# **TMP-TC2:** Cosmology

## Solutions to Problem Set 3

## 1. Universe evolutions

- Universe composed of radiation and a cosmological constant  $\lambda > 0$ The Friedmann equations in this case read

$$\left(\frac{\dot{R}}{R}\right)^2 - \frac{\lambda}{3} = \frac{8\pi G}{3}\rho$$
$$2\frac{\ddot{R}}{R} + \left(\frac{\dot{R}}{R}\right)^2 - \lambda = -\frac{8\pi G}{3}\rho.$$

We sum the above to obtain a differential equation for R(t)

$$\ddot{R}R + \dot{R}^2 = \frac{2\lambda}{3}R^2 \; .$$

It is easy to see that we can write it as

$$\frac{1}{2}\frac{d^2}{dt^2}\left(R^2\right) = \frac{2\lambda}{3}R^2 \;,$$

and by introducing  $x = R^2$ , the equation becomes

$$\ddot{x} = \frac{4\lambda}{3}x \; .$$

The general solution is

$$x(t) = c^2 \sinh\left(\sqrt{\frac{4\lambda}{3}} t + \varphi_0\right) ,$$

where c and  $\varphi_0$  depend on the initial conditions. Then, the scale factor is

$$R(t) = c \sinh^{\frac{1}{2}} \left( 2\sqrt{\frac{\lambda}{3}} t + \varphi_0 \right) .$$

Requiring that R(0) = 0 results into  $\varphi_0 = 0$ , so the final result is

$$R(t) = c \sinh^{\frac{1}{2}} \left( 2\sqrt{\frac{\lambda}{3}} t \right) .$$

— Universe composed of matter and a cosmological constant  $\lambda > 0$ 

In this case we can immediately work with the second Friedmann equation that now reads

$$\ddot{R}R + \frac{1}{2}\dot{R}^2 = \frac{\lambda}{2}R^2$$
 (1)

To solve it, we make the following ansatz

$$R(t) = c \sinh^{\alpha} \left(\beta t\right) , \qquad (2)$$

with  $\alpha$  and  $\beta$  constants to be determined by requiring that the above is indeed a solution of (1). A simple computation gives us

$$\alpha\beta^2 \left(4 - 3\alpha - 3\alpha \cosh(2\beta t)\right) + 2\lambda \sinh^2(\beta t) = 0.$$
(3)

Using the well-known

$$\cosh 2x = 2\cosh^2 x - 1$$
, and  $\cosh^2 x - \sinh^2 x = 1$ , (4)

we find that

$$\alpha = \frac{2}{3} , \quad \beta = \frac{\sqrt{3\lambda}}{2} . \tag{5}$$

Therefore, the final result is

$$R(t) = c \sinh^{\frac{2}{3}} \left( \frac{3}{2} \sqrt{\frac{\lambda}{3}} t \right) .$$

To find the age of the universe as a function of  $H_0$  and  $\Omega_m$  we proceed as follows. First, using the last relation, we compute the Hubble parameter for  $t = t_0$ 

$$H_0 = \frac{\dot{R}(t_0)}{R(t_0)} = \sqrt{\frac{\lambda}{3}} \coth\left(\frac{3}{2}\sqrt{\frac{\lambda}{3}} t_0\right) .$$

Inverting this expression and using the hint, we get

$$t_0 = \frac{2}{3}\sqrt{\frac{3}{\lambda}}\operatorname{arccoth}\left(\sqrt{\frac{3H_0^2}{\lambda}}\right) = \frac{1}{3}\sqrt{\frac{3}{\lambda}}\ln\frac{\sqrt{\frac{3H_0^2}{\lambda}}+1}{\sqrt{\frac{3H_0^2}{\lambda}}-1} = \frac{1}{3}\sqrt{\frac{3}{\lambda}}\ln\frac{1+\sqrt{\frac{\lambda}{3H_0^2}}}{1-\sqrt{\frac{\lambda}{3H_0^2}}}.$$

