Department of Physics	
Summer 2024	
Nonequilibrium Thermodynamics	
Lecturer: Prof. Dr. Ulrich Schollwöck	
Tutorials: Hannah Lange	

https:

//www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_24/thermodynamik/index.html

Sheet 09

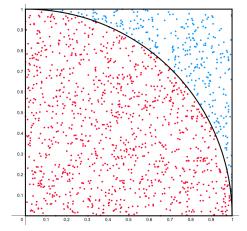
Discussion: Thursday 11.07.2024

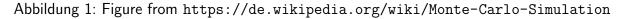
Exercise 1 Monte Carlo simulations

The Monte Carlo method aims at solving the problem of the effective statistical sampling of suitable observables by a reversible, ergodic Markov chain.

1. Describe the (Metropolis) Monte Carlo Algorithm as introduced in the lecture notes.

2. Estimating π :


Write a code that computes $\pi = 3.1415...$ by Monte Calo sampling.


- How does the probability for a point to be found inside the circle look like?
- Run the code multiple times for $N = 10^i$, i = 1, 2, 3, ... random numbers.
- How does the estimate for π improve with increasing N? Compute the deviation from the exact result and plot it on a log-log scale as a function of N. Which scaling do you get?

3. Simulating the 1D Ising model:

The goal of this exercise is to simulate the one-dimensional Ising model

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} S_i^z S_j^z \tag{1}$$

for periodic boundary conditions and temperatures $T \in [0.2, 5].$

- How does the probability for accepting a new state look like?
- How does the acceptance rule arise from detailed balance?
- Compare your results to the analytical expression

$$E = \frac{e^{-J/T} - e^{J/T}}{e^{-J/T} + e^{J/T}}.$$
(2)