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Stochasticity of metabolism and growth at the

single-cell level

Daniel J. Kiviet">3*, Philippe Nghe'{*, Noreen Walker', Sarah Boulineau', Vanda Sunderlikova' & Sander J. Tans'

Elucidating the role of molecular stochasticity' in cellular growth is
central to understanding phenotypic heterogeneity” and the stabil-
ity of cellular proliferation®. The inherent stochasticity of metabolic
reaction events* should have negligible effect, because of averaging
over the many reaction events contributing to growth. Indeed, me-
tabolism and growth are often considered to be constant for fixed
conditions™S. Stochastic fluctuations in the expression level"”™ of
metabolic enzymes could produce variations in the reactions they cat-
alyse. However, whether such molecular fluctuations can affect growth
is unclear, given the various stabilizing regulatory mechanisms'®-'?,
the slow adjustment of key cellular components such as ribosomes
and the secretion'” and buffering'®'” of excess metabolites. Here we
use time-lapse microscopy to measure fluctuations in the instanta-
neous growth rate of single cells of Escherichia coli, and quantify
time-resolved cross-correlations with the expression of Jacgenes and
enzymes in central metabolism. We show that expression fluctua-
tions of catabolically active enzymes can propagate and cause growth
fluctuations, with transmission depending on the limitation of the
enzyme to growth. Conversely, growth fluctuations propagate back
to perturb expression. Accordingly, enzymes were found to transmit
noise to other unrelated genes via growth. Homeostasis is promoted
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by a noise-cancelling mechanism that exploits fluctuations in the
dilution of proteins by cell-volume expansion. The results indicate
that molecular noise is propagated not only by regulatory proteins'®"*
but also by metabolic reactions. They also suggest that cellular meta-
bolism is inherently stochastic, and a generic source of phenotypic
heterogeneity.

To investigate the dynamics of cellular growth, we followed indi-
vidual E. coli cells growing on different nutrients. Among them was the
synthetic sugar lactulose®, which is imported and catabolized by the
LacY and LacZ enzymes like its analogue lactose, but unlike lactose
does not induce lac operon expression (Fig. 1a). Mixtures of lactulose
and the gratuitous inducer isopropyl-B-D-thiogalactoside (IPTG) thus
allowed us to vary the mean lac expression level independently and
hence to explore different regimes of noise transmission. We determined
the instantaneous growth rate u(t) of individual cells within micro-
colonies at sub-cell-cycle resolution for various growth conditions, using
time-lapse microscopy'® at high acquisition rates and automated image
analysis (Supplementary Information). We found that () varied consid-
erably in time, both within one cell-cycle and between different cell-cycles
(Fig. 1b, cand Extended Data Fig. 1), with noise intensities (standard devi-
ation over the mean) ranging between 0.2 and 0.4 (Fig. 1d). Consistently,
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Figure 1 | Growth rate variability in single E. coli cells. a, Schematic diagram
of the studied system. Lactulose is metabolized by the lac enzymes, but does
not induce lac expression. Mean lac expression can hence be varied
independently by the inducer IPTG. GFP is fused transcriptionally in the lac
operon (Extended Data Table 2). b, Aligned phase-contrast images for two
lineages. Microcolonies were grown on polyacryl pads (0.1% lactulose and
200 pM IPTG) for eight to nine generations. Up to 48 images were taken per
hour. Red line: cell boundary from image analysis. ¢, Instantaneous growth rate
u(t) against time, determined by fitting exponentials to the cellular length. Four
lineages are coloured for clarity. Black bar, mean division time; light points,
division events. d, Top: histograms of u values for different IPTG levels.