Then we have to trade  $\lambda$  for  $\Omega_m$ . To this end, we use the first Friedmann equation for  $t = t_0$ 

$$H_0^2 = \frac{\lambda}{3} + \frac{8\pi G}{3}\rho(t_0) \; .$$

Dividing both sides by  $H_0^2$  we find

$$\frac{\lambda}{3H_0^2} = 1 - \Omega_m \,.$$

Therefore,

$$t_0 = \frac{1}{3H_0} \frac{1}{\sqrt{1 - \Omega_m}} \ln \frac{1 + \sqrt{1 - \Omega_m}}{1 - \sqrt{1 - \Omega_m}}$$
$$= \frac{1}{3H_0} \frac{1}{\sqrt{1 - \Omega_m}} \ln \frac{(1 + \sqrt{1 - \Omega_m})^2}{\Omega_m}$$
$$= \frac{2}{3H_0} \frac{1}{\sqrt{1 - \Omega_m}} \ln \frac{1 + \sqrt{1 - \Omega_m}}{\sqrt{\Omega_m}}.$$

### 2. The fate of the universe

1. We start from the first Friedmann equation written using abundances, i.e.

$$\Omega_{\rm mat} + \Omega_k + \Omega_\lambda = 1.$$

It is clear that the line  $\Omega_{\lambda} = 1 - \Omega_{\text{mat}}$  corresponds to a flat universe. Above this curve, we have k = 1 and below it k = -1.

We now consider the second Friedmann equation

$$\frac{\ddot{R}}{R} + \frac{4\pi G}{3}\rho - \frac{\lambda}{3} = 0,$$

that in terms of the abundances becomes

$$\Omega_{\lambda} = \frac{\Omega_{\rm mat}}{2} + \frac{\ddot{R}}{RH^2}.$$

The curve  $\Omega_{\lambda} = \Omega_{\text{mat}}/2$  describes a universe with zero acceleration. So, we have an accelerating universe above the curve and a deccelerating one below.

2. In this case, the Friedmann equations simplify considerably and read

$$\begin{cases} \frac{\ddot{R}}{R} = \frac{\lambda}{3}, \\ \dot{R}^2 + k = \frac{\lambda}{3}R^2. \end{cases}$$

By solving the first equation, we obtain constraints on the curvature k.  $\lambda > 0$ : In this case, the solution is given by

$$R(t) = A \exp\left(\sqrt{\frac{\lambda}{3}} t\right) + B \exp\left(-\sqrt{\frac{\lambda}{3}} t\right).$$

By inserting this expression in the second equation, we obtain

$$k = \frac{4AB}{3} \ \lambda.$$

This constraint tell us, that for k = 1, A and B have to be both positive or negative. Then, an initial singularity is impossible. On the other hand, if k = -1, A and B have to be of opposite sign, and an initial singularity is possible for  $A = -B = \sqrt{3/(4\lambda)}$ . The solution is

$$R(t) = \sqrt{\frac{3}{\lambda}} \sinh\left(\sqrt{\frac{\lambda}{3}} t\right).$$

 $\lambda < 0$ : In this case, the solution is given by

$$R(t) = A\cos\left(\sqrt{\frac{|\lambda|}{3}} t\right) + B\sin\left(\sqrt{\frac{|\lambda|}{3}} t\right).$$

The second equation gives

$$k = \frac{\lambda}{3} \left( A^2 + B^2 \right).$$

Since  $\lambda < 0$ , k has to be -1. Then, for A = 0,  $B = \sqrt{3/|\lambda|}$ , we have an initial singularity. We thus get

$$R(t) = \sqrt{\frac{3}{|\lambda|}} \sin\left(\sqrt{\frac{|\lambda|}{3}} t\right).$$

