
TMP-TC2: Cosmology

Solutions to Problem Set 1 23 & 25 April 2024

1. Covariant Derivative
1) Applying the coordinate transformation on the derivative and the vector gives

∂V µ

∂xν
7→ ∂

∂x̄ν

(
∂x̄µ

∂xα
V α

)
=

∂xβ

∂x̄ν

∂

∂xβ

(
∂x̄µ

∂xα
V α

)
=

∂xβ

∂x̄ν

∂x̄µ

∂xα

∂V α

∂xβ
+

∂xβ

∂x̄ν

∂2x̄µ

∂xβ∂xα
V α

We can see that through the second term the derivative of a vector does not trans-
form like a tensor. This leads to the fact that ∂µV

µ = 0 is not coordinate inde-
pendent.

2) Remember that the Christoffel symbols transform as

Γµ
νλ 7→ ∂x̄µ

∂xα

∂xβ

∂x̄ν

∂xγ

∂x̄λ
Γα
βγ +

∂2xα

∂x̄ν∂x̄λ

∂x̄µ

∂xα
(1)

By using the product rule, the second term can be rewritten to

∂2xα

∂x̄ν∂x̄λ

∂x̄µ

∂xα
= −∂xα

∂x̄ν

∂xβ

∂x̄λ

∂2x̄µ

∂xβ∂xα
(2)

Now we have everything what we need to calculate the transformation of the cova-
riant derivative of a vector :

∇νV
µ 7→ ∂xβ

∂x̄ν

∂x̄µ

∂xα

∂V α

∂xβ
+

∂xβ

∂x̄ν

∂2x̄µ

∂xβ∂xα
V α

+

(
∂x̄µ

∂xα

∂xβ

∂x̄ν

∂xγ

∂x̄λ
Γα
βγ −

∂xα

∂x̄ν

∂xβ

∂x̄λ

∂2x̄µ

∂xβ∂xα

)
∂x̄λ

∂xδ
V δ

Applying ∂xα

∂x̄λ
∂x̄λ

∂xβ = δαβ , the second and the last terms cancel. At the end we obtain

∇νV
µ 7→ ∂xβ

∂x̄ν

∂x̄µ

∂xα
∇βV

α (3)

We can observe that the covariant derivative of a vector transforms as a tensor.
Therefore the expression ∇µV

µ = 0 is coordinate independent.
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As an example that will be relevant for us, you can take the energy-momentum tensor
T µν . We will use the fact that ∇µT

µν = 0 does not depend on the coordinate system.

3) Recall that V ν
;µ = ∂µV

ν + Γν
µαV

α and Vν;µ = ∂µVν − Γα
µνVα. Then the idea is to

consider expressions of the type (AµBν);δ to deduce the expression for T µν
;δ.

We have

(AµBν);δ = Aµ
;δB

ν +Bν
;δA

µ

= ∂δA
µBν + ∂δB

νAν + Γµ
δαA

αBν + Γν
δαB

αAµ

= ∂δ(A
µBν) + Γµ

δαA
αBν + Γν

δαB
αAµ

From which we deduce

T µν
;δ = ∂δT

µν + Γµ
δαT

αν + Γν
δαT

µα

Similarly, we obtain

Tµν;δ = ∂δTµν − Γα
δµTαν − Γα

δνTµα

T µ
ν;δ = ∂δT

µ
ν + Γµ

δαT
α
ν − Γα

δνT
µ
α

2. Metric for a 3-sphere and a 4-dimensional hyperboloid
1) Take the derivative of the given constraint

xdx+ ydy + zdz + wdw = 0 (4)

and use this to eliminate w in the metric :

ds2 = dx2 + dy2 + dz2 +
(xdx+ ydy + zdz)2

1− x2 − y2 − z2
(5)

2) First, let us calculate the differentials

dx = cosχ cosϕ sin θdχ− sinχ sinϕ sin θdϕ+ sinχ cosϕ cos θdθ

dy = cosχ sinϕ sin θdχ+ sinχ cosϕ sin θdϕ+ sinχ sinϕ cos θdθ

dz = cosχ cos θdχ− sinχ sin θdθ

Inserting this into the first part of the metric gives

dx2 + dy2 + dz2

=
(
cos2 χ cos2 ϕ sin2 θ + cos2 χ sin2 ϕ sin2 θ + cos2 χ cos2 θ

)
dχ2

+
(
sin2 χ cos2 ϕ cos2 θ + sin2 χ sin2 ϕ cos2 θ + sin2 χ sin2 θ

)
dθ2

+
(
sin2 χ sin2 ϕ sin2 θ + sin2 χ cos2 ϕ sin2 θ

)
dϕ2
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Note that all the off-diagonal terms cancelled. We can simplify this further :

dx2 + dy2 + dz2 = cos2 χdχ2 + sin2 χdθ2 + sin2 χ sin2 θdϕ2 (6)

Furthermore, we can calculate

xdx+ ydy + zdz = sinχ cosχdχ (7)

and

1− x2 − y2 − z2 = cos2 χ. (8)

Therefore, the metric becomes

ds2 = dχ2 + sin2 χ
(
dθ2 + sin2 θdϕ2

)
(9)

3) In that case the metric becomes

ds2 = dχ2 + sinh2 χ
(
dθ2 + sin2 θdϕ2

)
. (10)

The calculation works in the same way as in part 1) and part 2). Note that we used
the identity cosh2− sinh2 = 1.

3. Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric

• k = 0
First we consider the flat space case, with the line element given by

ds2 = −(dx0)2 + a2(x0)
∑
i

(dxi)2 , (11)

where for later convenience we introduced the shorthand notation∑
i

(dxi)2 = [(dx1)2 + (dx2)2 + (dx3)2] .

1) The metric is
gµν = diag

[
− 1, a2, a2, a2

]
, (12)

so
gµν = diag

[
− 1, a−2, a−2, a−2

]
. (13)

2) The action for a classical particle with mass m is

S = m

∫
ds = m

∫
dp gµν ẋ

µẋν =

∫
dp F (x, ẋ) , (14)

3



where a dot denotes differentiation with respect to the affine parameter p. By intro-
ducing the explicit form of the metric we find

F (x, ẋ) = m
[
− (ẋ0)2 + a2

∑
i

(ẋi)2
]
. (15)

Using the Euler-Lagrange equations

d

dp

∂F

∂ẋµ
=

∂F

∂xµ
, (16)

we find
ẍ0 = −aa′

∑
i

(ẋi)2 , for µ = 0 ,

ẍi = −2
a′

a
ẋ0ẋi , for µ = 1, 2, 3 ,

(17)

where a prime denotes derivative with respect to x0.
3) The Christoffel symbols are defined as

ẍλ = −Γλ
µν ẋ

µẋν . (18)

By identification, the non-zero Γs are

Γ0
ii = aa′ and Γi

0i = Γi
i0 =

a′

a
(19)

The Γk
ij, i, j, k = 1, 2, 3 are zero, because the spatial part of the metric is flat. Let

us check the above results with the usual formula

Γλ
µν =

1

2
gκλ (∂µgνκ + ∂νgµκ − ∂κgµν) . (20)

For Γi
0i, we find

Γi
0i =

1

2
giκ (∂0giκ + ∂ig0κ − ∂κg0i) (21)

=
1

2
gii∂0gii (22)

=
1

2
a−2∂0a

2 =
a′

a
, (23)

and for Γ0
ii

Γ0
ii =

1

2
g0κ (∂igiκ + ∂igiκ − ∂κgii) (24)

= −1

2
g00∂0gii (25)

= −1

2
∂0a

2 = aa′ . (26)

4) Since Rµ
νρσ is antisymmetric in the last two indices, the only combinations we

have to calculate are
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µ ν ρ σ Results
0 0 0 i 0
0 0 i j 0
0 i j k 0
0 i 0 j i = j
i 0 0 j i = j
i 0 j k 0
i j 0 k 0
i j k l (k, l) = (i, j), i ̸= j

Then
R0

i0i = ∂0Γ
0
ii − Γ0

κiΓ
κ
i0 = aa′′, (27)

and

Ri
00i =

a′′

a
, Ri

jij = (a′)2 . (28)

5) The components of the Ricci tensor are

R00 = Rκ
0κ0 = −3

a′′

a
and Rii = Rκ

iκi = aa′′ + 2(a′)2 . (29)

6) Using the above, we see that the scalar curvature is

R = gµνRµν = 6

[
a′′

a
+

(
a′

a

)2
]

. (30)

7) Finally, the non zero components of the Einstein tensor

Gµν = Rµν −
1

2
gµνR , (31)

are

G00 = −3
a′′

a
+ 3

[
a′′

a
+

(
a′

a

)2
]
= 3

(
a′

a

)2

, (32)

Gii = aa′′ + 2(a′)2 − 3a2

[
a′′

a
+

(
a′

a

)2
]
= −2aa′′ − (a′)2. (33)

We extracted all the information contained in the metric. The tensor G contains
the geometric part of the Einstein equation Gµν = 8πGTµν + Λgµν , where T is the
energy momentum tensor and Λ is the cosmological constant.

