

Department of Physics

Sheet 07

Discussion: Thursday 06.07.23

Exercise 1 Throttling I

A gas has the following equations of state

$$
\begin{equation*}
P=\frac{E}{V} \quad \text { and } \quad T=3 B\left(\frac{E^{2}}{N V}\right)^{1 / 3}, \tag{1}
\end{equation*}
$$

where B is a positive constant. The system satisfies the third law, so that $S \rightarrow 0$ if $T \rightarrow 0$. Initially, the gas is at temperature T_{i} and pressure P_{i}, and is then forced through a porous membrane. Let the expansion proceed like the Joule-Thomson process, i.e. isenthalp. Calculate the final temperature T_{f}, depending on the pressure P_{f}.

Exercise 2 Throttling CO_{2}
Show that the molar enthalpy h of a van der Waals gas can be expressed as

$$
\begin{equation*}
h=-\frac{2 a}{v}+R T\left(\xi+\frac{v}{v-b}\right) . \tag{2}
\end{equation*}
$$

Now let such a gas be forced through a porous membrane so that it expands from v_{i} to v_{f}. Calculate the final temperature T_{f} depending on T_{i}.

Use this to calculate the temperature difference for CO_{2}. Let the mean temperature be $0^{\circ}, \mathrm{C}$, the mean pressure $10^{7} \mathrm{~Pa}$, and the pressure difference $10^{6} \mathrm{~Pa}$. Let the heat capacity c_{P} of CO_{2} for this pressure and temperature range be $29.5 \mathrm{~J} / \mathrm{mol} \mathrm{K}$. Calculate only to the first order of b / v and $a / R T v$.
Use as vdW constants $a_{\mathrm{CO}_{2}}=0.401 \mathrm{Pam}^{6}$ and $b_{\mathrm{CO}_{2}}=42.7 \cdot 10^{-6} \mathrm{~m}^{3}$.

Exercise 3 Interfacial tension

Thermodynamic properties of interfaces between two phases are described by the interfacial tension σ. This is defined by the work $\mathrm{d} W=\sigma \mathrm{d} A$, which is required to increase the interfacial tension by $\mathrm{d} A$.
(a) Show that the pressure inside a spherical water droplet of radius R is larger by $2 \sigma / R$ than the pressure outside the droplet. Consider the work done against the boundary surface stress for an infinitesimal change of the radius.
(b) A spherical water drop condenses on a solid surface. Three different boundary surface tensions play a role: $\sigma_{a w}, \sigma_{s w}, \sigma_{s a}$. Here a, s and w represent air, the solid surface and water, respectively. Calculate the contact angle θ between the surface and the water droplet.
Find the condition for the appearance of a liquid film.

Exercise 4 Capillary effect
Use our result from 3 (a) and the Laplace equation

$$
\begin{equation*}
\Delta P=\frac{2 \sigma}{r} \tag{3}
\end{equation*}
$$

to calculate the rise h of a fluid in a thin tube of radius r_{0}. For this, note that „inside " always means inside the sphere segment.
Hint: The exact definition of h at the spherical surface, , as well as the volume change of the reservoir do not matter here. Your result should depend on σ and θ.