3. If we neglect the cosmological constant, the first Friedmann equation is

$$\left(\frac{\dot{R}}{R}\right)^2 + \frac{k}{R^2} = \frac{8\pi G}{3}\rho.$$

Since the energy of the universe is conserved,  $\rho R^3$  is constant and we use it to express  $\rho$  as a function of R. It is convenient to introduce a new variable  $r^2 = (R/R_0)^2$  to recase the Friedmann equation as

$$\dot{r}^2 = \frac{8\pi G}{3} \frac{\rho_0}{r} - \frac{k}{R_0^2}$$

Using the definitions of the abundances, we trade  $\Omega_k$  for  $\Omega_{\lambda}$  and  $\Omega_{\text{mat}}$  to find from the above

$$\dot{r}^2 = H_0^2 \left[ \Omega_m^0 \left( \frac{1}{r} - 1 \right) + 1 \right],$$

or in other words

$$E_{kin} + U(r) = E_{tot},$$

with

$$E_{kin} = \dot{r}^2 , \quad U(r) = -\frac{H_0^2 \Omega_m^0}{r},$$

and

$$E_{tot} = H_0^2 \left( 1 - \Omega_m^0 \right).$$

The potential U(r) is monotonic, negative and  $U(r) \to 0$ , when  $r \to \infty$ . Then, we first deduce, that for all possible values of  $E_{tot}$ , there is an initial singularity. Secondly, depending on the sign of  $E_{tot}$ , we have infinite expansion or a collapse in the future. For  $E_{tot} > 0$  i.e.  $\Omega_m^0 < 1$ , we have infinite expansion. Otherwise, the universe eventually collapses in the future.

4. We proceed exactly as before. We write the first Friedmann equation as

$$E_{kin} + U(r) = 0,$$

with

$$U(r) = -\frac{H_0^2}{2} \left[ \Omega_m^0 \left( \frac{1}{r} - 1 \right) + \Omega_\lambda^0 \left( r^2 - 1 \right) + 1 \right].$$

We will study this potential in the cases where  $\Omega_{\lambda} < 0$  and  $\Omega_{\lambda} > 0$  separately.  $\underline{\Omega_{\lambda} < 0}$ : First, note that

$$\lim_{r \to 0} U(r) = 0 , \quad \lim_{r \to \infty} U(r) = \infty.$$

Computing the derivative of the potential

$$U'(r) = -\frac{H_0^2}{2} \left[ 2\Omega_{\lambda}^0 r - \frac{\Omega_m^0}{r^2} \right] > 0,$$

we notice that it is a monotonic function. Then, there is an initial singularity and the universe grows until  $r_b$  (for which  $U(r_b) = 0$ ), then it collapses.  $\underline{\Omega_{\lambda} > 0}$ : In this case,

$$\lim_{r \to 0} U(r) = -\infty , \quad \lim_{r \to \infty} U(r) = -\infty,$$

meaning that the potential has a maximum :

$$U'(r_{max}) = -\frac{H_0^2}{2} \left[ 2\Omega_{\lambda}^0 r_{max} - \frac{\Omega_m^0}{r_{max}^2} \right] = 0,$$

therefore

$$r_{max} = \left(\frac{\Omega_m^0}{2\Omega_\lambda^0}\right)^{1/3}.$$

Then

$$U_{max} = U(r_{max}) = -\frac{H_0^2}{2} \left[ \frac{3}{2^{2/3}} (\Omega_m^0)^{2/3} (\Omega_\lambda^0)^{1/3} + (1 - \Omega_m^0 - \Omega_\lambda^0) \right].$$

The solutions of the equation  $U_{max} = 0$  are given by

$$\begin{cases} \Omega_{\lambda,1} = 1 - \Omega_m + \frac{3}{2} \left( \frac{\Omega_m^2}{D^{1/3}} + D^{1/3} \right), \\ \Omega_{\lambda,2} = 1 - \Omega_m - \frac{3}{4} \left( \frac{(1 + i\sqrt{3})\Omega_m^2}{D^{1/3}} + (1 - i\sqrt{3})D^{1/3} \right), \\ \Omega_{\lambda,3} = 1 - \Omega_m - \frac{3}{4} \left( \frac{(1 - i\sqrt{3})\Omega_m^2}{D^{1/3}} + (1 + i\sqrt{3})D^{1/3} \right). \end{cases}$$

with

$$D = \Omega_m^2 - \Omega_m^3 + \sqrt{\Omega_m^4 - 2\Omega_m^5}.$$

The real and imaginary parts of the three solutions are plotted in the following two graphs :



