TMP-TC2: Cosmology

Solutions to Problem Set 3

1. Universe evolutions

- Universe composed of radiation and a cosmological constant $\lambda>0$

The Friedmann equations in this case read

$$
\begin{aligned}
& \left(\frac{\dot{R}}{R}\right)^{2}-\frac{\lambda}{3}=\frac{8 \pi G}{3} \rho \\
& 2 \frac{\ddot{R}}{R}+\left(\frac{\dot{R}}{R}\right)^{2}-\lambda=-\frac{8 \pi G}{3} \rho
\end{aligned}
$$

We sum the above to obtain a differential equation for $R(t)$

$$
\ddot{R} R+\dot{R}^{2}=\frac{2 \lambda}{3} R^{2} .
$$

It is easy to see that we can write it as

$$
\frac{1}{2} \frac{d^{2}}{d t^{2}}\left(R^{2}\right)=\frac{2 \lambda}{3} R^{2}
$$

and by introducing $x=R^{2}$, the equation becomes

$$
\ddot{x}=\frac{4 \lambda}{3} x .
$$

The general solution is

$$
x(t)=c^{2} \sinh \left(\sqrt{\frac{4 \lambda}{3}} t+\varphi_{0}\right)
$$

where c and φ_{0} depend on the initial conditions. Then, the scale factor is

$$
R(t)=c \sinh ^{\frac{1}{2}}\left(2 \sqrt{\frac{\lambda}{3}} t+\varphi_{0}\right) .
$$

Requiring that $R(0)=0$ results into $\varphi_{0}=0$, so the final result is

$$
R(t)=c \sinh ^{\frac{1}{2}}\left(2 \sqrt{\frac{\lambda}{3}} t\right)
$$

- Universe composed of matter and a cosmological constant $\lambda>0$

In this case we can immediately work with the second Friedmann equation that now reads

$$
\begin{equation*}
\ddot{R} R+\frac{1}{2} \dot{R}^{2}=\frac{\lambda}{2} R^{2} . \tag{1}
\end{equation*}
$$

To solve it, we make the following ansatz

$$
\begin{equation*}
R(t)=c \sinh ^{\alpha}(\beta t), \tag{2}
\end{equation*}
$$

with α and β constants to be determined by requiring that the above is indeed a solution of (1). A simple computation gives us

$$
\begin{equation*}
\alpha \beta^{2}(4-3 \alpha-3 \alpha \cosh (2 \beta t))+2 \lambda \sinh ^{2}(\beta t)=0 . \tag{3}
\end{equation*}
$$

Using the well-known

$$
\begin{equation*}
\cosh 2 x=2 \cosh ^{2} x-1, \quad \text { and } \quad \cosh ^{2} x-\sinh ^{2} x=1, \tag{4}
\end{equation*}
$$

we find that

$$
\begin{equation*}
\alpha=\frac{2}{3}, \quad \beta=\frac{\sqrt{3 \lambda}}{2} . \tag{5}
\end{equation*}
$$

Therefore, the final result is

$$
R(t)=c \sinh ^{\frac{2}{3}}\left(\frac{3}{2} \sqrt{\frac{\lambda}{3}} t\right)
$$

To find the age of the universe as a function of H_{0} and Ω_{m} we proceed as follows. First, using the last relation, we compute the Hubble parameter for $t=t_{0}$

$$
H_{0}=\frac{\dot{R}\left(t_{0}\right)}{R\left(t_{0}\right)}=\sqrt{\frac{\lambda}{3}} \operatorname{coth}\left(\frac{3}{2} \sqrt{\frac{\lambda}{3}} t_{0}\right) .
$$

Inverting this expression and using the hint, we get

$$
t_{0}=\frac{2}{3} \sqrt{\frac{3}{\lambda}} \operatorname{arccoth}\left(\sqrt{\frac{3 H_{0}^{2}}{\lambda}}\right)=\frac{1}{3} \sqrt{\frac{3}{\lambda}} \ln \frac{\sqrt{\frac{3 H_{0}^{2}}{\lambda}}+1}{\sqrt{\frac{3 H_{0}^{2}}{\lambda}}-1}=\frac{1}{3} \sqrt{\frac{3}{\lambda}} \ln \frac{1+\sqrt{\frac{\lambda}{3 H_{0}^{2}}}}{1-\sqrt{\frac{\lambda}{3 H_{0}^{2}}}} .
$$