• k ̸= 0
Now we move to the curved space,

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

]
. (34)
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1) The metric is

gµν = diag

[
−1,

a2

1− kr2
, a2r2, a2r2 sin2 θ

]
, (35)

so

gµν = diag

[
−1,

1− kr2

a2
,

1

a2r2
,

1

a2r2 sin2 θ

]
. (36)

2)The Lagrangian is given by

F (x, ẋ) = m

(
−ṫ2 +

a2

1− kr2
ṙ2 + a2r2θ̇2 + a2r2 sin2 θϕ̇2

)
. (37)

Thus, the equations of motion are

ẗ = −aa′
(

ṙ2

1− kr2
+ r2θ̇2 + r2 sin2 θϕ̇2

)
r̈ = r(1− kr2)

[
θ̇2 + sin2 θϕ̇2

]
− k

rṙ2

1− kr2
− 2

a′

a
ṫṙ

θ̈ = sin θ cos θϕ̇2 − 2
ṙ

r
θ̇ − 2

a′

a
ṫθ̇

ϕ̈ = −2
ṙ

r
ϕ̇− 2

cos θ

sin θ
θ̇ϕ̇− 2

a′

a
ṫϕ̇

3) The non zero Christoffel symbols are

Γt
rr =

aa′

1− kr2

Γt
θθ = aa′r2

Γt
ϕϕ = aa′r2 sin2 θ

Γr
rt =

a′

a

Γr
rr =

kr

1− kr2

Γr
θθ = −r

(
1− kr2

)
Γr

ϕϕ = −r
(
1− kr2

)
sin2 θ

Γθ
θt =

a′

a
Γθ

θr = r−1

Γθ
ϕϕ = − sin θ cos θ

Γϕ
ϕt =

a′

a

Γϕ
ϕr = r−1

Γϕ
ϕθ =

cos θ

sin θ
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4) To calculate the non-zero components of the Riemann tensor, it is very useful to
remind some of its properties. The Riemann tensor is antisymmetric in the last two
indices, so Rµ

νρρ = 0 ∀ µ, ν. We can also show that Rµ
µρσ = 0 ∀ ρ, σ, since Rµνρσ

is antisymmetric in the first two indices. Also, the Christoffel symbols have always
a repeated index, and as a consequence Rµ

νρσ = 0, if the four indices are different.
Taking the above considerations into account, we easily see that the only non-zero
combinations are

Rµ
νµσ = −Rµ

νσµ and Rµ
ννσ = −Rµ

νσν . (38)

Look at the first case with ν ̸= σ. Since Γµ
µν only depends of ν, we deduce that

Rµ
νµσ = 0. This means that necessarily ν = σ. We use the same procedure in the

second case. The non-zero components of the Riemann tensor are

Rt
rtr =

aa′′

1− kr2

Rt
θtθ = r2aa′′

Rt
ϕtϕ = r2 sin2 θaa′′

Rr
trt = −a′′

a
Rr

θrθ = r2
(
k + (a′)2

)
Rr

ϕrϕ = r2 sin2 θ
(
k + (a′)2

)
Rθ

tθt = −a′′

a

Rθ
rθr =

k + (a′)2

1− kr2

Rθ
ϕθϕ = r2 sin2 θ

(
k + (a′)2

)
Rϕ

tϕt = −a′′

a

Rϕ
rϕr =

k + (a′)2

1− kr2

Rϕ
θϕθ = r2

(
k + (a′)2

)
5) The Ricci tensor components are

Rtt = −3
a′′

a

Rrr =
aa′′ + 2k + 2(a′)2

1− kr2

Rθθ = r2
(
aa′′ + 2k + 2(a′)2

)
Rϕϕ = r2 sin2 θ

(
aa′′ + 2k + 2(a′)2

)
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6) The scalar curvature is

R = gµνRµν = 6

[
a′′

a
+

(
a′

a

)2

+
k

a2

]
(39)

Remark that the spatial curvature modifies the space-time curvature by introducing
the last term.

7) The Einstein tensor components are

Gtt = 3

[(
a′

a

)2

+
k

a2

]

Grr = −2aa′′ + (a′)2 + k

1− kr2

Gθθ = −r2
(
2aa′′ + (a′)2 + k

)
Gϕϕ = −r2 sin2 θ

(
2aa′′ + (a′)2 + k

)

4. Volume in curved spacetime

The volume is given by

V =

∫
d3x

√
γ ,

with

γ = det

 1
1−r2/R2 0 0

0 r2 0
0 0 r2 sin2 θ

 =
r4 sin2 θ

1− r2/R2
.

Therefore, we have

V = 2

∫ R

0

dr

∫ π

0

dθ

∫ 2π

0

dϕ
r2 sin θ√
1− r2/R2

= 8π

∫ R

0

dr
r2√

1− r2/R2

= 8πR3

∫ π/2

0

dχ sin2 χ = 2π2R3 .

The appearance of the factor 2 in the above calculation is because we have to account
twice for the interval of R (r increases from 0 to 1, then it decreases from 1 to 0).
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