Department of Physics	
Summer 2024	
NONEQUILIBRIUM THERMODYNAMICS	
Lecturer: Prof. Dr. Ulrich Schollwöck	
TUTORIALS: HANNAH LANGE	

https:

//www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_24/thermodynamik/index.html

Sheet 07

Discussion: Thursday 27.06.2024

Exercise 1 Onsager relations and thermoelectric phenomena

In this exercise, we consider the Seebeck and Peltier effect to verify the Onsager relation.

- Seebeck effect:
 - 1. Describe the Seebeck effect and the experimental setup to measure it.
 - 2. Start from the (one-dimensional) expression for the density current j_n in terms of the Onsager coefficients as derived in the lecture,

$$j_n = -\frac{1}{T^2} L_{nq} \frac{\partial}{\partial x} T + \frac{1}{T} L_{nn} E \tag{1}$$

with the electric field E and the temperature T. For an ideal voltmeter, $\mathbf{j}_{el} = -e\mathbf{j}_n = 0$. Using the approximation $\int TE dx \approx T \int E dx = -T\Delta \phi$, derive

$$\Delta\phi = -\frac{L_{nq}}{TL_{nn}}\Delta T \tag{2}$$

Use this to derive an expression for L_{nq} in terms of the thermoelectric power $\epsilon = -(\Delta \phi / \Delta T)$.

- 3. Using the values from Tab. 1, calculate $L_{nq}(L_{nn})$.
- Peltier effect:
 - 1. Describe the Peltier effect and the experimental setup to measure it.
 - 2. Again, start from the expressions for the density current \mathbf{j}_n and the heat current \mathbf{j}'_q in terms of the Onsager coefficients derived in the lecture, Eq. (1) and

$$\mathbf{j}_{q}^{\prime} = -\frac{1}{T^{2}}L_{qq}\frac{\partial}{\partial x}T + \frac{1}{T}L_{qn}E,\tag{3}$$

Thermocouple	Temperature T in Celsius	$\mid \Pi/T$ in $\mu { m V}{ m K}^{-1}$	ϵ in $\mu { m V}{ m K}^{-1}$	L_{qn}/L_{nq}
Cu-Al	15.8	2.4	3.1	
Cu-Fe	0	-10.16	-10.15	
Fe-Hg	18.4	16.72	16.66	

Tabelle 1: Experimental data from Miller et al., Chem. Rev. 60 (1960)

with the electric field E and the temperature T. For the Peltier effect, we consider $\frac{\partial}{\partial x}T=0.$ Derive

$$L_{qn} = L_{nn} \frac{j'_q}{j_n} \tag{4}$$

with the Peltier heat $\Pi = \frac{j'_q}{j_n}$. Use this to derive an expression for L_{qn} in terms of the Peltier heat.

- 3. Using the values from Tab. 1, calculate $L_{qn}(L_{nn})$.
- Check the Onsager relation L_{qn}/L_{nq} .
- Assuming $L_{qn}/L_{nq} = 1$, derive the relation between the thermoelectric power and the Peltier heat.