negative slope
g = 2, consistent with scale-free topology (Fig. 3). While this
contemporary distribution is clearly the result of natural selec-
tion, it should be possible, through parallel SELEX experiments,
to determine the extent to which the node distribution represents
an intrinsic property, e.g., thermal stability of the favored tetra-
loops, or is simply a result of chance in evolution. For compart-
mentalized RNAs, something rarely discussed, but in practice
very important, is the typical number of copies per compartment.
For example in microfluidic droplets one needs 4105 RNA to
detect an activity, but most simulations only accommodate a
handful (B10) of molecules. Copies/cell is a very important
parameter for the transmission of information, for example
regarding the size of the daughter material. Here enters the
consideration of minority molecules that can ensure a better
genotypic identity of compartments that otherwise need a large
number of objects to have a well defined phenotype.

Many experiments have the potential to test network fitness,
which will be a key parameter to quantify and examine moving
forward. A comparison of node density and/or persistence
among simple protein or RNA networks in the lab as a function
of time would be a low-hanging fruit in this regard. Impor-
tantly, to assess the likelihood of prebiotic networks with
monotypic polymer solutions (e.g., all RNA), we would need to
know the probability that random sequences encode functional
polymers. Some progress toward this probability has been
made. Using phage display and resistance to thrombin degrada-
tion, it was estimated that about 20% of random protein
sequences of length 50 were folded.88 However the density of
specific functions in sequence space is most certainly far less.
The frequency of GTP aptamers in the space of 24-mer RNAs was
measured to be about 10�13 (ref. 89) and the 50% odds of hitting
an isoleucine aptamer or a hammerhead ribozyme in the space
of 100-mer RNAs was estimated at about 10�10 (ref. 90). The
persistence of such nodes in an unstable simulated prebiotic
environment could – and should – be examined by varying
critical parameters such as the salt concentration, as discussed
by Jiménez et al.89 Such data should be compared to the wealth
of network growth analyses that exist in other realms.91

With a knowledge of node density in random polymer space,
specific network evolution experiments can be carried out to
test specific predictions. Such experiments will require tracking
both node and edge frequencies as they change over time under
various selection pressures. One main prediction that we can
make is that there is a process analogous to ecological succes-
sion in the evolution of networks.66 ‘‘Weedy’’ sets such as
irrRAFs, should form easily, but not be robust to environmental
fluctuations. The addition of new nodes by a set of (as of yet not
fully known) rules such as preferential attachment will then
create more robust networks that are more resilient; these are
capstone species in early chemical evolution.
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