
TRG-I.1

Goal: Compute 2D contractions by coarse-graining RG schemes (instead of transfer matrix schemes)

Applications: 

Partition functions of 

2D classical models:

Imaginary time evolution of
1D quantum models:

[Levin2007]  Levin, Nave: proposed original idea for TRG for classical lattice models. 
Local approach: truncation error is minimized only locally.

[Jiang2008] Jiang, Weng, Xiang: adapted Levin-Nave idea to 2D quantum ground state projection 
via imaginary time evolution. Local approach: truncation is done via 'simple update'. TRG is used to 
compute expectation values. 

[Xie2009] Jiang, Chen, Weng, Xiang; and [Zhao2010] Zhao, Xie, Chen, Wei, Cai, Xiang:
Propose 'second renormalization' (SRG), a global approach taking account renormalization of 
environmental tensor ('full update'). Reduced truncation error significantly. 

[Xie2012] Xie, Qin, Zhu, Yang, Xiang: different coarse-graining scheme, using higher-order SVD, 
employing both local and global optimization schemes.

[Zhao2016] Zhao, Xie, Xiang, Imada: coarse-graining on finite lattices. 

[Evenbly2019] Lan, Evenbly: propose core tensor renormalization group (CTRG), which rescales 
lattice size linearly (not exponentially), but at much lower cost,                 (rather than             ).

Tensor Renormalization Group (TRG) and related 
schemes (VUMPS, CTM, FCTM)
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TRG-I.1following [Hauru2018]

Spin Hamiltonian:

Classical partition 
function:

Bond weights:

For 2x2 lattice
(with periodic conditions):

For inifinite 2D lattice, 

we obtain a 2D tensor network:

Technical challenge: contract this infinite tensor network!

1. Tensor renormalization group (TRG) 
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figure from [Hauru2018]

Do SVD on          in two different ways:

(ignore red shading)

Iterate until            converges 

(reaches fixed point)

Structure of               can be used to characterize different phases [Gu2009].

Proxy for thermal density matrix: eigenvalues 

von Neumann entropy: 

Degeneracy counter: has different values in trivial
or non-trivial phases

TRG has issues: does not fully remove local loop correlations (see [Hauru2018])

computing 'environment' of given site involve tracking all layers of the iteration scheme
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[Fishman2018]

Goal: contract                 tensor network (for given T);  ultimate take 

Partition function:

partition function per site

each row contributes a factor 

In limit , represent by an 'upper boundary MPS':

Then:

'row-to-row transfer matrix'

In limit,                  ,                                              is translationally invariant. Express it in canonical form:

with           

    right-normalization

while               satisfy the 'gauge conditions': 

'fixed-point 
condition'

left-normalization overall normalization

which must hold on all sites.

becomes 
for 

TRG-I.22. 2D contractions via 
Variational Uniform Matrix Product States (VUMPS)
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Fixed-point condition (3) implies: 

(7) contracted with 

Given          , (6,7,8) are to be solved for 

So contraction of infinite tensor network has been reduced to self-consistent solution of four equations! 

(6,7,8) have the same structure as when finding ground state of infinite uniform system. 

So, solution strategy developed for 'variational uniform matrix product states' (VUMPS) applies: 

(i): Compute left and right 'environments':

Similarly:

[each T gives a factor      ]

and expressed through environmental tensors,  implies:

(8), contracted with 

and expressed through environmental tensors, implies: 

(ii) Solve for central tensor and bond tensor: 

Repeat following three steps until convergence [with                         from previous iteration as input]: 

[find dominant left or right eigenvectors]

[find dominant left or right eigenvectors]

At or near fixed point: [this follows by contracting (11) with              or            ]
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(iii) From found in (ii), find new that best satisfy (6),

i.e. that maximize and 

To that end, do SVDs: 

and choose new

Repeat (i), (ii), (iii) until convergence, measured, e.g., by change in singular values of          . 

and 

There may be alternative schemes for finding optimal isometries             and               that satisfy (13),

see 'Riemannian optimization', see [Hauru2021], [Li2023].  these papers discuss how to optimize a cost function 

w.r.t. a tensor satisfying an isometry condition. Here, the cost functions would be 

and

and the isometry conditions are Eqs. (5).
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following [Fishman18]

Ansatz: express infinite 2D network through finite number of tensors:  (assume reflection symmetry)

corner 
matrix

transfer 
matrix

fixed point condition 

CTM Ansatz:

  SVD,
truncate

renormalized
corner matrix

Iteratively following two 'renormalization 'steps:

