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Reduction of information entropy along with ever-increasing complexity is among the key signa-
tures of life. Understanding the onset of such behavior in the early prebiotic world is essential
for solving the problem of the origin of life. Here we study a general problem of heteropoly-
mers capable of template-assisted ligation based on Watson-Crick-like hybridization. The system
is driven off-equilibrium by cyclic changes in the environment. We model the dynamics of 2-mers,
i.e., sequential pairs of specific monomers within the heteropolymer population. While the pos-
sible number of them is Z2 (where Z is the number of monomer types), we observe that most
of the 2-mers get extinct, leaving no more than 2Z survivors. This leads to a dramatic reduction
of the information entropy in the sequence space. Our numerical results are supported by a gen-
eral mathematical analysis of the competition of growing polymers for constituent monomers. This
natural-selection-like process ultimately results in a limited subset of polymer sequences. Impor-
tantly, the set of surviving sequences depends on initial concentrations of monomers and remains
exponentially large (2L down from ZL for length L) in each of realizations. Thus, an inhomogeneity
in initial conditions allows for a massively parallel search of the sequence space for biologically
functional polymers, such as ribozymes. We also propose potential experimental implementations
of our model in the contexts of either biopolymers or artificial nano-structures. Published by AIP
Publishing. https://doi.org/10.1063/1.5048488

I. INTRODUCTION

The second law of thermodynamics states that the entropy
of a closed system increases with time. Life represents a
remarkable example of the opposite trend taking place in
an open, non-equilibrium system.1 Indeed, both information
and thermodynamic entropies decrease in the course of Dar-
winian evolution, reflecting ever-increasing complexity of liv-
ing organisms and their communities.2 Interestingly, both the
second law and the concept of entropy were introduced by
Clausius in the 1850s, roughly at the same time as Darwin
developed and published his seminal work. A century later the
connection between life and entropy was highlighted in the
classical work of Schrödinger titled “What is Life?”3 Accord-
ing to him, living systems are characterized by their ability to
“feed on” and store the negative entropy (which he referred
to as “negentropy”).2 In the same work, Schrödinger effec-
tively predicted the existence of information-storing molecules
such as DNA. Soon after, Brillouin established4 the connection
between the thermodynamic negentropy and its information
cousin defined by Shannon.5

The emergence of life from non-living matter is one of
the greatest mysteries of fundamental science. In addition,
the search for artificial self-replicating nano- and micro-scale
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systems is an exciting field with potential engineering appli-
cations.6–9 The central challenge in both of these fields is to
come up with a simple, physically realizable self-replicating
system obeying the laws of thermodynamics, yet ultimately
capable of Darwinian evolution.

Chemical networks of molecules engaged in mutual catal-
ysis have long been considered a plausible form of the prebiotic
world.10–13 Furthermore, a set of mutually catalyzing RNA-
based enzymes (ribozymes) is one of the best known examples
of experimentally realized autonomous self-replication. This is
viewed as major evidence supporting the RNA-world hypoth-
esis (see, e.g., Refs. 14–18). The ribozyme activity requires
relatively long polymers made of hundreds of nucleotides
with carefully designed sequences, whose spontaneous emer-
gence by pure chance is nearly impossible. Thus, to make
the first steps toward explanation of the origin of life, one
needs to come up with a much simpler system capable
of spontaneous reduction of the information entropy, which
would ultimately set the stage for Darwinian evolution, e.g.,
toward functional ribozymes and/or autocatalytic metabolic
cycles.

A promising candidate for such a mechanism is provided
by template-assisted ligation. In this process, pairs of polymers
are brought together via hybridization with a complementary
template chain and eventually ligated to form a longer chain
[see Figs. 1(a) and 1(b)]. Unlike the non-templated reversible
step-growth polymerization used in Ref. 19, this mechanism
naturally involves transmission of sequence information from
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FIG. 1. A conceptual illustration of our
model. The population of heteropoly-
mers is cycled between day (a) and night
(b) phases. During the night phase, poly-
mer chains undergo template-assisted
ligation, joining left and right ends
i and j, respectively, to form a new
2-mer ij. This process is assisted by a
complementary 2-mer j∗i∗. The process
results in a reduced information entropy
of chain sequences, which ends up being
dominated by a small subset of 2-mers
as illustrated in (c).

the template to the newly ligated chain, thus opening an excit-
ing possibility of long-term memory and evolvability. An early
conceptual model involving template-assisted polymerization
was proposed by Anderson and colleagues.20,21 It has also
been a subject of several more recent experimental and the-
oretical studies.22,24,25 In particular, the model by Hordijk
et al.22 makes a connection between the classical Kauffman
model of autocatalytic sets12 and polymer systems capable of
template-assisted ligation (see Ref. 23 for further development
of that approach). Recently, we theoretically established26 that
a cyclically driven system of this type is capable of producing
long, mutually catalyzing chains starting from a primordial
soup dominated by monomers. A conceptually similar model
combining templated and non-templated ligation has been
recently used27 to describe the chiral symmetry breaking in
a mixture of autocatalytic polymers. In the current study, we
focus on the statistics of sequences of these chains and dis-
cover that the dynamics of the system naturally results in a
dramatic reduction of the information entropy in the sequence
space.

