## Generation and Applications of Ultrahigh-Intensity Laser Pulses

## Problem Set 5

## Non-linear effects and Dispersion

## 1. Few-cycle pulse generation

Titanium-sapphire lasers are typically limited to a bandwidth of $\lesssim 100 \mathrm{~nm}$.

- Is this bandwidth sufficient to generate pulses with a duration $\Delta t<10 \mathrm{fs}$ ?
- If not, which non-linear effect could be used to broaden the spectrum? Can you think of any effects that limit the input pulse intensity?
- Assuming you have generated a pulse with a gaussian spectrum and a bandwidth limited duration of 10 fs, how does the pulse length change when the pulse passes through a window of 2-mm-thick Sapphire crystal? How can you avoid pulse lengthening?


## 2. B-Integral in a high-power laser system

Consider a titanium:sapphire high-power laser system with a beam energy of 1 J , a central wavelength of $\lambda=800 \mathrm{~nm}$ and a gaussian spectrum with $\Delta \lambda=60 \mathrm{~nm}$. The beam profile is a top-hat with a diameter of 5 cm .

- What is the bandwidth-limited duration of the pulse? Which peak power does the pulse reach?
- Assuming constant intensity over propagation, calculate the distance a perfectly compressed beam can travel in air until a B-integral of unity is reached.
- Calculate the peak power to the critical power for self-focusing in air.
- How does this compare to the case of a pulse that is stretched by introducing a group delay dispersion $D_{2}=1 \times 10^{7} \mathrm{fs}^{2}$ ?
- Which optical device would you choose to introduce this amount of group delay dispersion?


## 3. Z-scan Measurements

A common way to measure the strength of the Kerr non-linearity (i.e. the non-linear refractive index $n_{2}$ ) is the z-scan technique. The method employs an intense laser and two detectors ( A and B ) to measure the $n_{2}$ of a sample which is mounted on a translation stage. The basic setup is sketched below:


Can you figure out how this method might work?

Note: For some exercises you may have to look up the nonlinear refractive index $n_{2}$.

