Standard Model and QCD

1. Fermions as representations of the Lorentz group

We start from the the left and right two-components Weyl spinors

$$
\begin{equation*}
u_{L}^{\alpha}(x)=\binom{u_{L 1}(x)}{u_{L 2}(x)} \in \tau_{\frac{1}{2} 0}, \quad \quad u_{R \dot{\alpha}}(x)=\binom{u_{R 1}(x)}{u_{R 2}(x)} \in \tau_{0 \frac{1}{2}} \tag{1}
\end{equation*}
$$

For the sake of simplicity, we drop the spinorial indices α and $\dot{\alpha}$ in what follows. Under Lorentz transformations, the spinors behave as

$$
\begin{equation*}
u_{L, R}^{\prime}\left(x^{\prime}\right)=S_{L, R} u_{L, R}(x), \tag{2}
\end{equation*}
$$

with the $S L(2, \mathbb{C})$ matrices

$$
\begin{equation*}
S_{L, R}=e^{-\frac{i \sigma_{j}}{2}\left(\theta_{j} \mp i \phi_{j}\right)} . \tag{3a}
\end{equation*}
$$

Here, $\sigma_{j}(j=1,2,3)$ are the Pauli matrices, while θ_{j}, ϕ_{j} are the angle and rapidity parameters of the Lorentz group, respectively.
a) Prove the following properties of the $S L(2, \mathbb{C})$ matrices :

$$
\begin{align*}
& S_{L}^{-1}=S_{R}^{\dagger} \tag{4a}\\
& \sigma_{2} S_{L} \sigma_{2}=S_{R}^{*} \tag{4b}\\
& S_{L}^{T}=\sigma_{2} S_{L}^{-1} \sigma_{2} \tag{4c}
\end{align*}
$$

Of course, there are 3 similar identities that one gets by swapping $L \leftrightarrow R$.
b) Use the relations (4) to prove that

- Any left-handed Weyl spinor u_{L} is such that $\sigma_{2} u_{L}^{*} \in \tau_{0 \frac{1}{2}}$;
- Adding another left-handed spinor v_{L}, we have $v_{L}^{T} \sigma_{2} u_{L} \in \tau_{00}$, i.e., it is a scalar ;
- $u_{L}^{\dagger}(x) \sigma_{-}^{\mu} u_{L}(x) \in \tau_{\frac{1}{2} \frac{1}{2}}$, where $\sigma_{-}^{\mu}=\left(I,-\sigma^{j}\right)$ and I is the 2×2 identity matrix.

How can we use these properties to guess the Lagrangian density $\mathcal{L}\left[u_{L}, u_{R}\right]$?
c) However $S L(2, \mathbb{C})$ matrices realise a double covering of the full Lorentz group and the two chiralities mix under parity transformations. One has to introduce the Dirac bispinor

$$
\begin{equation*}
\psi(x)=\binom{u_{L}(x)}{u_{R}(x)} \tag{5}
\end{equation*}
$$

and the Dirac matrices in the so-called Weyl or chiral basis

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0 & \sigma_{+}^{\mu} \tag{6}\\
\sigma_{-}^{\mu} & 0
\end{array}\right), \quad \gamma_{5}=-i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right),
$$

with $\sigma_{+}^{\mu}=\left(I, \sigma^{j}\right)$. Prove that the transformation law for ψ reads

$$
\begin{equation*}
\psi^{\prime}\left(x^{\prime}\right)=e^{i \theta_{\mu \nu} \Sigma^{\mu \nu}} \psi(x), \tag{7}
\end{equation*}
$$

if one introduces the spin tensor

$$
\begin{equation*}
\Sigma^{\mu \nu}=\frac{1}{4 i}\left[\gamma^{\mu}, \gamma^{\nu}\right] . \tag{8}
\end{equation*}
$$

Hint : You may find useful to employ the transformations (3) together with the definition (5), and to compute the total variation $\Delta \psi(x)=\psi^{\prime}\left(x^{\prime}\right)-\psi(x)$ by considering relativistic boosts and rotations separately.
d) Show that the Dirac matrices do realise a matrix representation of the Clifford algebra

$$
\begin{equation*}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}, \quad\left\{\gamma^{\mu}, \gamma_{5}\right\}=0 \tag{9}
\end{equation*}
$$

Use it to prove the properties

$$
\begin{equation*}
\gamma^{\mu \dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}, \quad \quad \gamma_{5}^{\dagger}=\gamma_{5} \tag{10}
\end{equation*}
$$

e) By using the relations of the previous points and the adjoint spinor $\bar{\psi}=\psi^{\dagger} \gamma^{0}$, show that $\bar{\psi} \psi$ is a scalar, whereas $\bar{\psi} \gamma^{\mu} \psi$ transforms as a vector. Therefore, we can construct the renowned Dirac Lagrangian

$$
\begin{equation*}
\mathcal{L}_{\mathrm{D}}[\psi]=i \bar{\psi}(x) \gamma^{\mu} \partial_{\mu} \psi(x)-m \bar{\psi}(x) \psi(x) \tag{11}
\end{equation*}
$$

for a free bispinor of mass m.
f) Prove that one can construct two projectors

$$
\begin{equation*}
L=\frac{1}{2}\left(1+\gamma_{5}\right), \quad R=\frac{1}{2}\left(1-\gamma_{5}\right) \tag{12}
\end{equation*}
$$

such that $L \psi=\left(u_{L}, 0\right)^{T}$ and $R \psi=\left(0, u_{R}\right)^{T}$.
g) Finally, remember that there is another kind of bispinor only by using either ψ_{L} or ψ_{R}, instead both of them. These are the known as Majorana bispinors. Construct the charge conjugation operator, by using the matrices (6), and show that these objects are self-conjugated.