II. RESULTS
A. Model

Here we further develop the model introduced in Ref. 26. It
describes the emergence of heteropolymers out of the “primor-
dial soup” of monomers by virtue of template-assisted ligation.
Our system is driven out of equilibrium by cyclic changes in
physical conditions such as temperature, salt concentration,
pH, etc. (see Fig. 1).

We consider a general case of information-coding het-
eropolymers composed of Z types of monomers capable of
making Z/2 mutually complementary pairs. Polymerization
occurs during the “night” phase of each cycle when exist-
ing heteropolymers may serve as templates for ligation of
pairs of chains to form longer ones. When the end groups

of two substrate chains are positioned next to each other by
virtue of hybridization with the template, a new covalent bond
connecting these end groups is formed at a certain rate [see
Fig. 1(b)]. During the “day” phase of each cycle, all hybridized
pairs dissociate and individual chains are fully dispersed [see
Fig. 1(a)].

One of the key results of our previous work26 is the
existence of the optimal hybridization overlap length k0 for
template-substrate binding. In this work, for the sake of
simplicity, we assume that a single pair of complementary
monomers is sufficient to bind a substrate to a template.
This can be interpreted as if each of Z monomers in the
present model is in fact a “word” composed of k0 smaller
elementary letters, e.g., RNA or DNA bases. Within this
interpretation, the number Z of such “composite monomers”
can be exponentially large: Z = zk0 , where z is the num-
ber of elementary letters (z = 4 in the case of RNA). As in
Ref. 26, we ignore the process of spontaneous, non-templated
ligation.19,25

In our model, monomer types are labeled in such a way
that type i is complementary to type i∗. One of the key con-
cepts in our analysis is that of a “2-mer” ij referring to a
monomer i immediately followed by the monomer j and found
anywhere within any heteropolymer. Note that, similar to
DNA/RNA complementary strands, polymers in our system
are assumed to be directional and anti-parallel when hybridized
to each other. Therefore, a 2-mer j∗i∗ formed from monomers
j∗ and i∗ is complementary to the 2-mer ij. It can serve as
a template catalyzing the ligation of two substrate chains
with monomers i and j located at their appropriate ends [see
Fig. 1(b)].

Let dij denote the overall concentration of 2-mers of type
ij, i.e., the total number of consecutive monomers of types i
and j found anywhere within any chain, divided by the volume
of the system. We will refer to the Z × Z matrix formed by all
dij as the 2-mer matrix. Let ri denote the concentration of all
chains ending with a monomer of type i at their right end, while
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lj is the concentration of all chains starting with a monomer
of type j at their left end. When two ends i and j of such
chains meet due to hybridization with a complementary tem-
plate j∗i∗, they are ligated at a certain rate to form a new 2-mer
ij. We describe this process by a three-body mass-action term
λij · ri(t) · lj(t) · dj∗i∗ (t). Here λij is the ligation rate averaged
over the duration of the day-night cycle with the understand-
ing that ligation happens only during the night phase. 2-mers ij
in our system are assumed to spontaneously break up at a rate
βij. Thus here we extend our original model by introducing an
explicit sequence dependence of ligation (λij) and breakage
(βij) rates. Master equations, describing the slow dynam-
ics in our system occurring over multiple day/night cycles,
are

ḋij(t) = λijri(t)lj(t)dj∗i∗ (t) − βijdij(t). (1)

This mass-action description implies that our system stays
well below the saturation regime during the night phase. In
other words, we assume that template-substrate hybridiza-
tion probability is determined by the association rate and
not by the competition of multiple different substrates for
the same binding site on a chain. This is realized when
the duration of the night phase of the cycle is shorter than
the typical association time for hybridization. Importantly,
this regime also ensures that there is no template poisoning;
i.e., the probability of two complementary 2-mers binding
each other (and thus loosing their catalytic activity) remains
low.

One could write a similar set of kinetic equations describ-
ing the dynamics of concentrations of “left” and “right” ends
of chains, li(t) and ri(t). Instead, we use the conservation of
overall concentrations of monomers of each type to obtain the
explicit algebraic expressions for li(t) and ri(t) in terms of the
2-mer matrix,

li(t) = ci −
∑

k

dki(t),

ri(t) = ci −
∑

k

dik(t).
(2)

Here ci is the overall concentration of monomers of type i in
the pool, both free and bound. At the start, only free monomers
are present (dij = 0), and thus, the initial conditions are given
by li(0) = ri(0) = ci.