Then we have to trade λ for Ω_{m}. To this end, we use the first Friedmann equation for $t=t_{0}$

$$
H_{0}^{2}=\frac{\lambda}{3}+\frac{8 \pi G}{3} \rho\left(t_{0}\right)
$$

Dividing both sides by H_{0}^{2} we find

$$
\frac{\lambda}{3 H_{0}^{2}}=1-\Omega_{m}
$$

Therefore,

$$
\begin{aligned}
t_{0} & =\frac{1}{3 H_{0}} \frac{1}{\sqrt{1-\Omega_{m}}} \ln \frac{1+\sqrt{1-\Omega_{m}}}{1-\sqrt{1-\Omega_{m}}} \\
& =\frac{1}{3 H_{0}} \frac{1}{\sqrt{1-\Omega_{m}}} \ln \frac{\left(1+\sqrt{1-\Omega_{m}}\right)^{2}}{\Omega_{m}} \\
& =\frac{2}{3 H_{0}} \frac{1}{\sqrt{1-\Omega_{m}}} \ln \frac{1+\sqrt{1-\Omega_{m}}}{\sqrt{\Omega_{m}}}
\end{aligned}
$$

2. The fate of the universe

1. We start from the first Friedmann equation written using abundances, i.e.

$$
\Omega_{\mathrm{mat}}+\Omega_{k}+\Omega_{\lambda}=1
$$

It is clear that the line $\Omega_{\lambda}=1-\Omega_{\text {mat }}$ corresponds to a flat universe. Above this curve, we have $k=1$ and below it $k=-1$.
We now consider the second Friedmann equation

$$
\frac{\ddot{R}}{R}+\frac{4 \pi G}{3} \rho-\frac{\lambda}{3}=0
$$

that in terms of the abundances becomes

$$
\Omega_{\lambda}=\frac{\Omega_{\mathrm{mat}}}{2}+\frac{\ddot{R}}{R H^{2}}
$$

The curve $\Omega_{\lambda}=\Omega_{\mathrm{mat}} / 2$ describes a universe with zero acceleration. So, we have an accelerating universe above the curve and a deccelerating one below.
2. In this case, the Friedmann equations simplify considerably and read

$$
\left\{\begin{aligned}
\frac{\ddot{R}}{R} & =\frac{\lambda}{3} \\
\dot{R}^{2}+k & =\frac{\lambda}{3} R^{2}
\end{aligned}\right.
$$

By solving the first equation, we obtain constraints on the curvature k.
$\underline{\lambda>0}$: In this case, the solution is given by

$$
R(t)=A \exp \left(\sqrt{\frac{\lambda}{3}} t\right)+B \exp \left(-\sqrt{\frac{\lambda}{3}} t\right)
$$

By inserting this expression in the second equation, we obtain

$$
k=\frac{4 A B}{3} \lambda .
$$

This constraint tell us, that for $k=1, A$ and B have to be both positive or negative. Then, an initial singularity is impossible. On the other hand, if $k=-1, A$ and B have to be of opposite sign, and an initial singularity is possible for $A=-B=\sqrt{3 /(4 \lambda)}$. The solution is

$$
R(t)=\sqrt{\frac{3}{\lambda}} \sinh \left(\sqrt{\frac{\lambda}{3}} t\right) .
$$

$\underline{\lambda<0}$: In this case, the solution is given by

$$
R(t)=A \cos \left(\sqrt{\frac{|\lambda|}{3}} t\right)+B \sin \left(\sqrt{\frac{|\lambda|}{3}} t\right)
$$

The second equation gives

$$
k=\frac{\lambda}{3}\left(A^{2}+B^{2}\right) .
$$

Since $\lambda<0, k$ has to be -1 . Then, for $A=0, B=\sqrt{3 /|\lambda|}$, we have an initial singularity. We thus get

$$
R(t)=\sqrt{\frac{3}{|\lambda|}} \sin \left(\sqrt{\frac{|\lambda|}{3}} t\right) .
$$

