
https://www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_24/t_m1_ advanced-statistical-physics/index.html

Sheet 4:

Hand-out: Friday, May. 10, 2024; Hand-in: Sunday, May. 19, 2024, 11:59 pm

Problem 1 An extended Ising model - (solution: Central Exercise)

Consider a triangular chain of Ising spins, $S_{j}= \pm 1$, with sub-lattice magnetic fields $h_{1,2}$ and nearestplus next-nearest neighbor couplings $J_{1,2}$ respectively, described by the Hamiltonian:

$$
\begin{equation*}
\mathcal{H}=-\sum_{j}\left(J_{1} S_{j+1} S_{j}+J_{2} S_{j+2} S_{j}\right)+\sum_{n}\left(h_{1} S_{2 n+1}+h_{2} S_{2 n}\right) . \tag{1}
\end{equation*}
$$

The configuration we consider is sketched in the figure below, edge effects can be ignored throughout. The temperature of the system T can be parametrized by $\beta=1 / k_{B} T$.

(1.a) (2 Points) Write down a formal expression for the canonical partition function Z (Note: you do not need to evaluate any sums!).
(1.b) (4 Points) How large is the general transfer matrix for this model? Write down the transfer matrix \hat{T} for the special case without fields, i.e. $h_{1}=h_{2}=0$, but general $J_{1}, J_{2} \neq 0$.
(1.c) (3 Points) Now consider the simpler case where $J_{2}=0$ but $h_{1}, h_{2} \neq 0$. Explain why the transfer matrix $\hat{T}=\hat{T}_{\text {even }} \hat{T}_{\text {odd }}$ can be written as a product of two transfer matrices $\hat{T}_{\text {even }}$ and $\hat{T}_{\text {odd }}$ in this case. Show that they are:

$$
\hat{T}_{\text {even }}=\left(\begin{array}{ll}
e^{-\beta\left(h_{1}+h_{2}\right) / 2+\beta J_{1}} & e^{\beta\left(h_{1}-h_{2}\right) / 2-\beta J_{1}} \tag{2}\\
e^{-\beta\left(h_{1}-h_{2}\right) / 2-\beta J_{1}} & e^{\beta\left(h_{1}+h_{2}\right) / 2+\beta J_{1}}
\end{array}\right), \quad \hat{T}_{\text {odd }}=\left(\hat{T}_{\text {even }}\right)^{T} .
$$

Hint: You don't need results from (1.b) here!
(1.d) (3 Points) Use the expressions from (1.c) to derive a closed analytical expression for the thermodynamic free energy F / L in the case $J_{1}=J_{2}=0$, where $L \rightarrow \infty$ is the length of the chain. To simplify notations, introduce $h_{ \pm}=\left(h_{1} \pm h_{2}\right) / 2$.
Hint: A real symmetric 2×2 matrix \hat{M} can be decomposed into a sum of Pauli matrices $\hat{\sigma}^{\mu}$ in the following way: $\hat{M}=m_{0}+\sum_{\mu=x, y, z} m_{\mu} \hat{\sigma}^{\mu}$ with real numbers m_{0}, m_{x}, m_{z} and $m_{y}=0$. This leads to the eigenvalues of \hat{M} given by $\lambda_{ \pm}=m_{0} \pm \sqrt{\sum_{\mu} m_{\mu}^{2}}$.

Problem 2 Wick's / Isserlis' Theorem - (solution: Tutorials)
The goal of this problem is to prove the following important relation, valid for an important class of partition functions with an action quadratic in some classical continuous variables x_{j}; Namely, higher-order correlation functions can be decomposed into pair-wise correlations:

$$
\begin{equation*}
\left\langle x_{i_{1}} \ldots x_{i_{n}}\right\rangle=\sum_{I}\left\langle x_{j_{1}} x_{k_{1}}\right\rangle \ldots\left\langle x_{j_{n / 2}} x_{k_{n / 2}}\right\rangle \tag{3}
\end{equation*}
$$

where the sum is over all possible pairings I (or, in the language of QFT, contractions) of i_{1}, \ldots, i_{n} into pairs $\left(j_{1}, k_{1}\right), \ldots,\left(j_{n / 2}, k_{n / 2}\right)$. E.g. for $n=4$ one would get:

$$
\begin{equation*}
\left\langle x_{i_{1}} \ldots x_{i_{4}}\right\rangle=\left\langle x_{1} x_{2}\right\rangle\left\langle x_{3} x_{4}\right\rangle+\left\langle x_{1} x_{3}\right\rangle\left\langle x_{2} x_{4}\right\rangle+\left\langle x_{1} x_{4}\right\rangle\left\langle x_{2} x_{3}\right\rangle . \tag{4}
\end{equation*}
$$

