DEPARTMENT OF PHYSICS	
Summer 2024	
Nonequilibrium Thermodynamics	
Lecturer: Prof. Dr. Ulrich Schollwöck	
TUTORIALS: HANNAH LANGE	

https:

//www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_24/thermodynamik/index.html

Sheet 03

Discussion: Thursday 23.05.2024

Exercise 1 Legendre(-Fenchel) transformations (see Chapter 9.2)

Represent the pressure of a simple fluid as a Legendre transform of the energy density E/V.

Exercise 2 Long-range interactions

In Chapters 26 and 27 we have considered internal energies E with short-ranged interactions, which we used to justify the weak-coupling assumption and in consequence the extensivity of E in thermodynamically large systems. Here, we will derive the Gibbs-Duhem relation for long-ranged interactions.

1. For long-ranged interactions, i.e. electromagnetic or gravitational interactions, the interaction energy is

$$E_{\rm lr} = \frac{\alpha}{2} \int d^3 \mathbf{x} \int d^3 \mathbf{x}' \, \frac{\rho(\mathbf{x})\rho(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|}.$$
 (1)

What is α , ρ ?

- 2. Express the interaction energy using a potential $\phi(\mathbf{x})$. Split both potentials ϕ and ρ into contributions from the system S and the environment \mathcal{E} .
- 3. Now terms with different combinations of $\phi_{S(\mathcal{E})}$, $\rho_{S(\mathcal{E})}$ occur in E_{lr} . We neglect the energy contribution from interactions within \mathcal{E} . We assume that S is small enough (and sources are distributed in a way) that we can assume constant ϕ_S , ρ_S . Rewrite E_{lr} and dE_{lr} in terms of the integrated density Q_S . You should arrive at

$$dE_{\rm lr} = \phi dQ_{\mathcal{S}} + Q_{\mathcal{S}} d\phi_{\mathcal{E}}.$$
 (2)

- 4. Consider an electromagnetic potential ϕ^{el} . In the electrostatic case, Q = zFn with z the charge number, F the Faraday constant and $n = N/N_A$ with the number of atoms N.
 - Write down the expression for the total energy E and the respective Gibbs-Duhem relation. The former can be brought into the same form as for short-ranged interactions by renaming $\mu \rightarrow \eta$.
 - Furthermore, derive the equilibrium condition by applying a Legendre transformation to a suitable thermodynamic potential.
- 5. Do the same for the gravitational potential $\phi^{\rm gr}$. As we assume small S we can neglect one of the contributions.