Department of Physics	
Summer 2023	
Thermodynamics	
Lecturer: Prof. Dr. Ulrich Schollwöck	
Tutorials: Mattia Moroder	

Sheet 07

Discussion: Thursday 06.07.23

Exercise 1 Throttling I

A gas has the following equations of state

$$P = \frac{E}{V} \qquad \text{and} \qquad T = 3B \left(\frac{E^2}{NV}\right)^{1/3}, \qquad (1)$$

where B is a positive constant. The system satisfies the third law, so that $S \to 0$ if $T \to 0$. Initially, the gas is at temperature T_i and pressure P_i , and is then forced through a porous membrane. Let the expansion proceed like the Joule-Thomson process, i.e. isenthalp. Calculate the final temperature T_f , depending on the pressure P_f .

Exercise 2 Throttling CO_2

Show that the molar enthalpy h of a van der Waals gas can be expressed as

$$h = -\frac{2a}{v} + RT\left(\xi + \frac{v}{v-b}\right).$$
⁽²⁾

Now let such a gas be forced through a porous membrane so that it expands from v_i to v_f . Calculate the final temperature T_f depending on T_i .

Use this to calculate the temperature difference for CO_2 . Let the mean temperature be 0° , C, the mean pressure 10^7 Pa, and the pressure difference 10^6 Pa. Let the heat capacity c_P of CO_2 for this pressure and temperature range be 29.5 J/mol K. Calculate only to the first order of b/v and a/RTv.

Use as vdW constants $a_{CO_2} = 0.401 Pa m^6$ and $b_{CO_2} = 42.7 \cdot 10^{-6} m^3$.

Exercise 3 Interfacial tension

Thermodynamic properties of interfaces between two phases are described by the interfacial tension σ . This is defined by the work $dW = \sigma dA$, which is required to increase the interfacial tension by dA.

- (a) Show that the pressure inside a spherical water droplet of radius R is larger by $2\sigma/R$ than the pressure outside the droplet. Consider the work done against the boundary surface stress for an infinitesimal change of the radius.
- (b) A spherical water drop condenses on a solid surface. Three different boundary surface tensions play a role: σ_{aw} , σ_{sw} , σ_{sa} . Here a, s and w represent air, the solid surface and water, respectively. Calculate the contact angle θ between the surface and the water droplet.

Find the condition for the appearance of a liquid film.

Use our result from 3 (a) and the Laplace equation

$$\Delta P = \frac{2\sigma}{r} \,, \tag{3}$$

to calculate the rise h of a fluid in a thin tube of radius r_0 . For this, note that "inside " always means inside the sphere segment.

Hint: The exact definition of h at the spherical surface, ,as well as the volume change of the reservoir do not matter here. Your result should depend on σ and θ .

