Standard Model and QCD

Problem Sheet 1

1. The $S U(N)$ group

Consider the elements of $S U(N)$, characterized by $N \times N$ matrices $U=e^{i \lambda^{a} T^{a}}$ satisfying $U^{\dagger} U=1$, $\operatorname{det} U=1$. Here λ^{a} are real parameters and the generators T^{a} are $(N \times N)$ matrices with complex entries $(a=1, \ldots, k)$.

1. Discuss the constraints that the previous defining conditions impose on the matrices T^{a} and identify the number of generators k for $S U(N)$ groups.
2. Use the previous results to construct explicitly the generators T^{a} of $S U(2)$ and $S U(3)$. Normalize them so that $\operatorname{Tr}\left(T^{a} T^{b}\right)=\frac{1}{2} \delta^{a b}$
3. What is the rank of a group? Specify the rank of $S U(N)$ and identify the Casimir operators for $S U(2)$ and $S U(3)$.
4. Define the fundamental and the adjoint representations of $S U(N)$ according to their transformation rules. Specify their dimension.
5. The generators T^{a} span the space of group transformations which are infinitesimally close to the identity. The commutation relations between the generators can be written as $\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}$, and define the algebra of the group. Here, the numbers $f^{a b c}$ are called structure constants. Check for the cases $S U(2)$ and $S U(3)$ that the algebra closes and compute the structure constants for these cases. Are the structure constants related to the adjoint representation?

2. Gauge Theories

Let us consider the Dirac Lagrangian

$$
\begin{equation*}
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi . \tag{1}
\end{equation*}
$$

1. Check that the above is invariant under the global $U(1)$ transformations

$$
\begin{equation*}
\psi(x) \longrightarrow \psi^{\prime}(x)=e^{-i e \alpha} \psi(x) \tag{2}
\end{equation*}
$$

with e the charge of the field and α a constant. Find the corresponding Noether current j_{μ} and check that it is conserved on the equations of motion. Compute the associated charge Q.
2. Verify that the Dirac Lagrangian is not invariant under the local $U(1)$ transformation

$$
\begin{equation*}
\psi(x) \longrightarrow \psi^{\prime}(x)=e^{-i e \alpha(x)} \psi(x) \tag{3}
\end{equation*}
$$

3. Show that (1) becomes invariant under the local $U(1)$ once we supplement it with a term proportional to $j^{\mu} A_{\mu}$, with j_{μ} the Noether current that you computed previously and A_{μ} the $U(1)$ gauge field transforming as

$$
\begin{equation*}
A_{\mu}(x) \rightarrow A_{\mu}^{\prime}(x)=A_{\mu}(x)+\partial_{\mu} \alpha(x) \tag{4}
\end{equation*}
$$

4. Show that adding $j^{\mu} A_{\mu}$ is equivalent to replacing the partial derivative with a covariant one.
5. Write down the Lagrangian for QED and find the equations of motion for the fields.
6. Using the equations of motion show that the Noether charge (which is associated with the global $U(1)$ symmetry!) can be written as a surface integral at spatial infinity.