Bottom: noise intensity (standard deviation over the mean). e, Autocorrelation
function of p(t) for low (4 UM, green), intermediate (6 LM, ochre) and high
(200 pM, brown) IPTG levels. For clarity, error bars denoting the standard
deviation are indicated only for a fraction of the points. Black lines: exponential
fits that provide the correlation time. Correlation functions were determined
along the branched lineages (Extended Data Fig. 8). f, Graph of u(t) correlation
time versus mean doubling time. Colours are as in e; black points are for
growth on defined rich, lactose, succinate and acetate (in order of increasing
doubling time). g-i, As ¢, e and f, but for the fluorescence intensity reporting
for E(t) within single cells. Protein concentrations were determined by the
mean fluorescence per unit area (Extended Data Fig. le-g).
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the growth rates of sister cells were significantly correlated (Extended
Data Fig. 2). We found that the typical timescales of the fluctuations
were somewhat smaller than the mean cellular doubling time, as quan-
tified by the autocorrelation functions R,,,,(t) (Fig. le, f). Such a scaling
with doubling time is typical for protein concentration fluctuations®'.
Thus, the data indicated randomly fluctuating growth limitations, and
suggested they could be caused by concentration fluctuations of cellular
components.

To study the relation between growth and lac enzymes, we quan-
tified the fluctuations in the lac production rate p(t) and concentration
E(t) using green fluorescent protein (GFP) labelling (Fig. 1a, g-i and
Extended Data Fig. 1). We computed the cross-correlation functions
R,,(t) and Rg, (), which indicate whether expression fluctuations cor-
relate with pi-fluctuations occurring time 7 later, and thus inform on the
direction of transmission>?*. Both R, () and Rg,(t) showed positive
correlations regardless of the IPTG concentration (Fig. 2a, e-g). Their
shapes and symmetries did depend on IPTG, however. At low and
intermediate IPTG, Rg,(7) was nearly symmetric around t = 0 while
R, (1) was asymmetric with larger weight at 7> 0 (Fig. 2e, f and Ex-
tended Data Fig. 3). This would indicate that p fluctuations on average
correlated more strongly with p fluctuations that occur later. Such a
delay in u is consistent with the idea that lac expression fluctuations
produce variations in lactulose catabolism, which in turn propagate
through the metabolic network and perturb growth.

High IPTG Rg,(7) displayed a positive peak at <0 (Fig. 2g and
Extended Data Fig. 3). Thus, E fluctuations correlated more strongly
with p fluctuations occurring earlier, which suggested backward trans-
mission from growth to expression. Such a growth-to-expression cou-
pling could be caused by specific regulatory interactions'>***, or more
generally by growth fluctuations that cause variations in general com-
ponents that are required for transcription and translation. Overall, the
data suggested that noise not only propagated forward, from express-
ion to growth, but also backward, from growth to expression.

To determine whether back-and-forth transmission could explain
the correlations, we developed a stochastic model. A black-box approach

was followed, in which noise propagation is represented by phenom-
enological transmission coefficients that do not specify molecular details
(Fig. 2b). Despite the circulating noise, the system could be decomposed
into distinct noise transmission modes; here termed the lac catabolism,
common noise and dilution modes (Fig. 2d). The cross-correlation
curves for all induction levels (Fig. 2e-g) were fitted jointly, using the
transmission strength from the common noise source to p as a single
free parameter (Fig. 2h—j).

The effects of induction could be explained by altered intensities of
the modes. At low and intermediate IPTG, the lac catabolism mode
was dominant, with lac noise causing up to 30% of the growth noise
(Extended Data Table 1). At higher IPTG this mode weakened because
of decreased transmission from E to u. This decrease is plausible, as cat-
alysed reactions are less dependent on catalyst when the latter is abund-
ant, consistent with the observed relation between the mean E and it
(Fig. 2c). On the other hand, the rather constant R,,(0) (Fig. 2e-g) in-
dicated that the common-noise mode had an almost fixed intensity for
all IPTG concentrations. To probe the generality of this mode further,
we made a number of genetic modifications. We found that it remained
active when we knocked-out the lac repressor, changed the GFP posi-
tion within the operon, altered the type of fluorescent protein or used
an exogenous constitutive promoter (Extended Data Fig. 4a-d). These
data suggest that common noise transmits to expression in general, which
does not exclude additional coupling by specific regulatory interactions.

