Department of Physics	
Summer 2024	
Nonequilibrium Thermodynamics	
Lecturer: Prof. Dr. Ulrich Schollwöck	
Tutorials: Hannah Lange	

https:

//www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_24/thermodynamik/index.html

Sheet 08

Discussion: Thursday 04.07.2024

Exercise 1 Navier-Stokes equation for cylindrical coordinates

Consider a slow, steady laminar flow in an annulus between an inner cylinder of radius a, which is at rest, and a concentric outer cylinder of radius b, which is rotating about its axis with angular velocity Ω (see figure above).

- 1. For slow flows, the Navier-Stokes equation simplifies: Argue, why in this case one of the terms in the Navier-Stokes equation can be neglected.
- 2. For the simplified Navier-Stokes equation, derive its form in cylindrical coordinates (r, φ, z) . You should arrive at:

$$\rho \left[\frac{\partial v_r}{\partial t} - \frac{v_{\varphi}^2}{r} \right] = -\frac{\partial p}{\partial r} + \mu \left(\nabla^2 v_r - \frac{v_r}{r^2} - \frac{2}{r^2} \frac{\partial v_{\varphi}}{\partial \varphi} \right)$$
(1)

$$\rho \left[\frac{\partial v_{\varphi}}{\partial t} + \frac{v_{\varphi} v_r}{r} \right] = -\frac{1}{r} \frac{\partial p}{\partial \varphi} + \mu \left(\nabla^2 v_{\varphi} - \frac{v_{\varphi}}{r^2} - \frac{2}{r^2} \frac{\partial v_r}{\partial \varphi} \right)$$
(2)

$$\rho \frac{\partial v_z}{\partial t} = -\frac{\partial p}{\partial z} + \mu \nabla^2 v_z, \tag{3}$$

with

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial z^2}.$$
 (4)

Hint: You can use the form of ∇f , $\nabla \times \vec{A}$ and $\nabla \cdot \vec{A}$ in cylindrical coordinates.

Assume the axial velocity u_z is everywhere zero as are all derivatives with respect to z. Furthermore, assume that $u_r = 0$ and that all derivatives with respect to φ are zero.

1. Calculate the velocity distribution $u_{\varphi}(r)$ within the annulus. Hint: Use the ansatz

$$x(r) = A/r + Br.$$
 (5)

- 2. Find the difference in the pressures p(b) p(a) at the surfaces of the inner and outer cylinders.
- 3. Determine the shear stresses

$$\sigma|_{\text{wall}} = \mu \frac{\mathrm{d}u_{\varphi}}{\mathrm{d}r}|_{\text{wall}} \tag{6}$$

acting on the surfaces of the inner and outer cylinders, and

4. the power $P = \sigma|_{r=b}A_{cylinder}u_{\varphi}|_{r=b}$ required to rotate the outer cylinder.