TMP-TC2: Cosmology

Solutions to Problem Set 1

1. Covariant Derivative

1) Applying the coordinate transformation on the derivative and the vector gives

$$
\begin{aligned}
\frac{\partial V^{\mu}}{\partial x^{\nu}} & \mapsto \frac{\partial}{\partial \bar{x}^{\nu}}\left(\frac{\partial \bar{x}^{\mu}}{\partial x^{\alpha}} V^{\alpha}\right) \\
& =\frac{\partial x^{\beta}}{\partial \bar{x}^{\nu}} \frac{\partial}{\partial x^{\beta}}\left(\frac{\partial \bar{x}^{\mu}}{\partial x^{\alpha}} V^{\alpha}\right) \\
& =\frac{\partial x^{\beta}}{\partial \bar{x}^{\nu}} \frac{\partial \bar{x}^{\mu}}{\partial x^{\alpha}} \frac{\partial V^{\alpha}}{\partial x^{\beta}}+\frac{\partial x^{\beta}}{\partial \bar{x}^{\nu}} \frac{\partial^{2} \bar{x}^{\mu}}{\partial x^{\beta} \partial x^{\alpha}} V^{\alpha}
\end{aligned}
$$

We can see that through the second term the derivative of a vector does not transform like a tensor. This leads to the fact that $\partial_{\mu} V^{\mu}=0$ is not coordinate independent.
2) Remember that the Christoffel symbols transform as

$$
\begin{equation*}
\Gamma_{\nu \lambda}^{\mu} \mapsto \frac{\partial \bar{x}^{\mu}}{\partial x^{\alpha}} \frac{\partial x^{\beta}}{\partial \bar{x}^{\nu}} \frac{\partial x^{\gamma}}{\partial \bar{x}^{\lambda}} \Gamma_{\beta \gamma}^{\alpha}+\frac{\partial^{2} x^{\alpha}}{\partial \bar{x}^{\nu} \partial \bar{x}^{\lambda}} \frac{\partial \bar{x}^{\mu}}{\partial x^{\alpha}} \tag{1}
\end{equation*}
$$

By using the product rule, the second term can be rewritten to

$$
\begin{equation*}
\frac{\partial^{2} x^{\alpha}}{\partial \bar{x}^{\nu} \partial \bar{x}^{\lambda}} \frac{\partial \bar{x}^{\mu}}{\partial x^{\alpha}}=-\frac{\partial x^{\alpha}}{\partial \bar{x}^{\nu}} \frac{\partial x^{\beta}}{\partial \bar{x}^{\lambda}} \frac{\partial^{2} \bar{x}^{\mu}}{\partial x^{\beta} \partial x^{\alpha}} \tag{2}
\end{equation*}
$$

Now we have everything what we need to calculate the transformation of the covariant derivative of a vector :

$$
\begin{aligned}
\nabla_{\nu} V^{\mu} \mapsto & \frac{\partial x^{\beta}}{\partial \bar{x}^{\nu}} \frac{\partial \bar{x}^{\mu}}{\partial x^{\alpha}} \frac{\partial V^{\alpha}}{\partial x^{\beta}}+\frac{\partial x^{\beta}}{\partial \bar{x}^{\nu}} \frac{\partial^{2} \bar{x}^{\mu}}{\partial x^{\beta} \partial x^{\alpha}} V^{\alpha} \\
& +\left(\frac{\partial \bar{x}^{\mu}}{\partial x^{\alpha}} \frac{\partial x^{\beta}}{\partial \bar{x}^{\nu}} \frac{\partial x^{\gamma}}{\partial \bar{x}^{\lambda}} \Gamma_{\beta \gamma}^{\alpha}-\frac{\partial x^{\alpha}}{\partial \bar{x}^{\nu}} \frac{\partial x^{\beta}}{\partial \bar{x}^{\lambda}} \frac{\partial^{2} \bar{x}^{\mu}}{\partial x^{\beta} \partial x^{\alpha}}\right) \frac{\partial \bar{x}^{\lambda}}{\partial x^{\delta}} V^{\delta}
\end{aligned}
$$