Our model allows for an alternative interpretation that
does not involve breakage of intra-polymer bonds. One can
show that Eqs. (1) and (2) also describe a system subject to
uniform dilution at rate β and the influx of fresh monomers
at rates φi. In this case, the dilution adds terms −β · dij to the
rhs of Eq. (1). The dynamics of individual monomer concen-
trations (both bound and unbound), ci, is given by equations
ċi(t) = φi − βci(t). After a brief transient regime, all monomer
concentrations ci(t) reach a steady state value φi/β = ci so
that Eq. (2) become automatically satisfied. In the light of this
interpretation, below we focus on the case of all βij equal to
each other. Without loss of generality, they can all be set to
unity: βij = 1. This defines the fundamental time scale in our
system as either the average lifetime of a single bond or the
inverse of the dilution rate.

B. Spontaneous entropy reduction

In our previous study,26 we worked within the random
sequence approximation (RSA). If all monomers have iden-
tical total concentrations ci = c, this approximation corre-
sponds to all 2-mer concentrations dij(t) being equal to each
other. For general initial conditions, these elements would be
proportional to ci · cj. The key hypothesis proposed but not
tested in Ref. 26 is that the system dynamics would eventu-
ally favor the survival of a subset of the “fittest” sequences at
the expense of the others, thus breaking the random sequence
approximation. Here we test this hypothesis by simulating the
dynamics of the model given by Eqs. (1) and (2) with Z = 20.
We start with a system characterized by a weak variation in
individual ligation rates λij and concentrations ci. We choose
them from a log-normal distribution with their logarithms hav-
ing standard deviation 0.1 and mean values of 0 and log 3,
respectively. Our choice of parameters is motivated by the
need to understand the limit of infinitesimally weak variation
of rates and concentrations. For this combination of param-
eters, Eq. (1) are initially linearly unstable with respect to
formation of all 2-mers. However, no 2-mer would be formed
until either it or its complementary partner is present in the
system at least in some infinitesimal “seed” concentration.
Once such a seed is introduced, the corresponding pair of
mutually complementary 2-mers ij and j∗i∗ would be expo-
nentially amplified. In our simulations, we used the same
small seed concentration of 10−4 for each of Z2 individual
2-mers.

The key parameter we use to quantify the emergent com-
plexity in our system is the information entropy of 2-mers
based on their relative concentrations d̃ij = dij/

∑
kl dkl and

defined in the standard Boltzmann-Shannon manner,

S(t) = −
∑

kl

d̃kl(t) log d̃kl(t). (3)

Figure 2 shows the time dependence of this entropy in 5 differ-
ent realizations of λij and ci. The entropy starts at its maximal
value log(Z2), and after a brief dip followed by a rebound,
it steadily declines as a function of time. Such behavior is a
remarkable manifestation of the non-equilibrium nature of our
system, as the entropy changes in the direction opposite to that
dictated by the second law of thermodynamics. To reveal the
source of this entropy dynamics, in Figs. 2(b) and 2(c), we
show the 2-mer matrix at two time points during our simu-
lations. At t = 2, all of 2-mers have grown from their seed
concentrations to substantial concentrations. Remarkably, the
subsequent dynamics leads to a complete extinction of the
majority of 2-mers ultimately giving rise to the 2-mer matrix
at t = 8000 shown in Fig. 2(c). The time dependence of the
logarithm of the number of surviving 2-mers is shown as red
lines in Fig. 2(a). The ultimate number of survivors, 36 ± 4, is
just below 2Z = 40 (out of Z2 = 400) represented by the lower
horizontal dotted line at log 2Z in Fig. 2(a).

C. Competition between 2-mers
and the number of survivors

The observed behavior can be understood from the anal-
ysis of Eqs. (1) and (2). For a fixed set of concentrations li
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FIG. 2. The entropy of 2-mer concentrations. (a) The information entropy
S (black lines) given by Eq. (3) and the natural logarithm of the number of
surviving 2-mers N (red lines) plotted vs time in 5 different realizations of our
model with logarithms of both λij and ci normally distributed with standard
deviation of 0.1 and mean values of log 1 and log 3, respectively. (b) The
heatmap visualizing log10 of concentrations of 2-mers at t = 2 (the second
maximum of the entropy) in one of these realizations highlighted by thick
black and red lines in panel (a). (c) The same heatmap in the steady state at t
= 8000 where the entropy is saturated at its lowest point.

and ri, Eq. (1) form a set of linear kinetic equations with
respect to 2-mer concentrations dij. Furthermore, this set of Z2

equations breaks into independent blocks of equations describ-
ing the dynamics of mutually complementary 2-mers dij and
dj∗i∗. For a small subset of self-complementary 2-mers ii∗,
occupying a diagonal of the 2-mer matrix, such a block is rep-
resented by a single equation. In all other cases, it involves
a pair of equations for dij and dj∗i∗ coupled via a 2 × 2
matrix,

