LMU, Winter Term 2019/20

Exercises on Open Quantum Systems
Inés de Vega (Teacher)
Carlos Parra (Tutor)

Exercise 1 General Lindblad form of a time local master equation.

We have seen that the reduced density operator of an open quantum system can in general be described in terms of a universal dynamical map, ϕ_{t}. Importantly, we have to prepare the system and the environment in an initially decorrelated state of the form, such that the density operator for the total system (including the open system and its environment) is

$$
\begin{equation*}
\rho(0)=\rho_{s}(0) \otimes \rho_{B} \tag{1}
\end{equation*}
$$

where $\rho_{s}(0)=\operatorname{Tr}_{B}\{\rho(0)\}$ is the reduced density operator of the system and ρ_{B} is the environment density operator. This operator has a spectral decomposition

$$
\begin{equation*}
\rho_{B}=\sum_{q} \lambda_{q}\left|E_{q}\right\rangle\left\langle E_{q}\right|, \tag{2}
\end{equation*}
$$

in terms of its eigenvectors $\left|E_{q}\right\rangle$, and with $\lambda_{q} \geq 0$. Under these conditions, the reduced density matrix at a time t can then be written in terms of a Kraus decomposition,

$$
\begin{align*}
\rho_{s}(t) & =\operatorname{Tr}_{B}\left\{\mathcal{U}^{-1}(t) \rho_{s}(0) \otimes \rho_{B}(0) \mathcal{U}(t)\right\}=\sum_{q^{\prime}} \sum_{q} \lambda_{q}\left\langle E_{q^{\prime}}\right| \mathcal{U}^{-1}(t)\left|E_{q}\right\rangle \rho_{s}(0)\left\langle E_{q}\right| \mathcal{U}^{-1}(t)\left|E_{q^{\prime}}\right\rangle \\
& =\sum_{l} E_{l}(t) \rho_{s}(0) E_{l}^{\dagger}(t)=\phi_{t}\left[\rho_{s}(0)\right] \tag{3}
\end{align*}
$$

where $E_{l}=\sqrt{\lambda_{q}}\left\langle E_{q^{\prime}}\right| \mathcal{U}^{-1}(t)\left|E_{q}\right\rangle\left(l \equiv\left\{q, q^{\prime}\right\}\right)$ are Kraus operators fulfilling the property

$$
\begin{equation*}
\sum_{l} E_{l}^{\dagger} E_{l}=\mathbb{1}_{S} \tag{4}
\end{equation*}
$$

One of the most desirable properties to describe the dynamics of an open system is that, provided that their map ϕ_{t} is invertible and differentiable, the reduced density matrix can be shown to evolve according to a time-local master equation of the form

$$
\begin{align*}
\frac{d \rho_{s}(t)}{d t} & =-i\left[\hat{H}_{S}(t), \rho_{s}(t)\right]+\sum_{k=1}^{d^{2}-1} \gamma_{k}(t)\left(L_{k}(t) \rho_{s}(t) L_{k}^{\dagger}(t)\right. \\
& \left.-\frac{1}{2}\left\{L_{k}^{\dagger}(t) L_{k}(t), \rho_{s}(t)\right\}\right) \tag{5}
\end{align*}
$$

Question: By considering the general form (3), probe that this is the case. Guide:

1. Formally write the derivative of (3) as a time local master equation of the form

$$
\begin{align*}
\frac{d \rho_{s}(t)}{d t} & =\dot{\phi}_{t} \phi_{t}^{-1} \rho_{s}(t) \\
& =\sum_{k} A_{k}(t) \rho_{s}(t) B_{k}^{\dagger}(t)=\Lambda_{t}\left[\rho_{s}(t)\right] \tag{6}
\end{align*}
$$

and specify the form of A_{k} and B_{k} in term of the Kraus operators E_{l} and considering that the inverse of the map can be written as

$$
\begin{equation*}
\phi_{t}^{-1}\left[\rho_{s}\right]=\sum_{m} F_{m}(t) \rho_{s} Q_{m}(t) . \tag{7}
\end{equation*}
$$