(i) SVD the 'expanded corner' to obtain 
    renormalized corner and projectors: 

isometry

isometry

(ii) Use projectors to obtain 

     renormalized transfer matrix: 

Net result of renormalization: 

Iterate until convergence, i.e. until 

Partition function per site:

'divide out four      s   and eight       s      

TRG-I.33. Fixed Point Corner Transfer Matrix (FPCM)
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Enforce translational symmetry on boundary MPS built from       s:

To this end, impose the 'pulling through' gauge condition: 

then each                has the same left neighbor, 

for example: 

FPCM imposes this gauge via fixed point conditions, by iterating the following two steps until convergence: 

(i) Given    , find isometry       and (symmetric)      approximately satisfying 'pulling through' gauge condition:  
    

(how to achieve this: see below)

(ii) Use          and new        to find new         by solving the following fixed-point equation   

[with Arnoldi method]:

(It may be necessary to 
  symmetrize         by hand.)

(i.a) Compute initial       as dominant (normalized) eigenvector of         :  

As eigenvector of a transfer matrix, this       is positive and Hermitian 

(up to numerical errors). Obtain       as its square root (e.g. via an

eigendecomposition). However, this       is not yet properly gauged. 

(i.b) Obtain       through polar decomposition of                           :

Obtain       and       from     and            by iterating following two steps until convergence (starting from        ):

(i.c)  Obtain        as dominant (normalized) eigenvector of  

       'mixed transfer matrix'                         [cf. Eq. (9)], 

Details for step (i): 

Pulling-through condition (1) would hold if       were equal to      .

Conversely,                     quantifies the degree of violation of Eq. (6).

or equivalently

[cf. (6)] 

i.e. until 
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Results:  
2D classical 
Ising model:

Main message:
fixed-point methods
VUMPS and FPCM
are faster than 
CTMRG!

(i.c)  Obtain        as dominant (normalized) eigenvector of  

       'mixed transfer matrix'                         [cf. Eq. (9)], 

(i.d)  Obtain       through polar decomposition of                         :

and extract a positive hermitian factor       from   

using a polar decomposition:

When                     is small enough, terminate loop, 

and set 

Technical remark: a polar decomposition can be obtained via SVD: 

hermitian, positivehermitian, positive
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Goal: compute partition function of 2D classical model.

Strategy: Express partition function as 2D tensor network,  contract it by coarse-graining procedure.

Example 2D classical Ising model on honeycomb lattice [Zhao2010, Sec. II.B]

Hamiltonian: Ising variable

nearest neighbors, with 

Honeycomb lattice 

is bipartite:

unit cell contains two sites, labeled    , 

three bond directions: 

Partition function: 

'Factorize' the dependence on        and          by performing an SVD: 

classical model: no 
need to distinguish
upper/lower indices

matrices

Advantage of this representation: spin dependence has been factorized. 

Price to pay: additional 2-dimensional bond index,                       has been introduced.

Group all Q's connected to site        on      -lattice, and sum over       , for given

Ditto for site        on       -lattice, sum over           :

[Levin2007] Levin, Nave
TRG-I.4

4.TRG for 2D classical lattice models (optional)
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Then partition function takes the form 

sum over virtual indices on all  (suitably contracted) nearest-neighbor bonds

All statistical physics models with short-range interactions can be expressed as tensor network models, i.e. 

(for more examples, see [Zhao2010, section II]).

Contract out the tensor network by course-graining [Levin2007]

'rewire': switch from T-vertices with external leg pairings (i,j), (l,k) to S-vertices with pairings  (i,l), (j,k):

reshape SVD

trace out bonds on small triangle 
to define updated T   -tensor

Fig. 3 from [Zhao2010]

rewire
trace out bonds 

on small triangles

coarse-grained
lattice

Iterate this procedure, thereby coarse-graining lattice step by step, until  

dashed lines depict original bonds,
solid lines depict rewired bonds

reach fixed point values, 

.  Use these to compute partition function via 

and the magnetization, etc. 

truncate
to bond 
dimension 

and from there the free energy per spin, 

coarse-grain:
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TRG-I.5[Jiang2008]  Jiang, Weng, Xiang

Goal: compute ground state of 2D quantum lattice model

Strategy: iterative projection via                 , compress by 'simple update';  

compute                    and                             using TRG of Levin & Nave.