(2.a) (3 Points) Start from a general partition function with quadratic action (characterized by a symmetric, positive definite matrix H) and a source term \boldsymbol{J},

$$
\begin{equation*}
Z[\boldsymbol{J}]=\int d^{n} \boldsymbol{x} \exp \left[-\frac{1}{2} \sum_{i j} H_{i j} x_{i} x_{j}+\sum_{i} J_{i} x_{i}\right] \tag{5}
\end{equation*}
$$

where we dropped constants and took $d^{n} \boldsymbol{x}$ to assume the appropriate multi-dimensional form. We will also assume normalization, i.e. $Z[0]=1$ and $\boldsymbol{x} \in \mathbb{R}^{n}$ such that $\sum_{i j} H_{i j} x_{i} x_{j}=\boldsymbol{x} \cdot H \boldsymbol{x}$. With the definition

$$
\begin{equation*}
\left\langle x_{q} x_{r}\right\rangle=\int d^{n} \boldsymbol{x} x_{q} x_{r} \exp \left[-\frac{1}{2} \sum_{i j} H_{i j} x_{i} x_{j}\right], \tag{6}
\end{equation*}
$$

show that

$$
\begin{equation*}
\left\langle\prod_{i} x_{i}^{a_{i}}\right\rangle=\left.\prod_{i}\left(\frac{\partial^{a_{i}}}{\partial J_{i}^{a_{i}}}\right) Z[\boldsymbol{J}]\right|_{\boldsymbol{J}=0} \tag{7}
\end{equation*}
$$

where $x_{i}^{a_{i}}$ denotes the i-th component of \boldsymbol{x} to the a_{i}-th power ($a_{i}=0$ is allowed).
(2.b) (3 Points) Next, expand $(H \boldsymbol{x}-\boldsymbol{J}) H^{-1}(H \boldsymbol{x}-\boldsymbol{J})$ and rewrite the resulting equation into an expression for the exponent of Eq. (5). Use a variable transformation to conclude

$$
\begin{equation*}
Z[\boldsymbol{J}]=\exp \left[\frac{1}{2} \sum_{i j}\left(H^{-1}\right)_{i j} J_{i} J_{j}\right] Z[0]=\exp \left[\frac{1}{2} \sum_{i j}\left(H^{-1}\right)_{i j} J_{i} J_{j}\right], \tag{8}
\end{equation*}
$$

and prove that $\left\langle x_{i} x_{j}\right\rangle=\left(H^{-1}\right)_{i j}$.
(2.c) (4 Points) Show that Eq. (7) implies that $Z[\boldsymbol{J}]$ can be written in the form

$$
\begin{align*}
Z[\boldsymbol{J}]=\sum_{n=0}^{\infty} \frac{1}{n!}\left[\sum_{i_{1}, \ldots, i_{n}}\left\langle\prod_{k=1}^{n} x_{i_{k}}\right\rangle \prod_{k=1}^{n} J_{i_{k}}\right]= \\
=1+\sum_{i}\left\langle x_{i}\right\rangle J_{i}+\frac{1}{2} \sum_{i j}\left\langle x_{i} x_{j}\right\rangle J_{1} J_{j}+\frac{1}{6} \sum_{i j k}\left\langle x_{i} x_{j} x_{k}\right\rangle J_{i} J_{j} J_{k}+\ldots \tag{9}
\end{align*}
$$

Compare the coefficients of $J_{a} J_{b}, J_{a} J_{b} J_{c} J_{d}, \ldots$. in (9) and (8) to prove Eq. (3).

Problem 3 Phase transitions in 1D; Perron-Frobenius Theorem - (solution: Central Exercise)

In this exercise, you may assume the following theorem to hold without proof:
For the eigenvalue of largest magnitude λ of a real $m \times m$ matrix A with all matrix elements strictly positive ($A_{i j}>0$), the following statements are true:
(i) $\lambda \in \mathbb{R}_{>0}$.
(ii) The eigenspace associated with λ has dimension 1, i.e. λ is a non-degenerate eigenvalue.
(iii) λ is an analytic function of all $A_{i j}$.

Now consider for concreteness a general spin system.
(3.a) (3 Points) How is the largest eigenvalue of the transfer matrix of such a system related to phase transitions in the thermodynamic limit?
(3.b) (3 Points) Assume the system to be one-dimensional. Which other restriction is necessary to guarantee a finite size $m \times m$ of the transfer matrix in the thermodynamic limit? What is the general form of the matrix elements of the transfer matrix?
(3.c) (3 Points) Assume the system to be one-dimensional and the transfer matrix to have finite size $m \times m$. When is the above theorem applicable to this matrix?
(3.d) (3 Points) Assume the system to be two-dimensional. Why does the above theorem not apply in this case in the thermodynamic limit in both directions? How is this inapplicability related to the one discussed in (3.b)?