Note that the index k in (6) combines the indexes l and m.
2. Consider a complete set of $N=d^{2}$ basis operators $\left\{G_{i} ; i=1, \cdots, N-1\right\}$ for the open system, where $N=d^{2}$ and d is its dimension. These operators have the properties

$$
\begin{align*}
G_{0} & =\mathbb{1}_{S} / \sqrt{d} \\
G_{i} & =G_{i}^{\dagger} \\
\operatorname{Tr}\left\{G_{i}\right\} & =(d / \sqrt{d}) \delta_{i 0} \\
\operatorname{Tr}\left\{G_{i} G_{j}\right\} & =\delta_{i j} \tag{8}
\end{align*}
$$

But most importantly, because they are a completer basis of operators of the system, we have that

$$
\begin{equation*}
\sum_{m} G_{m} A G_{m}=\mathbb{1}^{T_{S}}\{A\} \tag{9}
\end{equation*}
$$

where A and \mathbb{I} are, respectively, any arbitrary operator and the unit operator in the open system Hilbert space. Since the basis is complete, any operator of the system, A can be written as

$$
\begin{equation*}
A=\sum_{j} G_{j} \operatorname{Tr}_{S}\left\{G_{j} A\right\} \tag{10}
\end{equation*}
$$

Write the equation (6), in particular $\frac{d \rho_{s}(t)}{d t}=\sum_{k} A_{k}(t) \rho_{s}(t) B_{k}^{\dagger}(t)$ in terms of such a basis, such that

$$
\begin{equation*}
\frac{d \rho_{s}(t)}{d t}=\sum_{i j=0}^{N-1} c_{i j} G_{i} \rho_{s}(t) G_{j} \tag{11}
\end{equation*}
$$

To this aim, take into account that $A_{k}(t)$ and $B_{k}(t)$ are operators in the open system Hilbert space. Specify formally $c_{i j}$. Considering that ρ_{s} and therefore $\dot{\rho}_{s}$ are Hermitian, what property have the elements $c_{i j}$?
3. Separate from the equation the $i=0$ and the $j=0$ terms. Reformulate the equation by expressing such terms as a function of the operator

$$
\begin{equation*}
C=\frac{c_{00}}{d}+\sum_{i} \frac{c_{i 0}}{\sqrt{d}} G_{i} . \tag{12}
\end{equation*}
$$

Considering the trace preservation, i.e. $\operatorname{Tr}_{s}\left\{\dot{\rho}_{s}(t)\right\}=0$, write $C+C^{\dagger}$ in terms of $c_{i j}$, G_{i} and $G_{j}($ for $i, j=1, \cdots, N-1)$.
4. Define a new Hamiltonian operator $H=\frac{i}{2}\left(C-C^{\dagger}\right)$, and show that one finally obtains

$$
\begin{equation*}
\frac{d \rho_{s}}{d t}=-i\left[H, \rho_{s}\right]+\sum_{i, j=1}^{N-1} c_{i j}\left(G_{i} \rho_{s} G_{j}-\frac{1}{2}\left\{G_{j} G_{i}, \rho_{s}\right\}\right) \tag{13}
\end{equation*}
$$

5. By using the property (9), rewrite the coefficients $c_{i j}$ as

$$
\begin{equation*}
c_{i j}(t)=\sum_{k} \operatorname{Tr}_{S}\left\{G_{i} A_{k}\right\} \operatorname{Tr}_{S}\left\{G_{j} B_{k}^{\dagger}\right\}=\sum_{m=0}^{N-1} \operatorname{Tr}_{S}\left\{G_{m} G_{i} \Lambda_{t}\left[G_{m}\right] G_{j}\right\} \tag{14}
\end{equation*}
$$

where $\Lambda_{t}\left[G_{m}\right]=\sum_{k} A_{k}(t) G_{m} B_{k}^{\dagger}(t)$.
6. We now define the decoherence matrix \mathbf{d} with elements $d_{i j}(t)=c_{i j}(t)$ for $i, j=$ $1, N-1$, and consider that it is Hermitian. Therefore, it can be written in a diagonal form

$$
\begin{equation*}
d_{i j}=\sum_{k} U_{i k} \gamma_{k} U_{j k}^{*}, \tag{15}
\end{equation*}
$$

where the eigenvalues γ_{k} are real, but not necessarily positive at all times, and the $U_{i k}$ are elements of a unitary $(N-1) \times(N-1)$ matrices formed by the corresponding eigenvectors of \mathbf{d}. Apply such unitary transformation to Eq. (13), to find indeed Eq. (5). What is the form of L_{k} in terms of the basis operators G_{i} ?

