$\square \square$

//www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_24/thermodynamik/index.html

Sheet 03

Discussion: Thursday 23.05.2024
Exercise 1 Legendre(-Fenchel) transformations (see Chapter 9.2)
Represent the pressure of a simple fluid as a Legendre transform of the energy density E / V.

Exercise 2 Long-range interactions
In Chapters 26 and 27 we have considered internal energies E with short-ranged interactions, which we used to justify the weak-coupling assumption and in consequence the extensivity of E in thermodynamically large systems. Here, we will derive the Gibbs-Duhem relation for long-ranged interactions.

1. For long-ranged interactions, i.e. electromagnetic or gravitational interactions, the interaction energy is

$$
\begin{equation*}
E_{\mathrm{lr}}=\frac{\alpha}{2} \int \mathrm{~d}^{3} \mathbf{x} \int \mathrm{~d}^{3} \mathbf{x}^{\prime} \frac{\rho(\mathbf{x}) \rho\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} . \tag{1}
\end{equation*}
$$

What is α, ρ ?
2. Express the interaction energy using a potential $\phi(\mathbf{x})$. Split both potentials ϕ and ρ into contributions from the system \mathcal{S} and the environment \mathcal{E}.
3. Now terms with different combinations of $\phi_{\mathcal{S}(\mathcal{E})}, \rho_{\mathcal{S}(\mathcal{E})}$ occur in E_{lr}. We neglect the energy contribution from interactions within \mathcal{E}. We assume that \mathcal{S} is small enough (and sources are distributed in a way) that we can assume constant $\phi_{\mathcal{S}}, \rho_{\mathcal{S}}$. Rewrite E_{lr} and $\mathrm{d} E_{\mathrm{lr}}$ in terms of the integrated density $Q_{\mathcal{S}}$. You should arrive at

$$
\begin{equation*}
\mathrm{d} E_{\mathrm{lr}}=\phi \mathrm{d} Q_{\mathcal{S}}+Q_{\mathcal{S}} \mathrm{d} \phi_{\mathcal{E}} \tag{2}
\end{equation*}
$$

4. Consider an electromagnetic potential $\phi^{\text {el }}$. In the electrostatic case, $Q=z F n$ with z the charge number, F the Faraday constant and $n=N / N_{A}$ with the number of atoms N.

- Write down the expression for the total energy E and the respective Gibbs-Duhem relation. The former can be brought into the same form as for short-ranged interactions by renaming $\mu \rightarrow \eta$.
- Furthermore, derive the equilibrium condition by applying a Legendre transformation to a suitable thermodynamic potential.

5. Do the same for the gravitational potential $\phi^{\text {gr }}$. As we assume small \mathcal{S} we can neglect one of the contributions.
