
Fakultät für Physik im SoSe 2024

T M1/TV: Advanced Statistical Physics

Dozent: Prof. Dr. Fabian Grusdt
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Problem 1 Gauge fluctuations in superconductors – (solution: Central Exercise)

The Ginzburg-Landau model of superconductivity describes a complex superconducting order
parameter Ψ(x) = Ψ1(x) + iΨ2(x) and the electromagnetic vector potential A(x) which are
subject to a Hamiltonian
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ˆ
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The gauge-invariant derivative Dµ = ∂µ − ieAµ(x) introduces the coupling between the two fields.
Suppose u > 0. Note that Einstein’s summation convention is used.

(1.a) (3 Points) Show that the above Hamiltonian is invariant under the local gauge symmetry
Ψ(x) → Ψ(x) exp(iθ(x)) and Aµ(x) → Aµ(x) +

1
e
∂µθ.

(1.b) (4 Points) Show that there is a saddle point solution of the form Ψ(x) = Ψ and A(x) = 0,
and find Ψ for t > 0 and t < 0.

(1.c) (4 Points) For t < 0, calculate the cost of fluctuations by settingΨ(x) =
(
Ψ+ ϕ(x)

)
exp(iθ(x))

and Aµ(x) = aµ(x) (with ∂µaµ = 0 in the Coulomb gauge) and expanding βH to quadratic
order in ϕ, θ and a. (ϕ, θ and aµ are real fields).

(1.d) (4 Points) Perform a Fourier transformation on these newly introduced fields and calculate
the expectation values of the fluctuations: ⟨|ϕ(q)|2⟩, ⟨|θ(q)|2⟩ and ⟨|a(q)|2⟩.

Problem 2 Müller-Hartmann and Zittartz estimate – (solution: Tutorials)

We consider an anisotropic 2D Ising model with interactionsKx (Ky) on bonds in the x-(y-)direction,
on a (L+ 1)× (H + 1) rectangular lattice with periodic boundary conditions in the x-direction, i.e.
x = L+ 1 ≡ 1. It can be described by the Hamiltonian

H0 = −Kx

L∑
x=1

H∑
y=1

Sx,ySx+1,y −Ky

L∑
x=1

H−1∑
y=1

Sx,ySx,y+1, (2)

and we assume Kx, Ky > 0.
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(2.a) (4 Points) Consider an interface, where all configurations above (below) the interface are of
type spin up (down). Ignoring islands and overhangs, the configurations can be labelled by
heights hn for 1 ≤ n ≤ L and 1 ≤ hn ≤ H. Show that the energy of an interface along the
x-direction relative to the completely polarized state (ignoring edge effects) is

H = 2KyL+ 2Kx

L∑
n=1

|hn+1 − hn|. (3)

This defines an effective one-dimensional (1D) model.

(2.b) (4 Points) Give an expression for the transfer matrix ⟨h|T |h′⟩ for the effective 1D model.

(2.c) (4 Points) In the limit that H → ∞, obtain the free energy of the interface Fint via a direct
summation of the partition function (without use of the transfer matrix result).

(2.d) (4 Points) Find Kx, Ky for which Fint = 0 for H → ∞. An exact solution of the full model
(3) gives the condition coth(βKx) = e2βKy . What can you conclude about the importance
of unconnected islands of polarization?
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