Applying $\frac{\partial x^{\alpha}}{\partial \bar{x}^{\lambda}} \frac{\partial \bar{x}^{\lambda}}{\partial x^{\beta}}=\delta_{\beta}^{\alpha}$, the second and the last terms cancel. At the end we obtain

$$
\begin{equation*}
\nabla_{\nu} V^{\mu} \mapsto \frac{\partial x^{\beta}}{\partial \bar{x}^{\nu}} \frac{\partial \bar{x}^{\mu}}{\partial x^{\alpha}} \nabla_{\beta} V^{\alpha} \tag{3}
\end{equation*}
$$

We can observe that the covariant derivative of a vector transforms as a tensor. Therefore the expression $\nabla_{\mu} V^{\mu}=0$ is coordinate independent.

As an example that will be relevant for us, you can take the energy-momentum tensor $T^{\mu \nu}$. We will use the fact that $\nabla_{\mu} T^{\mu \nu}=0$ does not depend on the coordinate system.
3) Recall that $V^{\nu}{ }_{; \mu}=\partial_{\mu} V^{\nu}+\Gamma_{\mu \alpha}^{\nu} V^{\alpha}$ and $V_{\nu ; \mu}=\partial_{\mu} V_{\nu}-\Gamma_{\mu \nu}^{\alpha} V_{\alpha}$. Then the idea is to consider expressions of the type $\left(A^{\mu} B^{\nu}\right)_{; \delta}$ to deduce the expression for $T^{\mu \nu}{ }_{; \delta}$. We have

$$
\begin{aligned}
\left(A^{\mu} B^{\nu}\right)_{; \delta} & =A_{; \delta}^{\mu} B^{\nu}+B_{; \delta}^{\nu} A^{\mu} \\
& =\partial_{\delta} A^{\mu} B^{\nu}+\partial_{\delta} B^{\nu} A^{\nu}+\Gamma_{\delta \alpha}^{\mu} A^{\alpha} B^{\nu}+\Gamma_{\delta \alpha}^{\nu} B^{\alpha} A^{\mu} \\
& =\partial_{\delta}\left(A^{\mu} B^{\nu}\right)+\Gamma_{\delta \alpha}^{\mu} A^{\alpha} B^{\nu}+\Gamma_{\delta \alpha}^{\nu} B^{\alpha} A^{\mu}
\end{aligned}
$$

From which we deduce

$$
T_{; \delta}^{\mu \nu}=\partial_{\delta} T^{\mu \nu}+\Gamma_{\delta \alpha}^{\mu} T^{\alpha \nu}+\Gamma_{\delta \alpha}^{\nu} T^{\mu \alpha}
$$

Similarly, we obtain

$$
\begin{aligned}
& T_{\mu \nu ; \delta}=\partial_{\delta} T_{\mu \nu}-\Gamma_{\delta \mu}^{\alpha} T_{\alpha \nu}-\Gamma_{\delta \nu}^{\alpha} T_{\mu \alpha} \\
& T_{\nu ; \delta}^{\mu}=\partial_{\delta} T_{\nu}^{\mu}+\Gamma_{\delta \alpha}^{\mu} T_{\nu}^{\alpha}-\Gamma_{\delta \nu}^{\alpha} T_{\alpha}^{\mu}
\end{aligned}
$$

2. Metric for a 3 -sphere and a 4-dimensional hyperboloid

1) Take the derivative of the given constraint

$$
\begin{equation*}
x \mathrm{~d} x+y \mathrm{~d} y+z \mathrm{~d} z+w \mathrm{~d} w=0 \tag{4}
\end{equation*}
$$

and use this to eliminate w in the metric :

$$
\begin{equation*}
\mathrm{d} s^{2}=\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}+\frac{(x \mathrm{~d} x+y \mathrm{~d} y+z \mathrm{~d} z)^{2}}{1-x^{2}-y^{2}-z^{2}} \tag{5}
\end{equation*}
$$