*
,

ḋij

ḋj∗i∗

+
-
= *
,

−1 λijrilj
λj∗i∗rj∗li∗ −1

+
-
*
,

dij

dj∗i∗

+
-
. (4)

Because the trace of the matrix is always negative, at least one
of the eigenvalues has to have a negative real part, while the
real part of the other one could be positive, negative, or zero
depending on the value of the matrix determinant ∆ij. A nega-
tive value of the determinant ∆ij < 0 corresponds to a positive
eigenvalue and hence to the exponential growth of two com-
plementary 2-mer concentrations observed at the initial stage.
As growing 2-mers gradually deplete ri, rj∗, li∗, and lj, ∆ij

increases and may eventually turn positive. In this case, both
eigenvalues become negative. This triggers the exponential
decay of concentrations and ultimate extinction of the corre-
sponding pair of 2-mers. A small subset of 2-mers survive and
reach the steady state. For these survivors, the determinant has
to become exactly zero: ∆ij = 0. These conditions for surviving
2-mers can be rewritten as

∆ij ≡ 1 − λijri · lj · λj∗i∗li∗rj∗ = 0, (5)

while for all extinct 2-mers, ∆ij > 0.
Now we can put the upper bound on the number of sur-

viving 2-mers in the steady state of the system. This is accom-
plished by comparing the total number of constraints given
by Eq. (5) to the number of independent variables. Since the
ligation rate matrix λij is fixed, the only variable parameters

in Eq. (5) are the left and right end concentrations li(t) and
ri(t), respectively. While naively, the number of such vari-
ables is 2Z, Eq. (5) always contain them in combinations
ri · li∗ . Therefore, for the purpose of our counting argument,
only these Z products should be considered as independent
variables. The number of constraints [Eqs. (5)] that are simul-
taneously satisfied cannot be greater than Z. Each of these
equations corresponds to either a pair of mutually complemen-
tary 2-mers or a single self-complementary 2-mer. Denoting
the total number of surviving 2-mers as N and the number of
self-complementary surviving 2-mers as N sc, the number of
equations for surviving 2-mers is given by (N − N sc)/2 + N sc

= (N + N sc)/2, which has to be smaller than Z—the number of
independent variables. Thus the upper bound on the number
of surviving 2-mers is given by

N ≤ 2Z − Nsc. (6)

Note that for large Z the number of surviving 2-mers is dra-
matically lower than Z2—the total number of possible ones.
This explains the entropy reduction observed numerically (see
Fig. 1). The parameters of the system were chosen in such
a way that initially all Z2 2-mers grow exponentially. Since
the rate of this early exponential growth depends on λij and
ci, it differs from one 2-mer to another. This results in a
transient behavior where the inhomogeneity of 2-mer con-
centrations is amplified giving rise to an early decrease in
entropy [see the dip around t = 1 in Fig. 2(a)]. As concen-
trations li and ri start to get gradually depleted, the growth
saturates, giving time for slower-growing 2-mers to catch up
with the faster-growing ones around t = 2 [see Fig. 2(b)]. As a
consequence, the entropy recovers close to its maximal value.
After that, a new process starts in which 2-mers actively com-
pete with each other for the remaining left and right ends.
When the determinant ∆ij for a particular pair of 2-mers ij and
j∗ i∗ changes its sign to positive, that pair of 2-mers starts
to exponentially decay and eventually goes extinct. This pro-
cess continues until N, the number of remaining 2-mers with
∆ij = 0, falls below the upper bound given by Eq. (6). These
surviving 2-mers are visible as bright spots in the heatmap in
Fig. 2(c).

D. Graph-theoretical representations

A useful visualization of the emergent state of the system
is the so-called de Bruijn graph shown in Fig. 3(a). It rep-
resents each of Z monomer types as a vertex and each of N
surviving 2-mers ij as a directed edge connecting vertices i
and j. The weight of every edge is proportional to the steady
state 2-mer concentration dij. A de Bruijn graph is a com-
mon representation of heteropolymer ensembles such as DNA
sequences of all chromosomes in the genome of an organ-
ism. It is straightforward to construct it from a known pool
of sequences. However, the inverse problem of reconstruction
of the statistics of a sequence pool from a de Bruijn graph is
highly non trivial. Each of the polymers in the pool can be
represented as a walk on this graph. The simplest case is when
the consecutive steps of this walk are uncorrelated with each
other. This means that the walk is a random Markov process
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FIG. 3. Network representations. (a) The de Bruijn directed graph with Z = 20
nodes corresponding to monomers and edges corresponding to surviving
2-mers. The thickness of each edge scales with 2-mer’s concentration. Polymer
sequences in our pool are walks on this graph. (b) Undirected graph represen-
tation of the system constructed as described in the text. Each edge represents
two mutually complementary 2-mers, for instance, F − E∗ stands for F → E
and E∗→F∗. (c) The histogram of the number N of surviving 2-mers (directed
edges in the de Bruijn graph). (d) The histogram of the number of undi-
rected edges (N + Nsc)/2 in 250 realizations of the model with different λij
and ci .

