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Discussion: Thursday 23.05.2024

Exercise 1 Legendre(-Fenchel) transformations (see Chapter 9.2)

Represent the pressure of a simple fluid as a Legendre transform of the energy density E/V .

Exercise 2 Long-range interactions

In Chapters 26 and 27 we have considered internal energies E with short-ranged interactions,
which we used to justify the weak-coupling assumption and in consequence the extensivity of £ in
thermodynamically large systems. Here, we will derive the Gibbs-Duhem relation for long-ranged
interactions.

1. For long-ranged interactions, i.e. electromagnetic or gravitational interactions, the interaction

energy is
/
Ey, = g/dia)c/d?’x’m. (1)
2 |x — x/|

What is «, p?

2. Express the interaction energy using a potential ¢(x). Split both potentials ¢ and p into
contributions from the system S and the environment £.

3. Now terms with different combinations of ¢s(e), ps() occur in Ej,.. We neglect the energy
contribution from interactions within £. We assume that S is small enough (and sources are
distributed in a way) that we can assume constant ¢s, ps. Rewrite F}, and dF), in terms of
the integrated density (Qs. You should arrive at

dEy, = ¢dQs + Qsdgs. (2)

4. Consider an electromagnetic potential ¢°'. In the electrostatic case, ) = zF'n with z the
charge number, F' the Faraday constant and n = N/N4 with the number of atoms V.

e Write down the expression for the total energy E and the respective Gibbs-Duhem
relation. The former can be brought into the same form as for short-ranged interactions
by renaming 1 — 7.

e Furthermore, derive the equilibrium condition by applying a Legendre transformation to
a suitable thermodynamic potential.

5. Do the same for the gravitational potential ¢&*. As we assume small S we can neglect one of
the contributions.