2) First, let us calculate the differentials

$$
\begin{aligned}
\mathrm{d} x & =\cos \chi \cos \phi \sin \theta \mathrm{d} \chi-\sin \chi \sin \phi \sin \theta \mathrm{d} \phi+\sin \chi \cos \phi \cos \theta \mathrm{d} \theta \\
\mathrm{~d} y & =\cos \chi \sin \phi \sin \theta \mathrm{d} \chi+\sin \chi \cos \phi \sin \theta \mathrm{d} \phi+\sin \chi \sin \phi \cos \theta \mathrm{d} \theta \\
\mathrm{~d} z & =\cos \chi \cos \theta \mathrm{d} \chi-\sin \chi \sin \theta \mathrm{d} \theta
\end{aligned}
$$

Inserting this into the first part of the metric gives

$$
\begin{aligned}
& \mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2} \\
& =\left(\cos ^{2} \chi \cos ^{2} \phi \sin ^{2} \theta+\cos ^{2} \chi \sin ^{2} \phi \sin ^{2} \theta+\cos ^{2} \chi \cos ^{2} \theta\right) \mathrm{d} \chi^{2} \\
& +\left(\sin ^{2} \chi \cos ^{2} \phi \cos ^{2} \theta+\sin ^{2} \chi \sin ^{2} \phi \cos ^{2} \theta+\sin ^{2} \chi \sin ^{2} \theta\right) \mathrm{d} \theta^{2} \\
& +\left(\sin ^{2} \chi \sin ^{2} \phi \sin ^{2} \theta+\sin ^{2} \chi \cos ^{2} \phi \sin ^{2} \theta\right) \mathrm{d} \phi^{2}
\end{aligned}
$$

Note that all the off-diagonal terms cancelled. We can simplify this further :

$$
\begin{equation*}
\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}=\cos ^{2} \chi \mathrm{~d} \chi^{2}+\sin ^{2} \chi \mathrm{~d} \theta^{2}+\sin ^{2} \chi \sin ^{2} \theta \mathrm{~d} \phi^{2} \tag{6}
\end{equation*}
$$

Furthermore, we can calculate

$$
\begin{equation*}
x \mathrm{~d} x+y \mathrm{~d} y+z \mathrm{~d} z=\sin \chi \cos \chi \mathrm{d} \chi \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
1-x^{2}-y^{2}-z^{2}=\cos ^{2} \chi \tag{8}
\end{equation*}
$$

Therefore, the metric becomes

$$
\begin{equation*}
\mathrm{d} s^{2}=\mathrm{d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right) \tag{9}
\end{equation*}
$$

3) In that case the metric becomes

$$
\begin{equation*}
\mathrm{d} s^{2}=\mathrm{d} \chi^{2}+\sinh ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right) . \tag{10}
\end{equation*}
$$

The calculation works in the same way as in part 1) and part 2). Note that we used the identity $\cosh ^{2}-\sinh ^{2}=1$.

3. Friedmann-Lemaître-Robertson-Walker (FLRW) metric

- $\mathrm{k}=\mathbf{0}$

First we consider the flat space case, with the line element given by

$$
\begin{equation*}
d s^{2}=-\left(d x^{0}\right)^{2}+a^{2}\left(x^{0}\right) \sum_{i}\left(d x^{i}\right)^{2} \tag{11}
\end{equation*}
$$

where for later convenience we introduced the shorthand notation

$$
\sum_{i}\left(d x^{i}\right)^{2}=\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}\right]
$$

1) The metric is

$$
\begin{equation*}
g_{\mu \nu}=\operatorname{diag}\left[-1, a^{2}, a^{2}, a^{2}\right], \tag{12}
\end{equation*}
$$

so

$$
\begin{equation*}
g^{\mu \nu}=\operatorname{diag}\left[-1, a^{-2}, a^{-2}, a^{-2}\right] \tag{13}
\end{equation*}
$$