Next, we tested key findings. First, if the asymmetry in R,,,,(7) (Fig. 2e, )
isindeed caused by lac catabolism, this asymmetry should be suppressed
when carbon enters central metabolism via another pathway. Growth
on acetate was similarly slow as on lactulose and low induction, but
R,,(t) was now indeed nearly symmetric (Fig. 3a, b and Extended Data
Fig. 3). At the same time, Rg,,(7) became more asymmetric as predicted
for a dominant common noise mode transmission (Fig. 3a, b and Ex-
tended Data Fig. 3). When growing on other natural substrates including
lactose, the Rg, peak-width scaled roughly with doubling time consist-
ent with dilution setting the transmission delay timescales (Fig. 3b and
Extended Data Fig. 5). To test further whether lac fluctuations could be
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Figure 2 | Cross—correlation functions and mathematical model.

a, Instantaneous growth rate against lac enzyme concentration from one
microcolony, corresponding to the cross-correlation value Rg,(0) in e. b, Model
of the coupling between expression and growth noise. Two noise sources are
specific to p and g, one is common to p and p. Correlations arise when

noise emitted from one source is received by two observables (p, E or p).
Analytical solutions revealed all contributing pathways, and showed they were
finite despite the looped network structure (Supplementary Information).

¢, The mean growth rate versus the mean expression level, as measured for
different levels of IPTG induction. Line: fit to a Monod growth model. d, Three
classes of noise transmission modes. As an example, a noise source (left)
emits a block wave, giving rise to signals 4, p and E (middle) and their
cross-correlations (right). Other pathways contribute as well. For instance,
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common noise can also drive the catabolism mode. e-g, Cross-correlation
functions R,,,(7) for the enzyme production rate p(t) and growth rate u(t) (thin
line), as well as R, (1) for the enzyme concentration E(t) and pu(t) (thick line).
Growth is on lactulose (0.1%) with IPTG: 4 uM (e), 6 uM (f), 200 uM (g).
Top triangles indicate mean division time. Error bars denoting the standard
deviation are indicated for some data points only. The main features were
robust to changing the growth determination method and taking the cell width
into account (Extended Data Fig. 4e-h). Growth and expression differences
typically did not correlate with location within the microcolony (Extended Data
Fig. 4i). Protein production rates were determined by the time-derivative of
the total fluorescence per cell (Extended Data Fig. 1e-h). h-j, Fits to the
experimental data (e-f).
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Figure 3 | Model predictions and experimental tests. Top: re-wired noise
transmission networks with predicted dominant pathways (black). Coloured
genes indicate labelling with GFP and mCherry. Middle: predicted cross-
correlation with mean doubling time (triangle). Bottom: measured cross-
correlation. Error bars denote the standard deviation. a, b, For growth on
acetate the lac enzymes are catabolically inactive. ¢, d, Gene with a weaker
coupling from common noise to expression (compared with the lac operon),

causal in the growth noise, we exposed the cells to IPTG pulses in a
microfluidic device. The resulting pulses in lac expression were indeed
followed by a pulse in growth (Extended Data Fig. 6a). Next, we aimed
to mimic common noise fluctuations by growing cells on glucose min-
imal medium and pulsing with amino acids. These pulses indeed pro-
duced transient increases in  and p (Extended Data Fig. 6b), consistent
with common noise propagating to enzyme expression and to growth.

Second, the network structure implied a homeostatic control mech-
anism: upward fluctuations in common noise increase E when trans-
mitted via p, but also decrease E when transmitted via p (Fig. 2b). These
opposing effects offer a direct prediction: if the positive pathway dom-
inates, REM(’L') should be positive, as is the case so far. If the negative path-
way would dominate, however, R, (t) should become negative (Fig. 3¢).
One cannot manipulate how volume changes affect dilution. To tilt the
balance, we thus looked for constructs with a weaker coupling to com-
mon noise in the positive pathway, as measured by R,,,(0). A constitu-
tively expressed mCherry with a twofold lower R« ,,(0) indeed displayed
negative Rg«,(7) (Fig. 3d and Extended Data Fig. 3). Thus, two parallel
antagonistic pathways that together form a so-called incoherent feed-
forward network motif*® can partly cancel noise. This cancelling also
explains why Rg,(0) is low even though R,,(0) is high at high induc-
tion where common noise dominates (Fig. 2g). Interestingly, while up-
fluctuations in p are associated with up-fluctuations in E (Fig. 2g),
increases in mean ji lead to decreases in E (Extended Data Fig. 5¢)'**.
These opposing dependencies suggest that different mechanisms under-
lie these two types of expression variation.