with the probability of a step i → j given by dij/ci, while the
probability of the termination of a polymer at vertex i given by
1 −

∑
jdij/ci = ri/ci. This gives rise to an exponential distribu-

tion of polymer lengths, the same as in our previous study26

where it was obtained within the random sequence approxi-
mation. The average length of chains is the ratio of the total
number of all monomers to the total number of right (or,
equivalently, left) ends of chains,

〈L〉 =
∑

ci/
∑

ri =
∑

ci/
∑

li. (7)

Since in the steady state for surviving dimers λijrilj ∼ 1, one
has l ' r1/

√
λ. Hence, the average chain length can be esti-

mated as 〈L〉 ∼ c ·
√
λ, which again is similar to the results of

Ref. 26.
Note that the entropy defined above and plotted in Fig. 2(a)

is exactly the information entropy of a pool of polymer
sequences generated by such a Markov process.30 Longer-
range correlations between different 2-mers in the polymer
sequence are not captured by the present model but could in
principle emerge due to effects outlined in Sec. III. Such cor-
relations would lead to further reduction of the information
entropy in the system.

The de Bruijn graph can be complemented by another,
more compact graphical representation, which is specific to our
system. Since mutually complementary 2-mers always appear
in pairs ij and j∗i∗ (with the exception of self-complementary
2-mers ii∗), each such pair can be depicted as a single undi-
rected edge connecting vertices i to j∗. In this representation,
each edge represents two 2-mers, while each vertex i stands
for either i or i∗ monomer, depending on whether it is the

first or the second letter within the 2-mer. In Appendix A, we
show that this undirected graph [see Fig. 2(b)] has a number of
remarkable properties. First, it is a so-called “pseudoforest”:28

each of its individual connected components contains no more
than one cycle. This allows us to refine and give a topologi-
cal interpretation to Eq. (6): N = 2Z − N sc − 2N trees, where
N trees is the number of trees (components without cycles) in
the pseudoforest. Second, only the odd-length cycles (1,3,5,
etc.) are allowed in this graph.

Figure 3(c) shows the distribution of the number of surviv-
ing 2-mers [or equivalently of directed edges in the de Bruijn
graph shown in Fig. 3(a)] in 250 realizations of the system
with different values of λij and ci. Figure 3(d) shows the dis-
tribution of the number (N + N sc)/2 of edges in undirected
graphs such as the one shown in Fig. 3(b) for the same set
of realizations. As discussed above, the deviation of this last
quantity down from Z is equal to the number of trees in the
pseudoforest. As shown in Fig. 3(d), it can be approximated
by an exponential distribution with the average around 1.6 [the
red line in Fig. 3(c)]. At the same time, the distribution of the
number of surviving 2-mers (N) has a peak around 36 < 2Z =
40. The quantity 2Z − N is always positive and approximately
follows a Poisson distribution with the average of 5.5 [the red
line in Fig. 3(c)].

E. Variability of the set of surviving 2-mers

The set of surviving 2-mers and their concentrations
depend on a number of parameters: ligation rates λij, total
monomer concentrations ci, and, possibly, seed concentrations
of individual 2-mers.

We analyzed the sensitivity of the steady state of our sys-
tem with respect to all of these parameters one-by-one. First
we fixed both λij and ci and analyzed the final 2-mer con-
centrations for a large number of random realizations of Z2

small (but positive) seed concentrations. We found the final
state to be reproducible as long as all seed concentrations are
non-zero. Note that due to the autocatalytic nature of 2-mer
dynamics given by Eq. (1), a pair of complementary 2-mers
with zero seed concentrations would never emerge on their
own. To search for alternative stable states that are not acces-
sible starting with small random seed concentrations of all
2-mers, we performed an additional test that was explicitly
biased toward finding other stable solutions (if they exist). The
following protocol was implemented: (i) we determined the set
of surviving 2-mers for a specific set of λij and ci and rerun our
dynamics with the initial seed concentrations of these 2-mers
being artificially set to 0. As expected, the resulting set of sur-
vivors did not include any 2-mers from the excluded set. (ii)
Following that, we added 2-mers from the excluded set at very
small seed concentrations. In some cases, that was sufficient
for them to completely take over the system, thereby returning
it to exactly the same steady state as in our standard protocol.
However, in a significant fraction of cases, we observed the
appearance of a new steady state in the system. Multistability
was also observed in other models of prebiotic evolution such
as that in Ref. 29.