2) The action for a classical particle with mass m is

$$
\begin{equation*}
S=m \int d s=m \int d p g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}=\int d p F(x, \dot{x}) \tag{14}
\end{equation*}
$$

where a dot denotes differentiation with respect to the affine parameter p. By introducing the explicit form of the metric we find

$$
\begin{equation*}
F(x, \dot{x})=m\left[-\left(\dot{x}^{0}\right)^{2}+a^{2} \sum_{i}\left(\dot{x}^{i}\right)^{2}\right] \tag{15}
\end{equation*}
$$

Using the Euler-Lagrange equations

$$
\begin{equation*}
\frac{d}{d p} \frac{\partial F}{\partial \dot{x}^{\mu}}=\frac{\partial F}{\partial x^{\mu}} \tag{16}
\end{equation*}
$$

we find

$$
\begin{array}{ll}
\ddot{x}^{0}=-a a^{\prime} \sum_{i}\left(\dot{x}^{i}\right)^{2}, & \text { for } \mu=0 \\
\ddot{x}^{i}=-2 \frac{a^{\prime}}{a} \dot{x}^{0} \dot{x}^{i}, & \text { for } \mu=1,2,3 \tag{17}
\end{array}
$$

where a prime denotes derivative with respect to x^{0}.
3) The Christoffel symbols are defined as

$$
\begin{equation*}
\ddot{x}^{\lambda}=-\Gamma^{\lambda}{ }_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu} . \tag{18}
\end{equation*}
$$

By identification, the non-zero Γ s are

$$
\begin{equation*}
\Gamma_{i i}^{0}=a a^{\prime} \quad \text { and } \quad \Gamma_{0 i}^{i}=\Gamma_{i 0}^{i}=\frac{a^{\prime}}{a} \tag{19}
\end{equation*}
$$

The $\Gamma^{k}{ }_{i j}, i, j, k=1,2,3$ are zero, because the spatial part of the metric is flat. Let us check the above results with the usual formula

$$
\begin{equation*}
\Gamma^{\lambda}{ }_{\mu \nu}=\frac{1}{2} g^{\kappa \lambda}\left(\partial_{\mu} g_{\nu \kappa}+\partial_{\nu} g_{\mu \kappa}-\partial_{\kappa} g_{\mu \nu}\right) \tag{20}
\end{equation*}
$$

For $\Gamma^{i}{ }_{0 i}$, we find

$$
\begin{align*}
\Gamma_{0 i}^{i} & =\frac{1}{2} g^{i \kappa}\left(\partial_{0} g_{i \kappa}+\partial_{i} g_{0 \kappa}-\partial_{\kappa} g_{0 i}\right) \tag{21}\\
& =\frac{1}{2} g^{i i} \partial_{0} g_{i i} \tag{22}\\
& =\frac{1}{2} a^{-2} \partial_{0} a^{2}=\frac{a^{\prime}}{a} \tag{23}
\end{align*}
$$

and for $\Gamma^{0}{ }_{i i}$

$$
\begin{align*}
\Gamma_{i i}^{0} & =\frac{1}{2} g^{0 \kappa}\left(\partial_{i} g_{i \kappa}+\partial_{i} g_{i \kappa}-\partial_{\kappa} g_{i i}\right) \tag{24}\\
& =-\frac{1}{2} g^{00} \partial_{0} g_{i i} \tag{25}\\
& =-\frac{1}{2} \partial_{0} a^{2}=a a^{\prime} \tag{26}
\end{align*}
$$

4) Since $R^{\mu}{ }_{\nu \rho \sigma}$ is antisymmetric in the last two indices, the only combinations we have to calculate are

μ	ν	ρ	σ	Results
0	0	0	i	0
0	0	i	j	0
0	i	j	k	0
0	i	0	j	$i=j$
i	0	0	j	$i=j$
i	0	j	k	0
i	j	0	k	0
i	j	k	l	$(k, l)=(i, j), i \neq j$

