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Problem 1 The one-dimensional Ising model – (solution: Central Exercise)

In this problem, we consider the 1D Ising model described by the Hamiltonian

H = −J

N−1∑
j=1

sj+1sj, sj = ±1, (1)

assuming open boundary conditions and J > 0.
Starting from (one of the two) lowest energy state(s), flipping a pair of spins on neighboring lattice

sites costs an energy ∆E = 4J . In contrast, flipping two spins independently at a certain distance
d > 1 costs energy ∆E = 8J . With this in mind, we can describe the system, and its energy, in
terms of the locations of kinks (also called domain walls) across which the orientation of the spins
changes. To obtain a single kink in the system on the link ⟨j + 1, j⟩ between sites j and j + 1, all
spins to the left (or right) of j have to be flipped.

Thus, the energy of a configuration with n kinks is (neglecting edge effects):

E(N, n) = −NJ + 2nJ. (2)

(1.a) (2 Points) Describe the two lowest energy spin configurations, and explain how the expression
for E(N, n) in Eq. (2) is obtained.

(1.b) (3 Points) Calculate the number of states Ωn with exactly n kinks, at the energy E(N, n),
assuming n,N ≫ 1. Calculate the corresponding entropy S(N, n) of the ensemble formed
by these states.

(1.c) (3 Points) Using the result derived in (1.b), calculate the equilibrium temperature T = 1/kBβ
of the ensemble as a function of n and N and verify that

β = − 1

J
artanh

(
E

NJ

)
. (3)

Typically we associate high energy with high entropy – is this still the case here? If not,
explain why!

(1.d) (4 Points) Use the formula F (T,N, n) = E(N, n)− TS(N, n) for the free energy to show
that for any infinitesimal T > 0 the system does not spontaneously magnetize.
Hint: Consider the ground states with zero kinks, and excited states with exactly one kink.
Compare the resulting free energies and argue why no spontaneous magnetization is possible
in the thermodynamic limit.
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Problem 2 Negative temperatures – (solution: Tutorials)

In some physical systems (e.g. nuclear paramagnets), for a short period of time, the nuclear spins
and underlying crystalline lattice can separately reach thermodynamic equilibrium. The necessary
condition for this is that the spin-lattice relaxation time is long compared to both the individual
spin and lattice relaxation times. If the system is in global equilibrium and an external parameter is
suddenly changed, this can result in a transient period where the two subsystems are isolated from
each other and reach equilibrium independently, characterized by different temperatures, and even
a negative temperature for the spin lattice.

Consider the Ising spin model of a paramagnetic crystal, i.e. a system of N quantized spins in a
magnetic field B = Bez at temperature T = 1/kBβ, described by the Hamiltonian:

H = −µB
N∑
j=1

sj, sj = ±1, (4)

where µ is the magnetic moment.

(2.a) (2 Points) Calculate the canonical partition function Z(β,B) for a single spin. Give the
probability p↑ (p↓) that a spin is in the “up” (“down”) state with energy ϵ↑ = −µB (ϵ↓ = µB)
and the corresponding average number of spins N↑, N↓ in each state. Also determine an
expression for the energy E.

(2.b) (2 Points) Calculate the corresponding partition function for a system of N spins ZN (β,B)
(consider using arguments at fixed N↑). Use this result to confirm your previous expression
for E derived in (2.a).

(2.c) (2 Points) Define m = p↑ − p↓ and show that

βµB = artanh(m) =
1

2
ln

(
1 +m

1−m

)
. (5)

Verify that the entropy per spin can be written in the form

S

kBN
= −

[(
1 +m

2

)
ln

(
1 +m

2

)
+

(
1−m

2

)
ln

(
1−m

2

)]
. (6)

(2.d) (2 Points) Fixing the energy, plot S/kB as a function of E/NµB and show that there is a
region of negative temperature T < 0. Plot M = Nmµ as a function of βµB and verify that
negative temperatures correspond to negative magnetizations.

(2.e) (2 Points) Calculate the equilibrium temperature of the spin system, and verify that it can
be written as

β(E) =
1

kBT (E)
= − 1

µB
artanh

(
E

NµB

)
. (7)

(Bonus) Consider having two paramagnetic crystals (i.e. as above), such that N1µ1 > N2µ2. The two
crystals are isolated from one another and independently at equilibrium, with equilibrium
temperatures β1(E1) and β2(E2) respectively. They are then put into thermal contact – show
that if entropy is maximized and if we define the “hotter” system as the one which is giving
up heat to the “colder” system, then in this sense negative temperatures are “hotter” than
positive temperatures.
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Problem 3 Concavity of the free energy – (solution: Central Exercise)

In thermodynamics, one can show that it is a prerequisite for the stability of matter that thermody-
namic potentials have certain convexity/concavity properties (see Chapter 2 of the lecture notes on
stability conditions).

One such stability condition states that the Gibbs free energy G = −kBT lnZ in the presence
of a magnetic field H must be concave, more precisely(

∂2G

∂H2

)
T

≤ 0. (8)

(3.a) (10 Points) Verify that Eq. (8) holds for one of our key Hamiltonians, the Ising Hamiltonian.
It is defined on a hyper cubic lattice in d dimensions (i.e. on a chain, square lattice, cubic
lattice etc.) by the following Hamiltonian:

H = −J
∑
⟨i,j⟩

sisj −H
∑
i

si, (9)

where i and j label the sites of the lattice; the first sum is over all pairs of nearest neighbor
lattice sites, denoted ⟨i, j⟩. The spins si can take values si = ±1.

The partition function is then given by Z = tr e−βH =
∑

{s} e
−βH, where the sum is over the

set of 2N spin configurations {s} = {(s1, s2, . . . , sN)}, if the lattice has N sites.

Advice: Do not attempt to evaluate Z explicitly, unless you want to win the Nobel prize: no
one has been able to do that for d > 1 for almost the last 100 years. Rather use that the
concavity condition, Eq. (8), can also be written as

G(α1H1 + α2H2) ≥ α1G(H1) + α2G(H2) (10)

for 0 ≤ α1,2 ≤ 1 and α1 + α2 = 1 and the Hölder inequality, which can be stated as: given
two sequences {gk}, {hk} with gk, hk ≥ 0 for all k, and two real numbers 0 ≤ α, β ≤ 1 with
α + β = 1, then ∑

k

gαk · hβ
k ≤

(∑
k

gk

)α

·

(∑
k

hk

)β

; (11)

you have to figure out how best to apply this result to the partition function.
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