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Exercise 1 Single particle physics of open quantum systems

Let us consider a single two-level quantum system with frequency ωs coupled to a bosonic
environment, according to the Hamiltonian

H =
M∑
k=1

ωkb
†
kbk +

M∑
k=1

gk(bkσ
+ + b†kσ

−) + ωsσ
+σ−, (1)

where bk (b†k) are the bosonic annihilation (creation) operators for the mode k, and σ± are
the spin ladder operators between the two atomic internal levels |0〉, |1〉. We now consider
an initial state

|Ψ0〉 = |1〉|{0}〉, (2)

i.e. where there is one excitation in the atom and the environment is in the vacuum state
|{0}〉. Note that in the one excitation sector the Hamiltonian (1)

H =
M∑
k=1

ωkb
†
kbk +

M∑
k=1

gk(|{0}〉〈1k|σ+ + |1k〉〈{0}|σ−) + ωsσ
+σ−, (3)

where |1k〉 = |01, 02, · · · , 1k, · · · , 0M〉 is the state with only one excitation in the mode k.

1. Since the Hamiltonian will preserve the number of excitations, the total system will
have the general form

|Ψ(t)〉 = C0|0, 0〉+ A(t)|1, {0}〉+
∑
k

Bk(t)|0, 1k〉, (4)

where |1, {0}〉 describes the excitation in the two-level system and no excitations
in the environment, and |0, 1k〉 represents no excitations in the two-level systems
and a single excitation in the bosonic mode k. By considering the time-dependent
Schrödinger equation, assume that Bk(0) = 0, and show that

dA(t)

dt
= −

∫ t

0

dτC(t− τ)A(τ), (5)

where C(t) =
∑

λ g(k)2e−i∆kt is the correlation function of the environment, but
with a displaced phase ∆k = ωk − ωs.

2. An analytical solution can be obtained using the Laplace transform method A(t) =

L−1(A(s)) = L−1K(s), where K(s) = ( A(0)
s+C(s)

), where C(s) is the Laplace transform

of the correlation function. The general solution of (5) is

A(t) =

∫ ε+i∞

ε−i∞
dsK (s) est = 2πi

∑
j

Rj −
∫
C

K (s) est, (6)

where Rj are the residues of the function K(s)est at the zeros of s+C(s) = 0 (which
are the poles of K(s)). The function K(s) has three different types of poles:



• Complex poles s = −x+ iy

• Purely real poles s = −x
• Imaginary poles s = iy

To which physical scenarios will each solution correspond? Can you identify for which
regime a bound state (i.e. entangled state between the system and the environment)
will be formed in which the atomic population will not vanish completely at long
times? Note that the last term of (6) corresponds to a contour integral around the
poles. This term vanishes at long times and will not be important for our qualitative
analysis we discuss above.

3. Write the form of the reduced density matrix in terms of A(t), i.e. the form

ρs(t) =

(
P (t) D(t)
D∗(t) 1− P (t)

)
where both P (t) and D(t) are functions of A(t).

4. Write the form of the map φt by writing ρs(t) as a vector ρvs(t) with four entries
(ρ00, ρ01, ρ10, ρ11), such that you re-write the above equation

ρvs(t) = φt[ρ
v
s(0)]. (7)

After this analytical inspection of the master equation, we now face the numerical
resolution of the problem. To this aim, we consider the case of an atom in a cavity
array. This means that in the Hamiltonian (1) we consider a periodic dispersion

ωk = A+B cos(kh),
gk = g, (8)

with A = 100, B = 50, h = 1, g = 1 as fixed quantities. In addition, we consider
M = 1000 harmonic oscillators in the photonic environment. Correction: When
generating the Hamiltonian for the photons, we should consider that the wave-vector
runs from −π to π as

k =
2πj

hM
, (9)

with j = −M/2 + 1, ...,M/2. Note that if we want to consider two atoms (not
necessary here) we should write that the second one is located at a distance L and
would has an interaction Hamiltonian

HI = g
∑
k

(σ†2bke
ikL + h.c), (10)

where k = j ∗ dk, where j = 1, · · · ,M .

Now, we consider the initial state (2) and address the following questions:

• Compute the time evolution of the quantum mean value of the observable
na(t) = σ+(t)σ−(t) for the following regimes:

– ωs = 51,

– ωs = 49.



What qualitative differences are observed in the dynamics? And if you place
the frequency more inside the band, i.e. with ωs = 53?

• For the same cases, plot the real and the imaginary parts of A(t), and relate
the obtained result to the general structure (6). For which of values of ωs we
expect the presence of a bound state as described in the context of Eq. (6)?

• A bound state is an entangled state between the system and the environment
that at long times has the general form

|Ψ(t)〉 = ceiyt|1, {0}〉+
∑
k

igc

(
1− ei(y+ωk−ωs)t

y + ωk − ωs

)
|0, 1k〉. (11)

To check the bound state, compute the evolution of the von-Neumann entropy
S(ρs) = −Trs{ρslnρs} with time for the above cases ωs = 51 and ωs = 49 and
determine when does the entropy persists. For total pure states such as the one we
have, the von-Neumann entropy is an estimation of the system-environment entan-
glement.

5. Imagine now that we start from an initial state where the excitation is in the field,
and not in the atom, i.e.

|Ψ0〉 = |0〉
∑
k

Bk(0)|1k〉, (12)

where
∑

k |Bk(0)|2 = 1 and |1k〉 is a short notation for |0, 0, · · · , 1k, 0, · · · 〉, i.e the
Fock state corresponding to a single excitation in the mode k. Note that there is still
a single excitation but now it is spread in the electromagnetic field modes. Under
which conditions will the excitation be best absorbed by the atom? How will the
absorption probability depend on the initial distribution of Bk(0)?