Then

$$
\begin{equation*}
R_{i 0 i}^{0}=\partial_{0} \Gamma_{i i}^{0}-\Gamma^{0}{ }_{\kappa i} \Gamma^{\kappa}{ }_{i 0}=a a^{\prime \prime}, \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{00 i}^{i}=\frac{a^{\prime \prime}}{a}, \quad R_{j i j}^{i}=\left(a^{\prime}\right)^{2} \tag{28}
\end{equation*}
$$

5) The components of the Ricci tensor are

$$
\begin{equation*}
R_{00}=R_{0 \kappa 0}^{\kappa}=-3 \frac{a^{\prime \prime}}{a} \quad \text { and } \quad R_{i i}=R_{i \kappa i}^{\kappa}=a a^{\prime \prime}+2\left(a^{\prime}\right)^{2} . \tag{29}
\end{equation*}
$$

6) Using the above, we see that the scalar curvature is

$$
\begin{equation*}
R=g^{\mu \nu} R_{\mu \nu}=6\left[\frac{a^{\prime \prime}}{a}+\left(\frac{a^{\prime}}{a}\right)^{2}\right] \tag{30}
\end{equation*}
$$

7) Finally, the non zero components of the Einstein tensor

$$
\begin{equation*}
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R \tag{31}
\end{equation*}
$$

are

$$
\begin{gather*}
G_{00}=-3 \frac{a^{\prime \prime}}{a}+3\left[\frac{a^{\prime \prime}}{a}+\left(\frac{a^{\prime}}{a}\right)^{2}\right]=3\left(\frac{a^{\prime}}{a}\right)^{2}, \tag{32}\\
G_{i i}=a a^{\prime \prime}+2\left(a^{\prime}\right)^{2}-3 a^{2}\left[\frac{a^{\prime \prime}}{a}+\left(\frac{a^{\prime}}{a}\right)^{2}\right]=-2 a a^{\prime \prime}-\left(a^{\prime}\right)^{2} . \tag{33}
\end{gather*}
$$

We extracted all the information contained in the metric. The tensor G contains the geometric part of the Einstein equation $G_{\mu \nu}=8 \pi G T_{\mu \nu}+\Lambda g_{\mu \nu}$, where T is the energy momentum tensor and Λ is the cosmological constant.

- $\mathrm{k} \neq \mathbf{0}$

Now we move to the curved space,

$$
\begin{equation*}
d s^{2}=-d t^{2}+a^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}\right] . \tag{34}
\end{equation*}
$$

1) The metric is

$$
\begin{equation*}
g_{\mu \nu}=\operatorname{diag}\left[-1, \frac{a^{2}}{1-k r^{2}}, a^{2} r^{2}, a^{2} r^{2} \sin ^{2} \theta\right] \tag{35}
\end{equation*}
$$

so

$$
\begin{equation*}
g^{\mu \nu}=\operatorname{diag}\left[-1, \frac{1-k r^{2}}{a^{2}}, \frac{1}{a^{2} r^{2}}, \frac{1}{a^{2} r^{2} \sin ^{2} \theta}\right] \tag{36}
\end{equation*}
$$

2) The Lagrangian is given by

$$
\begin{equation*}
F(x, \dot{x})=m\left(-\dot{t}^{2}+\frac{a^{2}}{1-k r^{2}} \dot{r}^{2}+a^{2} r^{2} \dot{\theta}^{2}+a^{2} r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right) \tag{37}
\end{equation*}
$$