Next, we fixed the ligation rates λij to their values used
to construct the heatmaps shown in Fig. 2 and networks
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in Fig. 3. We then simulated 100 realizations of the sys-
tem with ci pulled from a log-normal distribution P(ci) ∼
exp(−[log(ci/c)]2/σc)/ci with c = 3 and σc = 0.1. Figure 4(a)
shows the heatmap of the fraction of realizations of ci in which
each individual 2-mer survives in the steady state. In Fig. 4(b),
we present the same results in the form of the histogram (blue
bars). The majority of 2-mers [324 out of 400 visible as the
leftmost bar in Fig. 4(b)] got extinct in all of 100 realizations.
While the number of surviving 2-mers in each realization never
exceeded 2Z = 40 [see Fig. 2(c)], the overall number of 2-mers
that survived in at least one realization of ci was substan-
tially larger: 76. Out of this set, 20 “universal survivors” were
present in all 100 realizations. Furthermore, as can be seen by
comparing heatmaps in Figs. 2(d) and 4(a), these 20 universal
surviving 2-mers typically have high steady state concentra-
tions dij. To further investigate the correlation between 2-mer
concentration and its likelihood to survive, we analyzed a
larger set of 250 realizations of the system with the same
fixed ligation matrix but variable monomer concentrations ci.
The resulting distribution of 2-mer concentrations shown in
Fig. 4(c) is clearly bimodal. The bi-modality is also apparent
from an example of the de Bruijn graph shown in Fig. 3(a),
where approximately half of all links (thicker lines) correspond
to more abundant 2-mers, while the other half (thinner lines)
correspond to 2-mers present at low concentrations. The high-
concentration peak of the distribution in Fig. 4(c) is dominated
by the contribution from 20 universal survivors shown as the
red line. Note that despite an increased number of realizations,

FIG. 4. Variability of surviving 2-mers for different realizations. (a) The
heatmap of survival frequency of 2-mer in the steady state of the system with
fixed λij (the same as in Figs. 2 and 3) and 100 different realizations of ci.
Note the similarity to Fig. 2(c). (b) The histogram of these survival frequen-
cies (blue bars) as well as its average (red line) over 10 different realizations
of λij . (c) The histogram of 2-mer concentrations in 250 realizations of ci for
fixed λij . The red line shows the contribution from 20 “universal survivors”—
2-mers present across all realizations. (d) The number of universal survivors
(red line), the average number of survivors in a single realization (green line),
and the number of 2-mers present in at least one among hundred realizations of
ci (blue) each normalized by 2Z. The x-axis is the widthσc of the log-normal
distribution of monomer concentrations.

the set and number of universal survivors stayed the same as in
Figs. 4(a) and 4(b).

We further investigate the variability of the set of surviving
2-mers as a function of the width σc of the log-normal distri-
bution of monomer concentrations. As shown in Fig. 4(d),
the number of universal survivors (red line) systematically
decreases with σc, ultimately reaching 0 for σc ≥ 0.75. Con-
sistent with this trend, the bimodality of the concentration
distribution in Fig. 4(c) also disappears for larger values ofσc.
Note that all numbers of 2-mers shown in Fig. 4(d) were nor-
malized by 2Z, i.e., the upper bound of the number of surviving
2-mers in each realization. The average number of survivors in
a single realization (green line) does not have a notable depen-
dence on σc. The blue line in Fig. 4(d) shows the number of
2-mers (normalized by 2Z) that survived at least once among
100 realizations of ci. Note that this curve grows significantly
with σc ultimately reaching the value as high as 5. This corre-
sponds to half of all Z2 = 400 possible 2-mers having a chance
to survive in at least one of these realizations.

III. DISCUSSION

The major conclusion following from this study is that
our model system of mutually catalyzing heteropolymers has a
natural tendency toward spontaneous reduction of the informa-
tion entropy. This represents an effective reversal of the second
law of thermodynamics in this class of systems. While “vio-
lations” of the second law are indeed expected in externally
driven non-equilibrium systems, the observed “reversal” has
much greater implications. Both living organisms and other
self-organized systems such as human culture, economics,
and technology are characterized by an ever increasing com-
plexity, indicating the ongoing reduction in the information
entropy.

The thermodynamic entropy of a system of heteropoly-
mers is composed of two distinct parts:30 (i) the translational
and configurational entropy of polymer chains and (ii) the
information entropy associated with sequence statistics. Our
current model hints at a hierarchical scenario of entropy reduc-
tion in populations of heteropolymers. First, the translational
entropy is reduced due to template-based polymerization as
studied in our previous work26 within the Random Sequence
Approximation (RSA). Then RSA breaks down at the level
of 2-mers due to their competition with each other for a lim-
ited resource of monomers. Such symmetry breaking in the
sequence space results in a dramatic reduction of the informa-
tion entropy (ii). At this point, sequences of the entire pool of
chains are generated as Markovian random walks on the de
Bruijn graph [Fig. 3(a)]. One can imagine a further reduction
of the information entropy due to emergence of correlations
between consecutive steps of this walk.

