\square

https:

//www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_24/thermodynamik/index.html

Sheet 08

Discussion: Thursday 04.07.2024

Exercise 1 Navier-Stokes equation for cylindrical coordinates

Consider a slow, steady laminar flow in an annulus between an inner cylinder of radius a, which is at rest, and a concentric outer cylinder of radius b, which is rotating about its axis with angular velocity Ω (see figure above).

1. For slow flows, the Navier-Stokes equation simplifies: Argue, why in this case one of the terms in the Navier-Stokes equation can be neglected.
2. For the simplified Navier-Stokes equation, derive its form in cylindrical coordinates (r, φ, z). You should arrive at:

$$
\begin{align*}
\rho\left[\frac{\partial v_{r}}{\partial t}-\frac{v_{\varphi}^{2}}{r}\right] & =-\frac{\partial p}{\partial r}+\mu\left(\nabla^{2} v_{r}-\frac{v_{r}}{r^{2}}-\frac{2}{r^{2}} \frac{\partial v_{\varphi}}{\partial \varphi}\right) \tag{1}\\
\rho\left[\frac{\partial v_{\varphi}}{\partial t}+\frac{v_{\varphi} v_{r}}{r}\right] & =-\frac{1}{r} \frac{\partial p}{\partial \varphi}+\mu\left(\nabla^{2} v_{\varphi}-\frac{v_{\varphi}}{r^{2}}-\frac{2}{r^{2}} \frac{\partial v_{r}}{\partial \varphi}\right) \tag{2}\\
\rho \frac{\partial v_{z}}{\partial t} & =-\frac{\partial p}{\partial z}+\mu \nabla^{2} v_{z}, \tag{3}
\end{align*}
$$

with

$$
\begin{equation*}
\nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{\partial^{2}}{\partial z^{2}} . \tag{4}
\end{equation*}
$$

Hint: You can use the form of $\nabla f, \nabla \times \vec{A}$ and $\nabla \cdot \vec{A}$ in cylindrical coordinates.

Assume the axial velocity u_{z} is everywhere zero as are all derivatives with respect to z. Furthermore, assume that $u_{r}=0$ and that all derivatives with respect to φ are zero.

1. Calculate the velocity distribution $u_{\varphi}(r)$ within the annulus.

Hint: Use the ansatz

$$
\begin{equation*}
x(r)=A / r+B r . \tag{5}
\end{equation*}
$$

2. Find the difference in the pressures $p(b)-p(a)$ at the surfaces of the inner and outer cylinders.
3. Determine the shear stresses

$$
\begin{equation*}
\left.\sigma\right|_{\mathrm{wall}}=\left.\mu \frac{\mathrm{d} u_{\varphi}}{\mathrm{d} r}\right|_{\mathrm{wall}} \tag{6}
\end{equation*}
$$

acting on the surfaces of the inner and outer cylinders, and
4. the power $P=\left.\left.\sigma\right|_{r=b} A_{\text {cylinder }} u_{\varphi}\right|_{r=b}$ required to rotate the outer cylinder.