Thus, the equations of motion are

$$
\begin{aligned}
\ddot{t} & =-a a^{\prime}\left(\frac{\dot{r}^{2}}{1-k r^{2}}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right) \\
\ddot{r} & =r\left(1-k r^{2}\right)\left[\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right]-k \frac{r \dot{r}^{2}}{1-k r^{2}}-2 \frac{a^{\prime}}{a} \dot{t} \dot{r} \\
\ddot{\theta} & =\sin \theta \cos \theta \dot{\phi}^{2}-2 \frac{\dot{r}}{r} \dot{\theta}-2 \frac{a^{\prime}}{a} \dot{t} \dot{\theta} \\
\ddot{\phi} & =-2 \frac{\dot{r}}{r} \dot{\phi}-2 \frac{\cos \theta}{\sin \theta} \dot{\theta} \dot{\phi}-2 \frac{a^{\prime}}{a} \dot{t} \dot{\phi}
\end{aligned}
$$

3) The non zero Christoffel symbols are

$$
\begin{aligned}
\Gamma_{r r}^{t} & =\frac{a a^{\prime}}{1-k r^{2}} \\
\Gamma^{t}{ }_{\theta \theta} & =a a^{\prime} r^{2} \\
\Gamma_{\phi \phi}^{t} & =a a^{\prime} r^{2} \sin ^{2} \theta \\
\Gamma_{r t}^{r} & =\frac{a^{\prime}}{a} \\
\Gamma_{r r}^{r} & =\frac{k r}{1-k r^{2}} \\
\Gamma^{r}{ }_{\theta \theta} & =-r\left(1-k r^{2}\right) \\
\Gamma_{\phi \phi}^{r} & =-r\left(1-k r^{2}\right) \sin ^{2} \theta \\
\Gamma_{\theta t}^{\theta} & =\frac{a^{\prime}}{a} \\
\Gamma_{\theta r}^{\theta} & =r^{-1} \\
\Gamma_{\phi \phi}^{\theta} & =-\sin \theta \cos \theta \\
\Gamma_{\phi t}^{\phi} & =\frac{a^{\prime}}{a} \\
\Gamma_{\phi r}^{\phi} & =r^{-1} \\
\Gamma_{\phi \theta}^{\phi} & =\frac{\cos \theta}{\sin \theta}
\end{aligned}
$$

4) To calculate the non-zero components of the Riemann tensor, it is very useful to remind some of its properties. The Riemann tensor is antisymmetric in the last two indices, so $R^{\mu}{ }_{\nu \rho \rho}=0 \forall \mu, \nu$. We can also show that $R^{\mu}{ }_{\mu \rho \sigma}=0 \forall \rho, \sigma$, since $R_{\mu \nu \rho \sigma}$ is antisymmetric in the first two indices. Also, the Christoffel symbols have always a repeated index, and as a consequence $R_{\nu \rho \sigma}^{\mu}=0$, if the four indices are different. Taking the above considerations into account, we easily see that the only non-zero combinations are

$$
\begin{equation*}
R_{\nu \mu \sigma}^{\mu}=-R_{\nu \sigma \mu}^{\mu} \quad \text { and } \quad R_{\nu \nu \sigma}^{\mu}=-R_{\nu \sigma \nu}^{\mu} . \tag{38}
\end{equation*}
$$

Look at the first case with $\nu \neq \sigma$. Since $\Gamma^{\mu}{ }_{\mu \nu}$ only depends of ν, we deduce that $R^{\mu}{ }_{\nu \mu \sigma}=0$. This means that necessarily $\nu=\sigma$. We use the same procedure in the second case. The non-zero components of the Riemann tensor are