Model: Heisenberg on honeycomb lattice.

iPEPS-type tensor network Ansatz for ground state: 

black
white

Ground state projection via simple update

(living on x, y, or z bonds)

Suzuki-Trotter: 

Sequentially update x, y, z bonds using these three gates.

weight factors associated with bonds

tensors associated with vertices

truncate         to   
renormalized

original

'simple update':  outer legs of             contain  , which account for the 'environment' of

in mean-field fashion. Without including these       factors in definition of S, procedure does not converge. 

vertices: A or B tensors
bonds: diagonal    -tensors (weights)

SVD, truncate

5. TRG for quantum lattice models (optional)
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Similarly update y and z bonds. This concludes one iteration.-

Iterate simple update many times.-

Start with                   , gradually reduce it to                   .-

Number of iterations needed until convergence: -

is a double-layer tensor network. 

Use TRG (á la Levin & Nave) to contract bond indices of 
double-layer network: 

Start with a finite system, and iterate until only six sites are left; then trace out final bond indices.

Results [Jiang2008]
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TRG-I.6[Xie2009], 
more details: [Zhao2010]

Goal: include influence of environment when doing update          'global optimization', 'full update'.

(ii) 2D quantum ground states
Two applications: (i) partition function of classical 2D models

(i) Classical tensor network model

(TRG.1.6)

reshape reshape
   SVD,
truncate

rewire:

SVD minimizes truncation error for rewiring       . However, we should minimize truncation error of Z. 

Renormalize environment

Partition function: 

Goal: minimize truncation error of  Z. 

Strategy: 

(i) Compute 

(a) cheap mean-field approach   ('single update')

(b) on finite lattices

(c) more expensive forward/backward TRG ('full update')

(ii) Do SVD on Let's discuss (ii) first. 

Minimize truncation error of ME [Zhao2010, Sec. III.B]

with 

convention: counterclockwise 
assignment of indices 

SVD

SVD
truncate

6. Second renormalization (SRG) of tensor network 
states  (optional)
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and 

SVD

To this end, first invert relation between            and         , using 

with indices: 

truncate from           back to          

Since , this truncation directly controls error in partition function!

It knows not only about M, but also about its environment, via 

Now express               in terms of truncated objects, 

then insert truncated version of     : 

and write as product of two vertices: 

Now we return to (i): actually computing the environment

(a) Computing environment tensor            using  simple update (mean-field approach) [Xie2009]

defines the 

'singular bond vector'           , which measures

entanglement between two sites.  It can be used directly 

to obtain a cheap, mean-field approximation of 

environment ('simple update'):

Take -

Compute         , then do SVD: -

new bond vector

trace in (3) connects these
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Take -

Compute         , then do SVD: -

new bond vector

Use new               to recalculate                           , etc.  -

Iterate until convergence (typically 2 to 3 iterations suffice; near critical point, more are needed). -

(b) Computing environment tensor       using  finite lattices

Including even just a few environmental sites already leads to big improvements!

(c) Computing environment tensor         using TRG [Zhao2010]

'Forward iteration':

(a)  →  (b): Rewire environment 

using data at iteration n:
rewire

(b)  →  (c): Trace out small triangles,

(c)  →  (d) + (e): Identify new environment

(e) looks same as (a), only rotated by 90 

degrees, and rescaled.

Iteration relation expressing 

four     are left over
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degrees, and rescaled.

Iteration relation expressing 
old through new environment:

Start with a very large but finite number of sites.-

Iterate until only 4 environmental sites are left:-

Compute final environment,               , by tracing out open indices:-

'Backward iteration':

Start from current values of tensors                   and bond vectors           .-

Use them to compute           ,             ,    etc., all the way back to                      = desired result.-

This completes step (i). Now go to step (ii), compute                  , and iterate, until        have converged.

Results for SRG (2nd renormalization) for classical 2D system

Ising model on triangular lattice:

SRG

mean field

critical state is hardest to simulate error drops with increasing D 
much more quickly for SRG than TRG 

Results for SRG (2nd renormalization) for quantum ground state search

Optimize by imaginary time evolution; contractions performed using SRG.

Compute expectation values such as                                                using SRG, too.

[Xie2009] : Heisenberg on honeycomb
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SRG yields more stable results than TRG!

[Zhao2010]

Energy does not decrease with D_cut, because 
imaginary time-evolution / SRG is not variational!
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TRG-I.7[Lan2019]

Goal: reduce computational cost of TRG from                   to         

Strategy: shrink lattice linearly rather than exponentially with each coarse-graining step.

7. Core tensor renormalization group  (optional)
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