Third, if lac enzymes transmit to growth and growth transmits to
expression in general, then lac enzymes ought to transmit also to other
genes. Hence we quantified p*(¢) of mCherry controlled by promoters
with no known functional interactions with the lac system. For lactu-
lose and low induction, mCherry fluctuations indeed occurred after lac
fluctuations on average (Fig. 3f and Extended Data Fig. 7a, b) in ac-
cordance with predictions (Fig. 3e). In contrast, this delay was absent
for acetate, which is consistent because lac then does not transmit to
growth (Extended Data Fig. 7c, d). Noise in lac expression can thus
couple to other genes without specific regulatory interactions.

For the lac genes, the lac catabolism mode transmitted to growth
only when the mean lac expression was kept artificially low and limited
the mean growth rate. Hence, we wondered whether limiting enzymes
in central metabolism could similarly perturb growth. For growth on
lactose, glycolysis is considered limited by pfkA, and the tricarboxylic
acid cycle by icd but not by gltA; while in acetate, gltA is limiting, icd
may be limiting but pfkA is not***. We indeed observed positive time
delays in R,,,, for pfkA and icd in lactose, and for gltA and icd in acetate,

leading to dominant dilution. e, f, Transmission from the lac genes to another
gene via growth. When the lac genes do not transmit because cells grow on
acetate, the correlation is symmetric (Extended Data Fig. 7c, d). g, Time delays
for lac, pfkA, gltA and icd in lactose (not boxed) and acetate media (boxed), as
derived from the correlation functions R,,(7) (Extended Data Fig. 7). Small
square boxes indicate which gene is considered limiting in steady-state in a
particular medium (see main text).

but not in the other cases (Fig. 3g and Extended Data Fig. 7e). This pat-
tern of correlation delays is consistent with the mechanism found for
lac, in which growth limitation in steady-state resulted in noise trans-
mission to growth. Notably, the differences in noise transmission be-
haviour were observed for enzymes catalysing nearby reactions in the
pathway. For instance, icd acts almost directly after gltA, but icd dis-
played delayed correlation in lactose while gltA did not. This excludes
the possibility that the delayed correlations are caused by synchronous
fluctuations of pfkA, gltA, icd and other central metabolic genes. Together,
the results indicate that expression-to-growth noise propagation occurs
more generally for limiting genes.

Our study shows that fluctuations in gene expression can affect the
growth stability of a cell, and, in turn, growth noise affects gene expres-
sion. This entanglement between growth and expression noise reflects
the inherent auto-catalytic nature of self-replicating systems: metabolic
enzymes help synthesize the building blocks for their own synthesis.
The results raise the question how different fluctuating metabolic activ-
ities within the cell are coordinated, and which regulatory mechanisms
are implicated in maintaining growth homeostasis. Metabolic stochas-
ticity could allow clonal cells in a population to adopt a wide spectrum
of metabolic states, and hence enable bet-hedging strategies to exploit
new conditions optimally. Metabolic stochasticity could represent a ge-
neric source of cellular heterogeneity*’, but also prevent optimal growth™
and limit efficient biosynthesis. Novel approaches are required to in-
corporate noise transmission within the current theoretical framework
of metabolism.

Online Content Methods, along with any additional Extended Data display items
and Source Data, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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Extended Data Figure 1 | Image analysis and determination of cell length,
elongation rate, enzyme concentration and production rate. a, Segmented
cell silhouettes are obtained by applying a Laplacian of Gaussian filter on phase
contrast images. b, The cell axis is determined by fitting a third degree line
through the silhouette. ¢, Cell-length determination. We compute the distances
between points on the cell axis and the closest 25 segmentation pixels. The
sum of these distances squared, here termed the silhouette proximity, is plotted
for points along the cell axis. In the centre of the cell silhouette or mask, the
silhouette proximity consistently remains at 4.06 um?, but near the cell poles it
rapidly increases. The location of each cell pole was taken at a silhouette-
proximity of 4.47 um®. d, Elongation rate of a single cell. The length of a single
cell, its parent and its offspring plotted over time (dark circles). Instantaneous
exponential elongation rate is determined by fitting an exponential to this
data for a fraction of the cell cycle. At the beginning and end of each cell cycle,