$$
\begin{aligned}
R_{r t r}^{t} & =\frac{a a^{\prime \prime}}{1-k r^{2}} \\
R_{\theta t \theta}^{t} & =r^{2} a a^{\prime \prime} \\
R_{\phi t \phi}^{t} & =r^{2} \sin ^{2} \theta a a^{\prime \prime} \\
R_{t r t}^{r} & =-\frac{a^{\prime \prime}}{a} \\
R_{\theta r \theta}^{r} & =r^{2}\left(k+\left(a^{\prime}\right)^{2}\right) \\
R_{\phi r \phi}^{r} & =r^{2} \sin ^{2} \theta\left(k+\left(a^{\prime}\right)^{2}\right) \\
R_{t \theta t}^{\theta} & =-\frac{a^{\prime \prime}}{a} \\
R_{r \theta r}^{\theta} & =\frac{k+\left(a^{\prime}\right)^{2}}{1-k r^{2}} \\
R_{\phi \theta \phi}^{\theta} & =r^{2} \sin ^{2} \theta\left(k+\left(a^{\prime}\right)^{2}\right) \\
R_{t \phi t}^{\phi} & =-\frac{a^{\prime \prime}}{a} \\
R_{r \phi r}^{\phi} & =\frac{k+\left(a^{\prime}\right)^{2}}{1-k r^{2}} \\
R_{\theta \phi \theta}^{\phi} & =r^{2}\left(k+\left(a^{\prime}\right)^{2}\right)
\end{aligned}
$$

5) The Ricci tensor components are

$$
\begin{aligned}
R_{t t} & =-3 \frac{a^{\prime \prime}}{a} \\
R_{r r} & =\frac{a a^{\prime \prime}+2 k+2\left(a^{\prime}\right)^{2}}{1-k r^{2}} \\
R_{\theta \theta} & =r^{2}\left(a a^{\prime \prime}+2 k+2\left(a^{\prime}\right)^{2}\right) \\
R_{\phi \phi} & =r^{2} \sin ^{2} \theta\left(a a^{\prime \prime}+2 k+2\left(a^{\prime}\right)^{2}\right)
\end{aligned}
$$

6) The scalar curvature is

$$
\begin{equation*}
R=g^{\mu \nu} R_{\mu \nu}=6\left[\frac{a^{\prime \prime}}{a}+\left(\frac{a^{\prime}}{a}\right)^{2}+\frac{k}{a^{2}}\right] \tag{39}
\end{equation*}
$$

Remark that the spatial curvature modifies the space-time curvature by introducing the last term.
7) The Einstein tensor components are

$$
\begin{aligned}
G_{t t} & =3\left[\left(\frac{a^{\prime}}{a}\right)^{2}+\frac{k}{a^{2}}\right] \\
G_{r r} & =-\frac{2 a a^{\prime \prime}+\left(a^{\prime}\right)^{2}+k}{1-k r^{2}} \\
G_{\theta \theta} & =-r^{2}\left(2 a a^{\prime \prime}+\left(a^{\prime}\right)^{2}+k\right) \\
G_{\phi \phi} & =-r^{2} \sin ^{2} \theta\left(2 a a^{\prime \prime}+\left(a^{\prime}\right)^{2}+k\right)
\end{aligned}
$$

4. Volume in curved spacetime

The volume is given by

$$
V=\int d^{3} x \sqrt{\gamma}
$$

with

$$
\gamma=\operatorname{det}\left(\begin{array}{ccc}
\frac{1}{1-r^{2} / R^{2}} & 0 & 0 \\
0 & r^{2} & 0 \\
0 & 0 & r^{2} \sin ^{2} \theta
\end{array}\right)=\frac{r^{4} \sin ^{2} \theta}{1-r^{2} / R^{2}} .
$$

Therefore, we have

$$
\begin{aligned}
V & =2 \int_{0}^{R} d r \int_{0}^{\pi} d \theta \int_{0}^{2 \pi} d \phi \frac{r^{2} \sin \theta}{\sqrt{1-r^{2} / R^{2}}} \\
& =8 \pi \int_{0}^{R} d r \frac{r^{2}}{\sqrt{1-r^{2} / R^{2}}} \\
& =8 \pi R^{3} \int_{0}^{\pi / 2} d \chi \sin ^{2} \chi=2 \pi^{2} R^{3} .
\end{aligned}
$$

The appearance of the factor 2 in the above calculation is because we have to account twice for the interval of $R(r$ increases from 0 to 1 , then it decreases from 1 to 0$)$.

