Generation and Applications of Ultrahigh-Intensity Laser Pulses

Problem Set 6

1. Misaligned grating compressor

Consider the above grating compressor with a line density of $1480 \mathrm{~mm}^{-1}$ and an angle of 20.2 degree between both gratings. The laser has a central wavelength of 800 nm and a spectral bandwidth of $\Delta \lambda=50 \mathrm{~nm}$ (gaussian spectrum).

- Calculate the incident angle on the first grating.
- Assuming that the laser is focused using an $\mathrm{f} / 20$ parabola, with an aperture $d_{F W H M}=5 \mathrm{~cm}$, how much does the pulse elongate in focus due to the angular chirp if the compressor is misaligned by an angle of 0.1 mrad?

Hint: Check chapter 2.10 of the lecture notes online.

2. Ray Transfer Matrix Analysis

In many cases, the propagation of light in a resonator or other optical systems can be approximated using the paraxial approximation, i.e. all rays are assumed to be at a small distance (r) from the optical axis, with a small angle (θ) and axial symmetry. A useful formalism to analyze the propagation of light in the paraxial approximation is the transfer-matrix method. Here, a single light ray is expressed by its position r and angle θ

$$
\boldsymbol{x}=\binom{r}{\theta} .
$$

Starting from an initial state \boldsymbol{x}_{1}, a linear optical element will transform the light ray to a state

$$
\boldsymbol{x}_{2}=\boldsymbol{M} \cdot \boldsymbol{x}_{1},
$$

where

$$
\boldsymbol{M}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

is the so-called ray transfer matrix. Accordingly, the transport of a beam through a number of optical electrons can be calculated by multiplying the individual transfer matrices $\boldsymbol{x}_{n}=\left(\boldsymbol{M}_{\boldsymbol{n}} \cdots \boldsymbol{M}_{\mathbf{3}} \cdot \boldsymbol{M}_{\mathbf{2}} \cdot \boldsymbol{M}_{\mathbf{1}}\right) \boldsymbol{x}_{1}$.

- Find the transfer matrices for (a) free propagation of light, (b) a thin lens and (c) a spherical mirror.
- Calculate the ray transfer matrices for a single roundtrip inside a laser cavity (1) and single trip in a double lens system (2)
- Compare both results.

see next page for exercise 3

3. Stability of a laser resonator

In order to be stable, we require that a cavity will return to its initial condition at some point, i.e.

$$
\boldsymbol{x}_{n}=\boldsymbol{M}^{n} \cdot \boldsymbol{x}_{0} \stackrel{!}{=} \boldsymbol{x}_{0}
$$

This is an eigenvalue problem

$$
M^{n} \cdot \vec{r}_{0}=\lambda^{n} \cdot \vec{r}_{0}
$$

and we are trying to find eigenvalues with $|\lambda|=1$.

- Calculate the eigenvalues $\lambda_{1,2}$ for a general ray transfer matrix

$$
\boldsymbol{M}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

- Calculate $\lambda_{1,2}$ explicitly for the ray transfer matrix of a laser resonator of length L, consisting of two spherical mirrors with curvature $R_{1 / 2}$ (cf. exercise 2).
- Use the result to derive the stability condition

$$
0 \leq\left(1-\frac{L}{R_{1}}\right) \cdot\left(1-\frac{L}{R_{2}}\right) \leq 1
$$