3. If we neglect the cosmological constant, the first Friedmann equation is

$$
\left(\frac{\dot{R}}{R}\right)^{2}+\frac{k}{R^{2}}=\frac{8 \pi G}{3} \rho
$$

Since the energy of the universe is conserved, ρR^{3} is constant and we use it to express ρ as a function of R. It is convenient to introduce a new variable $r^{2}=\left(R / R_{0}\right)^{2}$ to recase the Friedmann equation as

$$
\dot{r}^{2}=\frac{8 \pi G}{3} \frac{\rho_{0}}{r}-\frac{k}{R_{0}^{2}}
$$

Using the definitions of the abundances, we trade Ω_{k} for Ω_{λ} and $\Omega_{\text {mat }}$ to find from the above

$$
\dot{r}^{2}=H_{0}^{2}\left[\Omega_{m}^{0}\left(\frac{1}{r}-1\right)+1\right]
$$

or in other words

$$
E_{k i n}+U(r)=E_{t o t},
$$

with

$$
E_{k i n}=\dot{r}^{2}, \quad U(r)=-\frac{H_{0}^{2} \Omega_{m}^{0}}{r}
$$

and

$$
E_{t o t}=H_{0}^{2}\left(1-\Omega_{m}^{0}\right) .
$$

The potential $U(r)$ is monotonic, negative and $U(r) \rightarrow 0$, when $r \rightarrow \infty$. Then, we first deduce, that for all possible values of $E_{t o t}$, there is an initial singularity. Secondly, depending on the sign of $E_{t o t}$, we have infinite expansion or a collapse in the future. For $E_{t o t}>0$ i.e. $\Omega_{m}^{0}<1$, we have infinite expansion. Otherwise, the universe eventually collapses in the future.
4. We proceed exactly as before. We write the first Friedmann equation as

$$
E_{k i n}+U(r)=0
$$

with

$$
U(r)=-\frac{H_{0}^{2}}{2}\left[\Omega_{m}^{0}\left(\frac{1}{r}-1\right)+\Omega_{\lambda}^{0}\left(r^{2}-1\right)+1\right] .
$$

We will study this potential in the cases where $\Omega_{\lambda}<0$ and $\Omega_{\lambda}>0$ separately. $\underline{\Omega_{\lambda}<0: \text { First, note that }}$

$$
\lim _{r \rightarrow 0} U(r)=0, \quad \lim _{r \rightarrow \infty} U(r)=\infty
$$

Computing the derivative of the potential

$$
U^{\prime}(r)=-\frac{H_{0}^{2}}{2}\left[2 \Omega_{\lambda}^{0} r-\frac{\Omega_{m}^{0}}{r^{2}}\right]>0
$$

we notice that it is a monotonic function. Then, there is an initial singularity and the universe grows until r_{b} (for which $U\left(r_{b}\right)=0$), then it collapses.
$\underline{\Omega_{\lambda}>0}$: In this case,

$$
\lim _{r \rightarrow 0} U(r)=-\infty, \quad \lim _{r \rightarrow \infty} U(r)=-\infty
$$

meaning that the potential has a maximum :

$$
U^{\prime}\left(r_{\max }\right)=-\frac{H_{0}^{2}}{2}\left[2 \Omega_{\lambda}^{0} r_{\max }-\frac{\Omega_{m}^{0}}{r_{\max }^{2}}\right]=0,
$$

therefore

$$
r_{\max }=\left(\frac{\Omega_{m}^{0}}{2 \Omega_{\lambda}^{0}}\right)^{1 / 3}
$$

Then

$$
U_{\max }=U\left(r_{\max }\right)=-\frac{H_{0}^{2}}{2}\left[\frac{3}{2^{2 / 3}}\left(\Omega_{m}^{0}\right)^{2 / 3}\left(\Omega_{\lambda}^{0}\right)^{1 / 3}+\left(1-\Omega_{m}^{0}-\Omega_{\lambda}^{0}\right)\right] .
$$

The solutions of the equation $U_{\max }=0$ are given by

$$
\left\{\begin{array}{l}
\Omega_{\lambda, 1}=1-\Omega_{m}+\frac{3}{2}\left(\frac{\Omega_{m}^{2}}{D^{1 / 3}}+D^{1 / 3}\right), \\
\Omega_{\lambda, 2}=1-\Omega_{m}-\frac{3}{4}\left(\frac{(1+i \sqrt{3}) \Omega_{m}^{2}}{D^{1 / 3}}+(1-i \sqrt{3}) D^{1 / 3}\right), \\
\Omega_{\lambda, 3}=1-\Omega_{m}-\frac{3}{4}\left(\frac{(1-i \sqrt{3}) \Omega_{m}^{2}}{D^{1 / 3}}+(1+i \sqrt{3}) D^{1 / 3}\right)
\end{array}\right.
$$

with

$$
D=\Omega_{m}^{2}-\Omega_{m}^{3}+\sqrt{\Omega_{m}^{4}-2 \Omega_{m}^{5}}
$$

The real and imaginary parts of the three solutions are plotted in the following two graphs :

