# From a Few Molecules to Cells: Exploring the Origins of Life and Advancing Biotechnology

#### **Dieter Braun** Biophysics, Center for NanoScience, LMU Munich







# Emergence of RNA and Peptides Replication by templated ligation Darwinian evolution on an early Earth





#### Homochiral selection Dry, 1 day, pH 10, 25°C

HO



Only for G, not C



Chirality is amplified for oligos capable

**Chiral amplification** cycles by polymerization and hydrolysis

to hybridize



Verlander, Lohrmann, Orgel, L. E. J. Mol. Evol. 1973

general base catalysis."



Andrej Lupták,<sup>†</sup> Adrian R. Ferré-D'Amaré,<sup>§,¶</sup> Kaihong Zhou,<sup>‡</sup> Kurt W. Zilm,<sup>†</sup> and Jennifer A. Doudna\*.<sup>§,‡</sup>

#### In prep.







10mM Glycine 10mM TMP pH 10 60°C Dry

*The mechanism of the trimetaphosphate-induced peptide synthesis,* Chung, Lohrmann, Orgel & Rabinowitz, *Tetrahedron*, 27:1205–1210 (1971)







# Emergence of RNA and Peptides Replication by templated ligation Darwinian evolution on an early Earth

#### Replication by templated ligation



Copolymerization of A+U Dry, 1 day, 20µl, pH 10, 20°C



In prep.

#### Templated ligation of RNA at low Mg<sup>2+</sup> concentration



#### Splint ligation of RNA at low Mg<sup>2+</sup> concentration



1mM MgCl<sub>2</sub> 50mM CHES pH 10 7 days

Symmetry breaking in Replication by templated Ligation (with ligase)

a

AB+CA

**Symmetry** 

Breaking

В+САВ

А+ВСА

fast

Robust

Hyper-

cycle

b

adbdc

CAB+C

slow

b>c



50

Time



a b

abb

вс+Ав

ABC+A

āς bς c

āζbζc

Symmetry breaking in Replication by templated Ligation (with ligase)

#### a b c acbcc b b>c a aςbςc abb ā d b d c∎ **Symmetry** Breaking CAB+C AB+CA ABC+A В+САВ fast slow BC+AB B+CA A+BCA +BC C+ABC Robust CA+BC Hyper-BCA+B Toyabe & Braun cycle **PRX** 2019

#### **Replication dynamics in sequence space**

From Random to Non-random Sequences





#### **Replication dynamics in sequence space**

From Random to Non-random Sequences

#### Kinetic selection of simpler, longer sequences



ΑΤΑΑΑΑΑΑΑΑΤΑ

ΤΑΤΤΑ

# Cross-catalytic networks with 2',3'-cyclic RNA



Modern views of ancient metabolic networks, Joshua Goldford and Daniel Segrè, Curr. Opp. Sys. Biol. 8:117–124 (2018)

# Emergence of RNA and Peptides Replication by templated ligation Darwinian evolution on an early Earth

#### Early Earth and Exoplanets

#### Moon forming impact

4.5 Ga

Water world with some volcanic islands

3.8 Ga

# Temperature difference across volcanic rock pores





National Geographic

### Temperature difference across volcanic rock pores





#### Iceland, old eruption site

#### Temperature difference: wasteless non-equilibrium





"Rock crack"

PRL 112, 198101 (2014) PNAS 103, 19678–19682 (2006) **TEMPER** 

20mer DNA

### Temperature difference: wasteless non-equilibrium



Christof Mast

Thomas Matreux



doi.org/10.1038/s41557 -021-00772-5 (2021)

### Assembling membrane-free cell by heat



**PNAS**, under resubmission



#### Heated air-water interface





Nature Chemistry (2019) doi.org/10.1038/s41557-019-0299-5

We also work on other scenarios: fumaroles, humidity cycles, dry feeding

#### Heated air-water interface



We also work on other scenarios: fumaroles, humidity cycles, dry feeding



#### Heated air-water interface ... with strand separation



#### PCR at air-water interface



Ianeselli, Nature Physics (2022)

#### PCR at air-water interface... shows fast evolution

![](_page_37_Figure_1.jpeg)

#### Fast sequence evolution at interface

![](_page_38_Figure_1.jpeg)

C+G count

Ianeselli, Nature Physics (2022)

### Heated air bubbles ... to host RNA ribozymes

![](_page_39_Figure_1.jpeg)

Hannes Mutschler

![](_page_39_Picture_4.jpeg)

Annalena Salditt

Nature Communications doi.org/10.1038/s41467-023-37206-4 (2023)

# Emergence of RNA and Peptides Replication by templated ligation Darwinian evolution on an early Earth All of above in one experiment?

![](_page_41_Figure_0.jpeg)

#### Polymerization and replication of RNA in day-night cycles

![](_page_42_Figure_1.jpeg)

![](_page_42_Picture_2.jpeg)

Salt-buffering by humidity and temperature using partial pressure of water

![](_page_43_Figure_0.jpeg)

Start: Nucleotides **Amino Acids** 

> Strand Separation

Replication Networks

With Hannes **Mutschler** 

1cm

**RNA** 

Recombination

Dry Polymerization Templated

Ribozymes

Lipids

Lateral Gene Transfer Vesiculation

Ligation

RNA Genome Replication

PURE-

based

Replication

DNA

Peptides by RNA

**RNA-Peptide Hybrids** 

Ribozyme

Transcription

Protocell generator

Goal: Modern **Biochemistry** 

Active PURE Cell-free Expression **RNA** Peptide Protocells

000000

#### Looking for Executive Manager 100% E14, right after PhD

![](_page_45_Picture_1.jpeg)

![](_page_45_Picture_2.jpeg)

RESERVED FOR REVIEW PANEL

# **Advancing Biotechnology ?**

#### **Optical methods**

![](_page_46_Picture_2.jpeg)

Nanometer precision cell distance

Microcavity biomolecule detection

![](_page_46_Picture_5.jpeg)

![](_page_46_Picture_6.jpeg)

![](_page_46_Picture_7.jpeg)

Voltage recording in silicon-neuron junction

Thermophoresis of Biomolecules

All-optical pumping in water and ice -

Imaging of kinetics in living cells

Ultrafast freezing and thawing?

>200 Employees

FLUCS inside cells

(Moritz Kreysing)

# **Advancing Biotechnology ?**

In situ evolution of artificicial cells and functional genetics

![](_page_47_Figure_2.jpeg)

**Evolution of synthetic cells at air bubbles.** Heated air bubbles accumulate and activate cell-free systems. With added lipids, it is packaged into vesicles. Both combined allow the in situ evolution of protocells.

Autonomous high-speed SELEX. Lengthselective accumulation combined with replication (PCR or ligation) trigger local Darwinien evolution. By molecular selection, we expect very fast SELEX in the same reaction chamber.

![](_page_48_Picture_0.jpeg)

Christof Mast

![](_page_48_Picture_2.jpeg)

#### Simons Foundation Klung-Wilhelmy Price Volkswagen Life!

W2, 1 Assistant, no TA, 10k€/a

![](_page_48_Picture_5.jpeg)

# Polymerization of RNA

#### Break RNA

![](_page_50_Figure_2.jpeg)