
TMP-TC2: Cosmology

Solutions to Problem Set 6 28 & 30 May 2024

1. Boltzmann Equation

1. Since particle number is conserved, we want that the variation of the phase
space density at a certain point corresponds to a flux of particles to the nearby
points. This amount to require that the total derivative

d

dt
=

∂

∂t
+ ẋ · ∇x + ṗ · ∇p (1)

vanishes when acting of f . If we further use the equation of motion for a
particle :

ẋ =
p

m
; ṗ = F (x,p, t) (2)

we obtain that f satisfies :

∂f(x,p, t)

∂t
= −ẋ · ∇xf(x,p, t)− ṗ · ∇pf(x,p, t)

= − p

m
· ∇xf(x,p, t)− F (x,p, t) · ∇pf(x,p, t)

(3)

2. To generalize the previous equation to a relativistic setting, we should replace
the classical equation of motion with the general relativistic ones, namely
the geodesic equation on a curves spacetime. However, in the homogeneous
and isotropic setting of cosmology, we can take a shortcut. Indeed, the den-
sity doesn’t depend on x, and we know that momenta evolve by redshifting
(p(t)a(t) = const), i.e.

dp

dt
= −Hp (4)

Moreover, f can depend only on the absolute value of p by isotropy. Then,we
obtain

∂f

∂t
= −∂f

∂p
ṗ = Hp

∂f

∂p
(5)

This equation is called collisionless Boltzmann equation.

3. To obtain an equation for the space density n, we integrate in d3p.∫
d3p

(2π)3
∂f

∂t
−H

∫
d3p

(2π)3
p
∂f

∂p
= 0 (6)

After switching to polar coordinates, we can integrate the second term by
parts. Since we know that to have a finite spatial density f(p) must go to
zero at infinity,
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∫
d2Ω

(2π)3

∫ ∞

0

p2dpp
∂f

∂p
= −3

∫
d2Ω

(2π)3

∫ ∞

0

p2dpf(p) (7)

The final result is
dn(t)

dt
+ 3Hn(t) = 0 (8)

4. By the product rule, we recognize that the previous equation is nothing else
that the familiar conservation equation for the number density :

1

a3
d

dt
(a3n(t)) = 0 (9)

5. In this point, we want to relate the scattering rate of a certain 2 → 2 process
at finite density of scatterers n1 and n2 to the cross section of the same
process. To this end, recall that the cross section for a general event is defined
as

σ =
Γ

nv
(10)

Where Γ is the scattering rate of the process, v the relative speed and n the
density of the targets. We recall that in QFT Γ generally behaves as 1

V
and

the density for a single particle target is 1
V
, so that the two contributions

simplify. In our case we have,

Γ

V
=

σ(s)

V

v

V
N1N2 = σ(s)vn1

N2

V
= σ(s)vn1n2 (11)

6. Let’s call µ the chemical potential. Then, is we denote n(0) the density at zero
chemical potential, we have that n = e

µ
T n(0). then,

e(µ3+µ4)/T − e(µ1+µ2)/T =
n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

(12)

holds. By kinetic equilibrium, we have for the densities without chemical
potential that n

(0)
1 n

(0)
2 =

∫
e(E1+E2)/T =

∫
e(E3+E4)/T = n

(0)
3 n

(0)
4 . The equation

becomes :

a−3d (n1a
3)

dt
= n

(0)
1 n

(0)
2 ⟨σv⟩

{
n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

}
(13)

We see that we have two regimes :
— If H ≫ Γ, the scattering rate is negligible. Then, the Boltzmann equa-

tion reduces to the collisionless case, and the matter undergoes a free
expansion.

— if H ≪ Γ, we can neglect the expansion factor. Then, from the previous
equation we see that we end up in chemical equilibrium (see also the next
exercise).