From these graphs we observe the following : $\Omega_{\lambda, 1}$ (blue curve) is real and positive for all values of Ω_{m}, so this solution is physical. $\Omega_{\lambda, 2}$ (red curve) is complex for $\Omega_{m}<0.5$ and becomes real and negative for $\Omega_{m}>0.5$, so it is an unphysical solution. Finally, $\Omega_{\lambda, 3}$ (yellow curve) is complex for $\Omega_{m}<0.5$, it is real and negative for $0.5<\Omega_{m}<1$, and it is real and positive for $\Omega_{m}>1$, meaning that it is physical from $\Omega_{m}>1$.
Above the first curve $\left(\Omega_{\lambda, 1}\right)$, we have $U_{\max }>0$ and $r_{\max }<1=r_{0}$ (today), then there is no initial singularity and the universe expands forever.
Between the two solutions, we have $U_{\max }<0$, then there is an initial singularity and the universe expands forever.
Finally, under the second curve $\left(\Omega_{\lambda, 3}\right)$, we have $U_{\max }>0$ and $r_{\max }>1=$ r_{0} (today), then there is an initial singularity and the universe will collapse in the future.
Remark: Experimentally, it has been measured :

$$
\begin{aligned}
\Omega_{m} & =0.24 \pm 0.04 \\
\Omega_{\lambda} & =0.76 \pm 0.06 \\
\Omega_{\text {total }} & =1.003 \pm 0.017
\end{aligned}
$$

The universe has an initial singularity, it will expand forever and is accelerating. It is not known, whether the universe is closed or open, $\Omega_{k}=$ -0.003 ± 0.017.

3. Recollapsing Universe

1. The first Friedmann equation can be rewritten as

$$
\begin{equation*}
\frac{\dot{R}^{2}}{R^{2}}=\frac{R_{m}}{R^{3}}-\frac{1}{R^{2}} \tag{6}
\end{equation*}
$$

with

$$
R_{m}=\frac{8 \pi G}{3} \rho R^{3}
$$

For a recollapsing universe, there is a time when the expansion stops, i.e. $\dot{R}=0$. Then

$$
\begin{equation*}
R_{m}=R \tag{7}
\end{equation*}
$$

2. From the Friedmann equation (6), we find

$$
\begin{equation*}
\dot{R}= \pm \sqrt{\frac{R_{m}}{R}-1} \tag{8}
\end{equation*}
$$

translating into

$$
\begin{equation*}
d t= \pm \frac{d R}{\sqrt{\frac{R_{m}}{R}-1}} . \tag{9}
\end{equation*}
$$

Integrating this equation with positive sign leads to

$$
\begin{equation*}
t=-R \sqrt{\frac{R_{m}}{R}-1}-R_{m} \arctan \left(\sqrt{\frac{R_{m}}{R}-1}\right)+R_{m} \frac{\pi}{2} \tag{10}
\end{equation*}
$$

where we used that $R(0)=0$ to determine the integration constant. The universe reaches its maximal size for $R=R_{m}$, which corresponds to $t_{m}=$ $\frac{\pi}{2} R_{m}$. After this point we must continue the solution by taking the negative sign in (10). Therefore, the total lifetime is

$$
\begin{equation*}
t_{\text {life }}=\pi R_{m} \tag{11}
\end{equation*}
$$

3. The Friedmann equations in that case read

$$
\begin{aligned}
H^{2} & =\frac{8 \pi G}{3} \rho+\frac{\Lambda}{3} \\
\frac{\ddot{R}}{R} & =-\frac{4 \pi G}{3} \rho+\frac{\Lambda}{3}
\end{aligned}
$$

Combining the above we find

$$
\begin{equation*}
2 \frac{\ddot{R}}{R}+\frac{\dot{R}^{2}}{R^{2}}=\Lambda \tag{12}
\end{equation*}
$$

with solution

$$
\begin{equation*}
R(t)=R_{m} \sin ^{\frac{2}{3}}\left(\frac{\sqrt{3|\Lambda|}}{2} t\right) \tag{13}
\end{equation*}
$$

The maximal expansion is reached for $\sin (\ldots)=1$, translating into $t_{m}=$ $\frac{\pi}{\sqrt{3|\Lambda|}}$. The lifetime of the universe is

$$
\begin{equation*}
t_{\mathrm{life}}=\frac{2 \pi}{\sqrt{3|\Lambda|}} \tag{14}
\end{equation*}
$$