There are multiple physical scenarios outside the scope of
the current model that would lead to such longer-range corre-
lations in the sequence space. They include, e.g., a dependence
of the association rates in Eq. (1) on the lengths of the three
chains involved in the process of template-assisted ligation.
Another intriguing scenario is a spontaneous emergence of
chains with weak catalytic activity above and beyond their
role as templates for ligation. For instance, some sequences
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may facilitate breakage or conversely promote ligation reac-
tions, either among some specific sequences or universally.
Such sequences would provide a missing link between the
prebiotic soup considered here and the emergence of the first
ribozymes in the RNA world scenario.

A common pattern in functional RNA-based structures
such as ribozymes and ribosomes is the presence of hair-
pins and loops. Note, however, that the mass-action term
in Eq. (1) assumes that the template and the two substrates
belong to three different chains thus ignoring these higher
order structures. A proper model description taking them into
account is a natural next step in the development of our
approach. An important question for a future study is whether
our system naturally evolves toward or away from loops and
hairpins.

An interesting feature of the sequence statistics emerging
in our model is that the entropy does not reach its absolute min-
imum that would correspond to a unique “master sequence.”
In the de Bruijn representation, such a master sequence would
look, e.g., like a single cycle (or several unconnected cycles)
in which for every monomer there is unique right neighbor fol-
lowing it on every chain. In that case, the walk on the de Bruijn
graph would be completely deterministic. By contrast, in our
model, each monomer typically has two possible right neigh-
bors in the de Bruijn graph. In the limit of relatively small vari-
ationsσc = 0.1 used to construct Fig. 3(a), stronger links corre-
sponding to “universal survivors,” produce the ci-independent
backbone of the graph akin to the master sequence. Conversely,
weaker links allow for infrequent hopping between different
parts of the graph resulting in deviations from this master
sequence. The opposite limit of large variations in monomer
concentrations is especially promising from the point of view
of further evolution of our system. In that limit, there is no dom-
inant master sequence. This dramatically expands the explored
region in the sequence space: now, for every step of the Marko-
vian walk, there are on average two comparable probabilities
for selecting the next monomer. As a result, the number of
possible sequences of length L in our model, ∼2L, remains
exponentially large, yet dramatically reduced compared to its
random sequence limit, ZL. Furthermore, in the limit of large
σc, different realizations of ci give rise to significantly differ-
ent sets of surviving 2-mers. Note that, unlike ligation rates λij,
monomer concentrations ci (or equivalently their influxes φi)
could vary significantly from one spatial location to another
(see Ref. 31 for a study of spatial inhomogeneity in the prebi-
otic context). This allows for an effective exploration of various
regions (of size ∼2L each) of the global sequence space, rather
than converging to the same subset of sequences over and
over.

Our model describes a simple yet general mechanism
for spontaneous entropy reduction in a system capable of
template-assisted ligation. There are multiple possible experi-
mental realizations of such systems based on either traditional
DNA/RNA biochemistry or artificial micro/nanostructures.
The most direct implementation of our model would be a sys-
tem composed of Z words made of a string of nucleotides
bound together by strong (e.g., DNA-type) bonds. They have
to be designed to form Z/2 mutually complementary pairs that
are orthogonal to each other; i.e., words from different pairs

have no long overlaps. These words would play the role of com-
posite monomers in our model that could be subsequently con-
nected to each other with weaker, breakable (e.g., RNA-type)
bonds.32 As discussed earlier, our model is directly applica-
ble to the scenario in which all bonds are unbreakable, while
the whole system is uniformly diluted and fresh (unbound)
monomers are supplied at a constant rate. This greatly expands
possibilities for its experimental implementation. In particu-
lar, one may now use purely DNA-based words not worrying
about how to break their rather stable bonds. Similarly, our
dynamics can be realized using the DNA origami nanoblocks
introduced in Ref. 6. It should be emphasized that in order to
achieve the behavior described by our model, the experiments
need to be conducted well below the saturation regime; i.e., the
night phase should be shorter than a typical association time for
hybridization.

