
TMP-TC2: Cosmology

Solutions to Problem Set 11 2 & 4 July 2024

1 Flatness Problem
Using the given equation Ω− 1 = k

R2H2 we can find for an arbitrary time t :

|Ω(t)− 1| = R2
0H

2
0

R(t)2H(t)2
|Ω0 − 1| (1)

With R(t) ∝ tn (n = 1
2
for radiation domination and n = 2

3
for matter domination)

we get

|Ω(t)− 1| =
(

t

t0

)2(1−n)

|Ω0 − 1| (2)

Inserting the time of recombination tR ≈ 3.7 · 105 years, we obtain

|Ω(tR)− 1| ≈ O(10−8 − 10−9) (3)

It seems that this number is very fine-tuned and surprisingly close to the value zero
corresponding to a flat universe. But why ? This is the flatness problem.

2 Horizon Problem

Let us assume that at one point in the past, a signal was emitted. Then the proper
distance between the observer and the source is given at time t0 by

d(t0) = R(t0)

∫ t0

te

1

R(t)
dt (4)

If te is the time of the emission of the CMB and t0 is the age of the universe today,
then d describes the distance between us and the CMB.
The size of the causally connected region at te is

D(t0) = R(t0)

∫ te

0

1

R(t)
dt (5)
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Then the angle that contains one causally connected region in the sky is

θ = 2arctan

(
1

2

D(t0)

d(t0)

)
(6)

For a matter dominated universe we have R(t) ∝ t
2
3 . Therefore, we obtain for D

and d

D(t0) = 3t
2
3
0 t

1
3
e (7)

d(t0) = 3t
2
3
0 (t

1
3
0 − t

1
3
e ) (8)

With 1 + z = R(t0)
R(te)

=
(

t0
te

) 2
3
we obtain for the angle

θ = 2arctan

(
1

2

1√
1 + z − 1

)
(9)

With z ≈ 1500, we get the angle θ ≈ 1.52◦.
The problem with this small angle is that in the CMB are many causally disconnec-
ted patches. However, the CMB is very isotropic. How can this be ? One solution to
this is for example inflation. We will discuss this on the next sheet.

3. Equations of motion for a homogeneous scalar field in
FLRW

We have a theory described by the following action

S = Sg + S[ϕ] ,

where the gravitational part Sg is the usual Einstein-Hilbert action

Sg =

∫
d4x

1

16πG
R ,

and the inflaton’s part is

S[ϕ] =

∫
d4x

√
−g L[ϕ] =

∫
d4x

√
−g

[
−1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
.

The variation of the action with respect to ϕ yields

δϕS[ϕ] =

∫
d4x

√
−g (−gµν∂νϕ∂µδϕ− V ′(ϕ)δϕ)

=

∫
d4x

[
∂µ

(√
−ggµν∂νϕ

)
−
√
−gV ′(ϕ)

]
δϕ ,
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so the equation of motion for the field is

1√
−g

∂µ
[√

−ggµν∂νϕ
]
− V ′(ϕ) = 0 .

We now introduce to the above the explicit form of the (spatially flat) FLRW metric

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2) → gµν = diag[−1, a(t)2, a(t)2, a(t)2] ,

and use g = −a(t)6, therefore

1

a(t)3
∂µ

[
a(t)3gµν∂νϕ

]
−V ′(ϕ) = 0 → 1

a(t)3
∂0

[
a(t)3g00∂0ϕ

]
+gii∂i∂iϕ−V ′(ϕ) = 0 .

If we take into account that the inflaton is homogeneous, the spatial derivatives can
be neglected so the above gives us

ϕ̈+ 3Hϕ+ V ′(ϕ) = 0 ,

where H = ȧ/a is the Hubble parameter.
The second equation comes from the variation of the action with respect to the
metric. We have seen that the variation of the Einstein-Hilbert action Sg with respect
to the metric yields the Einstein tensor Gµν = Rµν − 1/2gµνR. The variation of the
action for the scalar field S[ϕ] with respect to the metric is

δgSϕ =

∫
d4x

(
−1

2

√
−ggµν L[ϕ]− 1

2

√
−g∂µϕ∂νϕ

)
δgµν .

Identifying the energy-momentum tensor with

Tµν = − 2√
−g

δS[ϕ]

δgµν
,

we get
Tµν = ∂µϕ∂νϕ+ gµνL[ϕ] .

Putting everything together we get Einstein’s equation

Gµν = 8πGTµν .

The above for the 00 component in the FLRW space (look also at the Problem Set
1) is

G00 = 8πGT00 → 3H2 = 8πG

(
1

2
ϕ̇2 + V (ϕ)

)
,
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where we neglected again the spatial variations of ϕ.

4. Scalar field in FLRW spacetime

1. We have seen that the energy momentum tensor Tµν of a scalar field ϕ reads

Tµν = ∂µϕ∂νϕ− gµν

[
1

2
(∂κϕ)

2 − V (ϕ)

]
where V (ϕ) is the potential.

The energy density of the field corresponds to

ρ = T00 =
ϕ̇2

2
+

1

2a2
(∂iϕ)

2 + V (ϕ)

where dot denotes derivative with respect to time and a is the scale factor.
The pressure p is related to the spatial components of the energy-momentum
tensor as

p =
1

3
T i
i =

ϕ̇2

2
− 1

6a2
(∂iϕ)

2 − V (ϕ)

Using the above, we see that the equation of state parameter is

w ≡ p

ρ
=

ϕ̇2

2
− 1

6a2
(∂iϕ)

2 − V (ϕ)
ϕ̇2

2
+ 1

2a2
(∂iϕ)

2 + V (ϕ)

2. Accelerated expansion requires

p < −ρ

3

For the scalar field, the above condition gives us

ϕ̇2 < V (ϕ)

which means that the potential energy of the field must dominate over its
kinetic energy.
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3. If we assume that the field is homogeneous, i.e. ϕ ≡ ϕ(t), the expressions for
ρ and p we found before simplify significantly

ρ =
ϕ̇2

2
+ V (ϕ) and p =

ϕ̇2

2
− V (ϕ)

Using the continuity equation

ρ̇+ 3H(ρ+ p) = 0

we immediately find

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0

which is the Klein-Gordon equation of a (homogeneous) scalar field in a flat
FLRW universe.
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