LETTER

length data of the parent or the offspring are used for this fitting process (grey
circles, see Supplementary Information). e, Initial fluorescence image. f, Image
after background correction, shading correction and deconvolution by a
point spread function. Total cell fluorescence is determined as the sum of
fluorescence values within the cell silhouette. g, To determine the cellular
fluorescence intensity that reports for the enzyme concentration accurately, we
averaged the fluorescence values of pixels within a box of fixed width and
equidistant length from the poles inside the cell perimeter. h, Enzyme
production rate against time p(¢) for all lineages within a microcolony, from 5 h
into the experiment and onwards. Four lineages are coloured for clarity.
Black bar, mean division time; light points, division events. i, Cell length against
time L(f) as in h. j, Histograms of observed E values for different IPTG
induction levels. Bottom panel indicates the noise intensity, defined as the
standard deviation over the mean.
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Extended Data Figure 2 | Correlations between the growth rate of sister d, Evolution in time of the correlation coefficient between growth rate of
cells during growth on lactulose for increasing levels of IPTG induction. sisters, for 6 UM IPTG. A decreasing exponential was fitted with a decay time of
a, At4 UM IPTG, R=0.72, n = 171, P< 10~ % (t-test). b, At 6 uM IPTG, 2.86h.

R=0.42,n=382,P<10'°.¢c, At200 uM IPTG, R = 0.32,n = 314,P <10 %,

©2014 Macmillan Publishers Limited. All rights reserved



Extended Data Figure 3 | Quantification of symmetry of cross-correlation
functions. For each cross-correlation (corresponding figure indicated at top),
we computed the weighted average of the time delay 7p = Z (Re't)/ Z Ry,

=1 =1
with R, the correlation intensity at time delay ¢, considering significantly

cross-correlations (¢-test, P << 0.05, n = 4) within the interval I = [—2, 2] cell

LETTER

cycles. A positive (respectively negative) tx indicates that the cross-correlation
R has more weight at positive (respectively negative) times. Error bars denote
the standard deviation of the symmetry values determined for four sub-
branches. Note that the E-y cross-correlations of Fig. 3c—d are negative, and
hence we display —7z.

©2014 Macmillan Publishers Limited. All rights reserved
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Extended Data Figure 4 | Cross-correlations of control experiments and
using different methods of growth-rate determination. a, Expression of lac
ina lacl repressor knockout strain on lactose minimal medium (to be compared
with Fig. 2g). b, Expression of lac measured with a GFP fusion to LacZ shows
same result as co-transcriptional expression of GFP on 0.1% lactulose and 6 pM
of IPTG (to be compared with Fig. 2f). ¢, Exogenous constitutive promoter
(PN25) driving the production of GFP, inserted in the cheZ locus, on minimal
medium with lactose. d, The lac promoter driving the production of yellow
fluorescent protein (YFP), inserted in the intC locus, on minimal medium with
maltose. e, Cross-correlations for lactulose growth at low IPTG (4 pM), with
growth rate determined as follows: S(¢) is the surface area of the cell silhouette
versus time (Extended Data Fig. 1a). The growth rate is the time derivative
of §(1). f, The same, for lactulose growth at high IPTG (200 pM). g, Cross-
correlations for lactulose growth at low IPTG (4 pM), with growth rate

determined as follows: S(¢) is the surface area of the cell silhouette versus time,
L(#) is the length of the cell silhouette versus time (Extended Data Fig. 1b, c).
The growth rate is the derivative of L(f) X [S(H)/L(£)]* Note that S()/L(¢) is
taken as a measure for the width of the cell, and the width squared times the
length as a measure for the cell volume. h, The same, for lactulose growth at
high IPTG (200 uM). These cross-correlations display the same shape and
symmetry as in Fig. 2e, g, where the growth rate is determined as the derivative
of the length of the cell silhouette (Extended Data Fig. 1d). Hence the

central features are robust to different methods of growth rate determination.
i, Scatter plot of instantaneous growth rate and cell position within the
microcolony. The cell position was calculated as the minimal distance of the
centre of a cell to the edge of the microcolony. Data obtained during growth
on lactulose at intermediate IPTG induction (6 uM).
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Extended Data Figure 5 | Cross-correlations for growth on different carbon  rate to the experimentally measured value. This prediction displays a positive
sources. a, Schematic diagram of noise transmission during growth on lactose, ~ asymmetric peak towards negative time and a width scaling with the average

which is predicted to be similar to the case of growth on lactulose at high growth rate. d, Corresponding measured cross-correlations. e, Population
IPTG induction (see Fig. 2g, j). b, Corresponding measured cross-correlations.  average lac enzyme concentration versus the population average growth rate on
¢, Theoretical cross-correlations obtained by using the parameters during minimal medium supplemented with varying carbon sources.