Yet another interpretation of our model does not involve
any long polymers at all. In this case, 2-mers are represented
by physical dimers made of only two monomeric units inca-
pable of forming longer chains. Our model predicts that, even
in this simple system, the compositional entropy would drop
due to extinction of most of the dimers leaving no more than
2Z survivors. On the one hand, this further extends possibili-
ties for experimental implementation. For instance, one could
construct the DNA-based system described above but limited
to chains no longer than 2 words. This would greatly reduce the
complexity of the screening process. On the other hand, this
dimer interpretation has an intriguing connection to the Kauff-
man model of autocatalytic chemical reaction networks.12 In
the Kauffman case, some of the molecules in the pool are
capable of catalyzing the synthesis of others from “raw mate-
rials” (abundant small metabolites) ultimately resulting in the
emergence of metabolic autocatalytic cycles in large systems.
A recent model of such chemical reactions33 shows that the
system self-organizes to a state finely tuned to the external
driving force. This can be interpreted as the maximization
of the rate of negentropy adsorption from the environment.
In our case, dimers correspond to mutually catalytic entities,
while monomers represent raw materials. While in the current
implementation of our model, the catalytic cycles could only
involve two mutually complementary dimers, it is straightfor-
ward to generalize the model to allow for catalytic activity of
any dimer toward any other dimer or dimers. That version of
the model allows for autocatalytic cycles of length longer than
two. We expect our findings about the reduction of entropy
to be fully transferable to that case. Thus, our model has a
potential of bridging the gap between two traditionally com-
petitive visions of the Origin of Life: “information first” and
“metabolism first.”
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APPENDIX A: TOPOLOGICAL ANALYSIS
OF THE UNDIRECTED GRAPH

Here we discuss the undirected graph representation of
the pool of heteropolymers. Since our system always contains
pairs of mutually complementary 2-mers ij and j∗i∗ (with the
exception of self-complementary 2-mers ii∗), one can repre-
sent this pair with a single undirected edge connecting i to j∗.
These edges form an undirected graph shown in Fig. 3(b).
Note that due to these rules an edge connecting vertices i
and k in this graph represents a pair of 2-mers ik∗ and ki∗

shown as two edges in Fig. 3(a) or two matrix elements in
Fig. 2(c). For simplicity, in Fig. 3(b) we did not assign weights
to these symmetric edges. Each edge of this graph corresponds
to exactly one equation in the set of Eq. (5). Hence, the number
of undirected edges is equal to (N + N sc)/2 and according to
Eq. (6) it cannot exceed Z. On the other hand, based on net-
work topology, this number can be expressed as Z − Ncomp

+ Ncycles. Here Ncomp is the number of connected components
of the graph, while Ncycles is the number of independent cycles
defined as the minimal number of edges one needs to cut to
remove all cycles. The inequality (6) means that the number of
independent cycles cannot be larger than the number of com-
ponents. Furthermore, this inequality must be also satisfied
for each of the individual connected components of the graph
because the number of equations (edges) cannot exceed the
number of independent variables (the number of vertices in
this component). In other words, each of the components may
contain no more than one cycle. Graphs with this property
are known as “pseudoforests.”28 For unicyclic components
(i.e., those that include exactly one cycle), the numbers of
edges and vertices are equal to each other, while for each
of the tree (cycle-free) components, the difference between
these two numbers is equal to 1. This gives a topological inter-
pretation to the number of surviving 2-mers N in terms of
the number of tree-like components of the undirected graph,
N trees,

N = 2Z − Nsc − 2Ntrees, (A1)

which automatically leads to inequality (6).
One can also demonstrate that only the cycles of odd

lengths (1,3,5, etc.) are allowed in our system. Indeed, for a
hypothetical even-length cycle i1− i∗2− i3− i∗4−· · · in−1− i∗n− i1,
one can construct a combination of Eq. (5) of the following
form:

Λi1i2Λi3i4 . . .Λin−1in

Λi2i3 . . .Λin−2in−1Λini1
= 1. (A2)

Here Λij = 1 − ∆ij = λij · λj∗i∗ · ri · lj · li∗ · rj∗. All the vari-
ables li and ri at the left-hand-side of this equation cancel,
making it an invariant that depends only on ligation rates.
Therefore this equation cannot be satisfied for a generic matrix
λij, which rules out the existence of even cycles in most of the
cases.

APPENDIX B: ADDITION OF NON-TEMPLATED
LIGATION TO OUR MODEL

To test the robustness of our results, we explored a vari-
ant of our model in which in addition to template-assisted

FIG. 5. Steady state concentrations of 2-mers plotted vs the rate µ of non-
templated ligation. All other parameters of the model are the same as in Fig. 1.
Note that all Z2 2-mers survive for any µ > 0, while the original set of 38
survivors for µ = 0 continue to dominate in terms of abundances for low values
of µ.

ligation, polymer chains can also merge spontaneously with-
out the help of any template. Such a process is described by
an additional positive term µ · rilj in Eqs. (1). The equations
thereby become

ḋij(t) =
(
λijdj∗i∗ (t) + µ

)
ri(t)lj(t) − βijdij(t). (B1)

We computed the evolution of our system for several values of
µ ranging from 10−5 to 0.1. The results are shown in Fig. 5.
As one can see, our conclusions are robust with respect to
introduction of a non-zero (but small) non-templated ligation
rate µ. While all Z2 2-mers now survive in the steady state,
their distribution remains clearly bimodal for small values of
µ. Figure 5 traces the value of the steady state 2-mer concentra-
tions as a function of µ. When non-templated ligation becomes
strong, the distinction between original survivors and the rest
of 2-mers gradually disappears.
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