The physical picture here is clear : as long as the scattering rate is big en-
ough compared to the expansion rate, the particles can reequilibrate at the
new temperature tracking the varying radius of the universe. If however the
scattering rate is too small, the particles can’t rethermalize fast enough and
they’ll just undergo a free expansion decoupled from the surroundings.
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7. The expression is straightforward given the formula for the scattering rate
per unit volume :

dRβα =
2∏

i=1

d3pi
(2π)32Epi

n′∏
j=1

d3p′j
(2π)32Epj

(2π)4δ(4) (pβ − pα) |Mβα|2 (14)

Let’s take for example the forward reaction 1 + 2 → 3 + 4. To get the total
scattering rate, first we need to integrate over all the possible final states.
This justifies the ∫

d3p′

(2π)32E3 (p′)

∫
d3q′

(2π)32E4 (q′)
|M|2 (15)

Then, we need to sum the scattering rate over the densities of incoming
particles to get the total rate. This justifies∫

d3p

(2π)32E2(p)

∫
d3q

(2π)32E2(q)
f1(p)f2(q) (16)

The reasoning is analogoous for the backward scattering.

2. Conservation of chemical potential

1. Denote by fi the distribution function of i’s particle participating in the
reaction (1) + (2) → (3) + (4). In equilibrium

fi =
1

e
Ei−µi

T ± 1
, (17)

where ′+′ sign holds for fermions, and ′−′ sign for bosons. The equality Ieq = 0
is equivalent to the relation

(1± f1)(1± f2)f3f4 = (1± f3)(1± f4)f1f2, (18)

where the upper sign holds for bosons and the lower sign for fermions. The
last equation can be rewritten as

log
f1

1± f1
+ log

f2
1± f2

= log
f3

1± f3
+ log

f4
1± f4

. (19)

Therefore, log
f

1± f
is an additive constant of motion. Substituting Eq.(17),

we have

log
fi

1± fi
= −Ei − µi

T
. (20)

Hence, Eq.(19) implies
µ1 + µ2 = µ3 + µ4. (21)
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2. The vanishing of nγ is an immediate consequence of photon number non-
conservation. Indeed, there is no quantum number associated with photon
which must be preserved during interactions in equilibrium systems, unlike,
for example, electric charge for electrons of baryon charge of quarks. Since µ
itself is preserved, it follows that µγ = 0.

3. Consider the following reaction

p+ p̄ → 2γ. (22)

Since µγ = 0, it follows that µp = −µp̄.

3. Abundances Evolution

1. We want to cast the Boltzmann equation in a form without the friction term
3HnX . We start by writing the equations that the densities nX and nγ obey

dnX

dt
+ 3HnX = −Γ(nX − neq

X ) ,

dnγ

dt
+ 3Hnγ = 0 .

Notice that

H =
1

2t
=

T 2

MP

=
T 2

m2

m2

MP

= x−2H(m) → x =
√

2tH(m),

thus
d

dt
=

dx

dt

d

dx
=

H(m)

x

d

dx

The Boltzmann equations are then written as
dnX

dx
+ 3

nX

x
= − Γx

H(m)
(nX − neq

X )

dnγ

dx
+ 3

nγ

x
= 0

2. Combining the above, we find

dY

dx
= − Γx

H(m)
(Y − Y eq) ,

where Y ≡ nX/nγ and Y eq ≡ neq
X /nγ.

3. To solve numerically this exercise, we will use Mathematica. The previous
equation with ΓX = αm gives

dY

dx
= −α x

MP

m
(Y − Y eq)

When we are in the relativistic case we have T ≫ m, so x ≪ 1. The behavior
of Y eq in this area is constant. Indeed, the two densities are proportional to
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T 3. When the temperature drops, the particle X becomes non-relativistic,
while the photon remains relativistic. Their ratio is

Y eq =
neq
X

nγ

∼ (mT )3/2e−m/T

T 3
= x3/2e−x

The strategy was therefore to cut the resolution of the differential equation
into two parts : relativistic regime and the non-relativistic. In the relativistic
case, as expected, the abundance remains constant. In the case where the
particle decouples while non-relativistic (see next point for a condition on α)
we obtain a non-equilibrium behavior as can be seen in the figure 1.
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Figure 1 – Evolution of the abundance in the case α = 10−15, 10−19, 10−20

To produce a non-equilibrium behavior requires that the decoupling takes
place at a temperature where the particle in question is non-relativistic. The
decoupling temperature is as usual found by considering that the rate of
interaction is the same as the rate of the expansion of the Universe

Γ(T ∗) ≃ H(T ∗) → T 2
∗ = αmMP .

For non-relativistic decoupling, we need m > T∗, i.e.

m >
√

αmMP ↔ 1 >
αMP

m
↔ α < 10−18 .
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