

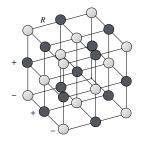
www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_23/thermodynamik/index.html

Sheet 01: Introduction

Discussion: Thursday, 11.05.23

Exercise 1 Ionic Crystals: Why is Interaction Short-Ranged?

Consider a face-centered cubic NaCl crystal, consisting of Na⁺ (dark grey dots) and Cl⁻ ions (light grey dots in the sketch of the unit cell).



(1.a) Show that the Coulomb interaction of an ion with all others leads to the energy

$$E_{\rm Coul} = -\frac{e^2}{4\pi\epsilon_0} \frac{a_{\rm M}}{R} \tag{1}$$

R is the distance between two ions and a_M the Madelung constant. Find a formal expression for a_M and show that a_M depends only on the lattice structure.

Calculating the Madelung constant $a_{\rm M}$ is usually not trivial.

(1.b) In the Evjen method one considers the atoms on the surface of a cube (with arbitrary sidelength nR, n = 2, 3, ...) with a correcting factor 1/2, the atoms on the edges with 1/4 and the atoms on the corners with 1/8. Calculate $a_{\rm M}$ for a cubic crystal of side length 4R. For computer lovers: Find computer-based solutions for larger side lengths. (Hint: for an infinitely large cube $a_{\rm M} = 1.748$.)

Exercise 2 Interaction energy: bulk versus surface

Consider a homogeneous system in a volume $V = L^3$, in which interactions are (effectively) screened on a length scale $\xi \ll L$. Argue that the interaction energy in the bulk scales as $L^3\xi^3$, while the interaction energy on the surface scales as $L^2\xi^4$.

Exercise 3 Isotherms in the Van der Waals gas

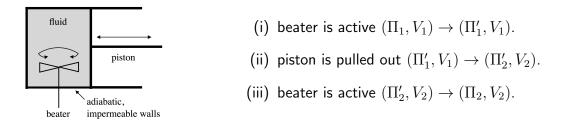
Plot the isotherms (curves of equal temperature Θ) of nitrogen (N₂) in a Π -V diagram for $\Theta = 20K, 40K, \dots 300K$. Consider N₂ as

- a Van der Waals gas with coefficients a = 1.370 bar dm⁶ mol⁻² and b = 0.0387 dm³ mol⁻¹ (these values are also found in Chapter 3 of the notes) and
- an ideal gas.

Some of the Van der Waals isotherms should show something special. Do these curves look physically meaningful?

Exercise 4 Adiabatic state changes

We go back to Section 5.4 in the notes. We considered the following process in a container with a beater and a piston and adiabatic impermeable walls.



This process should leave environment \mathcal{E} unchanged except for the lowering of a mass. Pulling out the piston (ii) obviously involves a change of volume of \mathcal{E} .

• Under which circumstances can we neglect this?

Moreover we discussed that process (i)-(iii) cannot be done adiabatically reversibly. Yet, apart from the adiabatic process (ii) we only considered partial processes at constant volume V.

- Explain that (Π_2, V_2) is reachable from (Π_1, V_1) also with partial processes at constant pressure Π apart from (ii).
- Is the complete process you have thought up adiabatically reversible?