growth on lactulose and changing exclusively the population average growth
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Extended Data Figure 6 | External media perturbations in microfluidic
device. a, Growth of AB460 in microfluidic device (see Supplementary
Information) on M9 medium with 0.1% lactulose, 0.01% Tween-20 and 16 uM
IPTG. A 2-h pulse to medium with 3 uM IPTG is indicated in red. Black line is
the mean, and grey area is the standard deviation, of approximately 60 cells.
Indicated are the lac production rate (p), lac concentration (E) and cell growth
rate (¢). The duration and intensity of the pulse was chosen to reflect the
naturally occurring fluctuations in lac expression. Upon the pulse, the
production rate transiently decreased, followed by a gradual transient decrease
in lac concentration, and a transient decrease in growth rate. These data are

consistent with the catabolism transmission mode (top). b, Growth of ASC631
in microfluidic device on M9 medium with 0.1% glucose, 0.01% Tween-20
and 1 mM IPTG. To mimic fluctuations in common components, a 1-h pulse of
amino acids (Teknova M2104) added to the medium is indicated in green.
Both growth and production rate increase immediately upon addition of amino
acids, reflecting the common noise transmission mode (top). The enzyme
concentration remained relatively stable, showing that for these perturbations
the production increase and dilution increase cancelled each other. These
data are consistent with the common noise mode (top).
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Extended Data Figure 7 | Cross-correlations of additional constructs.

a, Transmission from lac to another gene via growth (on 0.1% lactulose and
6 UM IPTG) shown by the asymmetric cross-correlations between lac
production rate and mCherry production driven by the constitutive bla
promoter. b, The same for lac production rate and mCherry driven by the mel
promoter induced by 0.2% melibiose (4melA strain). ¢, Symmetric cross-
correlation between lac production rate p and other gene production rate p*

LETTER

predicted for growth on acetate (see d). d, Absence of transmission shown
by the cross-correlation between lac production rate p and the mCherry
production rate p* driven by the constitutive PN25 promoter, on minimal
medium with 0.1% acetate, consistent with predictions (c). e, Cross-
correlations (Ry,) for lac, pfkA, gltA and icd in lactose (left) and acetate
media (right).
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Extended Data Figure 8 | Extracting and weighing lineages from a branched
data set. a, Depiction of a growing microcolony over time, starting with two
cells on the left and growing into five cells on the right. b, A lineage tree of
the data shown in a. The tree starts with two lines (left), indicating the two
starting cells, and at each division the line splits, resulting in five cells at the end
(right). ¢, Five lineages can be extracted from the data. Note that most lineages
share part of their data. When correlating data points from £, with t;, one
pair consists of completely independent data points (lineage I). Two lineages

provide exactly the same pairs of data points (lineages IV and V), and two
lineages only share a data point at #, (lineages II and III). d, Different

types of weighing for the correlation of data points from #, with #; as used in
equation (6) in Supplementary Information. No: each lineage is weighed
equally. Unique pairs: weighing such that only comparisons between unique
data pairs are used. Unique points: lineages IT and III are not completely
independent, which can be corrected for by this weighing from equation (5)
in Supplementary Information.
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Extended Data Table 1 | Contribution of noise transmitted from lac
concentration E to different variables in various culture media

The contribution of noise transmitted from E was computed by comparing the coefficient of variation of
a given variable with or without transmission from E, using the values fitted with the model. Note that a
decomposition of noise as a sum of coefficient of variations is not possible here, given the feedback of £
on itself, which leads to self-sustained fluctuations which impact the noise intensity in a non-additive
way.
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Extended Data Table 2 | List of strains used in this study
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