From these graphs we observe the following :  $\Omega_{\lambda,1}$  (blue curve) is real and positive for all values of  $\Omega_m$ , so this solution is physical.  $\Omega_{\lambda,2}$  (red curve) is complex for  $\Omega_m < 0.5$  and becomes real and negative for  $\Omega_m > 0.5$ , so it is an unphysical solution. Finally,  $\Omega_{\lambda,3}$  (yellow curve) is complex for  $\Omega_m < 0.5$ , it is real and negative for  $0.5 < \Omega_m < 1$ , and it is real and positive for  $\Omega_m > 1$ , meaning that it is physical from  $\Omega_m > 1$ .

Above the first curve  $(\Omega_{\lambda,1})$ , we have  $U_{max} > 0$  and  $r_{max} < 1 = r_0(\text{today})$ , then there is no initial singularity and the universe expands forever.

Between the two solutions, we have  $U_{max} < 0$ , then there is an initial singularity and the universe expands forever.

Finally, under the second curve  $(\Omega_{\lambda,3})$ , we have  $U_{max} > 0$  and  $r_{max} > 1 = r_0(\text{today})$ , then there is an initial singularity and the universe will collapse in the future.

<u>Remark</u> : Experimentally, it has been measured :

$$\Omega_m = 0.24 \pm 0.04,$$
  
 $\Omega_\lambda = 0.76 \pm 0.06,$   
 $\Omega_{total} = 1.003 \pm 0.017.$ 

The universe has an initial singularity, it will expand forever and is accelerating. It is not known, whether the universe is closed or open,  $\Omega_k = -0.003 \pm 0.017$ .

#### 3. Recollapsing Universe

1. The first Friedmann equation can be rewritten as

$$\frac{R^2}{R^2} = \frac{R_m}{R^3} - \frac{1}{R^2} , \qquad (6)$$

with

$$R_m = \frac{8\pi G}{3}\rho R^3 \, .$$

For a recollapsing universe, there is a time when the expansion stops, i.e.  $\dot{R} = 0$ . Then

$$R_m = R . (7)$$

2. From the Friedmann equation (6), we find

$$\dot{R} = \pm \sqrt{\frac{R_m}{R} - 1} , \qquad (8)$$

translating into

$$dt = \pm \frac{dR}{\sqrt{\frac{R_m}{R} - 1}} \,. \tag{9}$$

Integrating this equation with positive sign leads to

$$t = -R\sqrt{\frac{R_m}{R} - 1} - R_m \arctan(\sqrt{\frac{R_m}{R} - 1}) + R_m \frac{\pi}{2}$$
(10)

where we used that R(0) = 0 to determine the integration constant. The universe reaches its maximal size for  $R = R_m$ , which corresponds to  $t_m = \frac{\pi}{2}R_m$ . After this point we must continue the solution by taking the negative sign in (10). Therefore, the total lifetime is

$$t_{\rm life} = \pi R_m \tag{11}$$

3. The Friedmann equations in that case read

$$H^2 = \frac{8\pi G}{3}\rho + \frac{\Lambda}{3}$$
$$\frac{\ddot{R}}{R} = -\frac{4\pi G}{3}\rho + \frac{\Lambda}{3}$$

Combining the above we find

$$2\frac{\ddot{R}}{R} + \frac{\dot{R}^2}{R^2} = \Lambda$$
(12)

with solution

$$R(t) = R_m \sin^{\frac{2}{3}} \left( \frac{\sqrt{3|\Lambda|}}{2} t \right) \tag{13}$$

The maximal expansion is reached for  $\sin(\ldots) = 1$ , translating into  $t_m = \frac{\pi}{\sqrt{3|\Lambda|}}$ . The lifetime of the universe is

$$t_{\rm life} = \frac{2\pi}{\sqrt{3|\Lambda|}}\tag{14}$$