

https://www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_24/t_m1_ advanced-statistical-physics/index.html

Sheet 9:

Hand-out: Friday, Jun. 14, 2024; Hand-in: Sunday, Jun. 23, 2024, 11:59 pm

Problem 1 Gauge fluctuations in superconductors – (solution: Central Exercise)

The Ginzburg-Landau model of superconductivity describes a complex superconducting order parameter $\Psi(\boldsymbol{x}) = \Psi_1(\boldsymbol{x}) + i\Psi_2(\boldsymbol{x})$ and the electromagnetic vector potential $\boldsymbol{A}(\boldsymbol{x})$ which are subject to a Hamiltonian

$$\beta \mathcal{H} = \int d^3 \boldsymbol{x} \left[\frac{t}{2} |\Psi|^2 + u |\Psi|^4 + \frac{K}{2} \left(D_{\mu} \Psi \right) \left(D_{\mu}^* \Psi^* \right) + \frac{L}{2} \left(\nabla \times \boldsymbol{A} \right)^2 \right].$$
(1)

The gauge-invariant derivative $D_{\mu} = \partial_{\mu} - ieA_{\mu}(\boldsymbol{x})$ introduces the coupling between the two fields. Suppose u > 0. Note that Einstein's summation convention is used.

- (1.a) (3 Points) Show that the above Hamiltonian is invariant under the local gauge symmetry $\Psi(\boldsymbol{x}) \rightarrow \Psi(\boldsymbol{x}) \exp(i\theta(\boldsymbol{x}))$ and $A_{\mu}(\boldsymbol{x}) \rightarrow A_{\mu}(\boldsymbol{x}) + \frac{1}{e}\partial_{\mu}\theta$.
- (1.b) (4 Points) Show that there is a saddle point solution of the form $\Psi(\boldsymbol{x}) = \overline{\Psi}$ and $A(\boldsymbol{x}) = 0$, and find $\overline{\Psi}$ for t > 0 and t < 0.
- (1.c) (4 Points) For t < 0, calculate the cost of fluctuations by setting $\Psi(\boldsymbol{x}) = (\overline{\Psi} + \phi(\boldsymbol{x})) \exp(i\theta(\boldsymbol{x}))$ and $A_{\mu}(\boldsymbol{x}) = a_{\mu}(\boldsymbol{x})$ (with $\partial_{\mu}a_{\mu} = 0$ in the Coulomb gauge) and expanding $\beta \mathcal{H}$ to quadratic order in ϕ , θ and \boldsymbol{a} . (ϕ , θ and a_{μ} are real fields).
- (1.d) (4 Points) Perform a Fourier transformation on these newly introduced fields and calculate the expectation values of the fluctuations: $\langle |\phi(q)|^2 \rangle$, $\langle |\theta(q)|^2 \rangle$ and $\langle |a(q)|^2 \rangle$.

Problem 2 Müller-Hartmann and Zittartz estimate – (solution: Tutorials)

We consider an anisotropic 2D Ising model with interactions $K_x(K_y)$ on bonds in the x-(y-)direction, on a $(L+1) \times (H+1)$ rectangular lattice with periodic boundary conditions in the x-direction, i.e. $x = L + 1 \equiv 1$. It can be described by the Hamiltonian

$$\mathcal{H}_0 = -K_x \sum_{x=1}^{L} \sum_{y=1}^{H} S_{x,y} S_{x+1,y} - K_y \sum_{x=1}^{L} \sum_{y=1}^{H-1} S_{x,y} S_{x,y+1},$$
(2)

and we assume $K_x, K_y > 0$.

(2.a) (4 Points) Consider an interface, where all configurations above (below) the interface are of type spin up (down). Ignoring islands and overhangs, the configurations can be labelled by heights h_n for $1 \le n \le L$ and $1 \le h_n \le H$. Show that the energy of an interface along the *x*-direction relative to the completely polarized state (ignoring edge effects) is

$$\mathcal{H} = 2K_y L + 2K_x \sum_{n=1}^{L} |h_{n+1} - h_n|.$$
(3)

This defines an effective one-dimensional (1D) model.

- (2.b) (4 Points) Give an expression for the transfer matrix $\langle h|T|h' \rangle$ for the effective 1D model.
- (2.c) (4 Points) In the limit that $H \to \infty$, obtain the free energy of the interface F_{int} via a direct summation of the partition function (without use of the transfer matrix result).
- (2.d) (4 Points) Find K_x , K_y for which $F_{int} = 0$ for $H \to \infty$. An exact solution of the full model (3) gives the condition $\coth(\beta K_x) = e^{2\beta K_y}$. What can you conclude about the importance of unconnected islands of polarization?