LMU, Winter Term 2019/20

Exercises on Open Quantum Systems
Inés de Vega (Teacher)
Carlos Parra (Tutor)

Exercise 1 Dephasing Discrete Map

Consider a qubit system A described in the computational basis $\left\{|0\rangle_{A},|1\rangle_{A}\right\}$ and an environment represented by the set of states: $\left\{|0\rangle_{E},|1\rangle_{E},|2\rangle_{E}\right\}$. Let \mathbf{T} be a discrete quantum map defined as:

$$
\begin{aligned}
|0\rangle_{A} \otimes|0\rangle_{E} & \mapsto \sqrt{1-p}|0\rangle_{A} \otimes|0\rangle_{E}+\sqrt{p}|0\rangle_{A} \otimes|1\rangle_{E} \\
|1\rangle_{A} \otimes|0\rangle_{E} & \mapsto \sqrt{1-p}|1\rangle_{A} \otimes|0\rangle_{E}+\sqrt{p}|0\rangle_{A} \otimes|2\rangle_{E},
\end{aligned}
$$

where no qubit flipping occurs after a elapsed time Δt.
a) Show that the respective Kraus operators take the form

$$
E_{0}=\sqrt{1-p}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \quad E_{1}=\sqrt{p}\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right) \quad E_{2}=\sqrt{p}\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right)
$$

and that the reduced density operator can be written as

$$
\begin{equation*}
\rho_{s}=\phi\left[\rho_{s}(0)\right]=\left(1-\frac{1}{2} p\right) \rho_{s}(0)+\frac{1}{2} p \sigma_{3} \rho_{s}(0) \sigma_{3} \tag{1}
\end{equation*}
$$

where σ_{i} 's are the Pauli matrices. Check that an alternative way of representing the previous equation is:

$$
\phi\left[\left(\begin{array}{ll}
\rho_{00} & \rho_{01} \\
\rho_{10} & \rho_{11}
\end{array}\right)\right]=\left(\begin{array}{cc}
\rho_{00} & (1-p) \rho_{01} \\
(1-p) \rho_{10} & \rho_{11}
\end{array}\right)
$$

where $\rho_{i j}$ are the matrix elements of the initial density operator. Why is this Map referred to as Dephasing Map?
b) Consider now that we apply the map n times until a time $t=n \Delta t$ (Δt time interval between "kicks"). Define Γ as the scattering event per unit time and show that after n kicks, with $n \rightarrow \infty$. Show that for a system initial state $\alpha|0\rangle_{A}+\beta|1\rangle_{A}$, the density operator evolves to

$$
\rho_{s}(t \rightarrow \infty)=\left(\begin{array}{cc}
|\alpha|^{2} & 0 \\
0 & |\beta|^{2}
\end{array}\right)
$$

c) Find the Bloch vector representation of the density operator. Discuss geometrically the effect of continous dephasing and why this map is not completely positive.
d) Extra Map: Consider the following Map:

$$
\begin{aligned}
|0\rangle_{A} \otimes|0\rangle_{E} & \mapsto \sqrt{1-p}|0\rangle_{A} \otimes|0\rangle_{E} \\
|1\rangle_{A} \otimes|0\rangle_{E} & \mapsto \sqrt{1-p}|1\rangle_{A} \otimes|0\rangle_{E}+\sqrt{p}|0\rangle_{A} \otimes|1\rangle_{E}
\end{aligned}
$$

and show that

$$
\rho_{s}(t)=\left(\begin{array}{cc}
\rho_{00}+\left(1-e^{-\Gamma t}\right) \rho_{11} & e^{-\frac{1}{2} \Gamma t} \rho_{01} \\
e^{-\frac{1}{2} \Gamma t} \rho_{10} & e^{-\Gamma t} \rho_{11} .
\end{array}\right)
$$

Discuss the difference of this map and the dephasing map.

Exercise 2 Non-Markovianity

In a previous exercise we derive the map

$$
\phi_{t}\left[\rho_{0}\right]=\left(\begin{array}{cccc}
1 & 0 & 0 & 1-|G(t)|^{2} \\
0 & G(t) & 0 & 0 \\
0 & 0 & G^{*}(t) & 0 \\
0 & 0 & 0 & |G(t)|^{2}
\end{array}\right)\left(\begin{array}{c}
\rho_{00} \\
\rho_{01} \\
\rho_{10} \\
\rho_{11}
\end{array}\right)
$$

keeping in mind that $G(t)$ is a solution of

$$
\frac{d}{d t} G(t)=-\int_{0}^{t} C(t-\tau) G(\tau) d \tau
$$

Let us assume that the qubit is coupled to a single mode such that $C(t)=g_{k}^{2} e^{-i\left(\omega_{k}-\omega_{s}\right) t}$
a) Prove that ϕ_{t} is invertible
b) The exact master equation for the reduced density operator can be obtain using the $\operatorname{map} \phi_{t}$ as

$$
\frac{d}{d t} \rho_{s}(t)=\dot{\phi}_{t}\left[\phi_{t}^{-1}\left[\rho_{s}(t)\right]\right]
$$

Show that

$$
\frac{d}{d t} \rho_{s}(t)=-\frac{i}{2} S(t)\left[\sigma^{+} \sigma^{-}, \rho_{s}(t)\right]+\gamma(t)\left(\sigma^{-} \rho_{s}(t) \sigma^{+}-\frac{1}{2}\left\{\sigma^{+} \sigma^{-}, \rho_{s}(t)\right\}\right)
$$

where

$$
\gamma(t)=-2 \operatorname{Re}\left\{\frac{G(t)}{G(t)}\right\} \quad S(t)=-2 \operatorname{Im}\left\{\frac{G(t)}{G(t)}\right\} .
$$

c) Integrate the master equation of the previous item and plot the expectation values $\operatorname{Re}\left(\left\langle\sigma^{ \pm}\right\rangle\right)$as a function of the time t. Consider the qubit initial state to be $\rho_{s}(0)=|1\rangle\langle 1|$.
d) Find the solution $G(t)$ for $g_{k}=1, \omega_{s}=49, \omega_{k}=49$ and $\omega_{k}=0.1$ (Use the previous results from Exercise sheet 3). Compute the non-Markovianity measure BLP (Breuer, Laine and Piilo) given the system initial states

$$
\rho_{s}^{1}(0)=\frac{1}{2}\left(\begin{array}{cc}
1 & i \\
-i & 1
\end{array}\right) \quad \rho_{s}^{2}(0)=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)
$$

