1. Energy variance

[Hubig2018]
When doing MPS computations involving SVD truncations of virtual bonds, the results should be computed for several values of the bond dimension, D, to check convergence as $D \rightarrow \infty$. Often it is also necessary to extrapolate the results to $D=\infty$, e.g. by plotting results versus $1 / D$ or some power thereof.

However, for some computational schemes, it is not a priori clear how the observable of interest scales with D, nor how it should be extrapolated to $D=\infty$. An example is ground state energy when computed using 1-site DMRG with subspace expansion [Hubig2015], because it does not rely on SVD truncation of bonds.

Thus, it is of interest to have a reliable error measure without requiring costly 2 -site DMRG. A convenient scheme was proposed in [Hubig2018], based on a smart way to approximate the full energy variance,

$$
\begin{aligned}
\Delta_{E}: & =\|(H-E) \psi\|^{2}=\langle\psi|(\hat{H}-E)^{2}|\psi\rangle & & \text { (= zero for an exact eigenstate) (1) } \\
& =\langle\psi| \hat{H}^{2}|\psi\rangle-E^{2}, & & \text { with } E=\langle\psi| H|\psi\rangle
\end{aligned}
$$

Then extrapolations can be done by computing quantity of interested for several D, but plotting the results via Δ_{E}, and extrapolating to $\Delta_{E} \rightarrow 0$
If quantity of interest is energy, then extrapolation is linear, $\quad E_{g}\left(\Delta_{E}\right)=E_{G}^{\text {eract }}+a \cdot \Delta_{E}$
Computing $\langle\psi| \hat{H}^{2}|\psi\rangle$ directly is costly for large systems with long-ranged interactions, such as 2 D systems treated by DMRG snakes. Also, computing Δ_{E} as the difference between two potentially large numbers is prone to inaccuracies. [Hubig2018] found a computation scheme in which the subtraction of such large numbers is avoided a priori.

Key idea: use projectors $P^{n_{\perp}}$ onto mutually orthogonal, irreducible spaces $V^{u_{\perp}}$

with $P^{\circ 1}=|\Psi\rangle\langle\Psi|$
(2.16)

Insert completeness into definition of variance:

$$
\begin{equation*}
\left.\Delta_{E} \stackrel{(4)}{=}\langle\psi|(\hat{H}-E) \sum_{n=0}^{\mathcal{L}} p^{n \mathcal{1}}(\hat{H}-E)\right)|\psi\rangle=: \sum_{n=0}^{\mathcal{L}} \Delta_{E}^{n \perp} \tag{8}
\end{equation*}
$$

Now two crucial simplifications occur:

Now two crucial simplifications occur:

$$
\begin{equation*}
\Delta_{\hat{E}}^{0 \perp} \stackrel{(5)}{=}\langle\psi|(\hat{H}-E) \underbrace{|\psi\rangle\langle\psi|}_{\text {(b) }}(\hat{H}-E))|\psi\rangle=(E-E\rangle(E-E)=0 \tag{9}
\end{equation*}
$$

$n>0$

$$
\begin{align*}
\Delta_{E}^{n_{1}} & \left.=\langle\psi|(\hat{H}-E) P^{n \perp}(\hat{H}-E)\right)|\psi\rangle=\langle\psi| \hat{H} \underbrace{p^{n \perp}} \hat{H}|\psi\rangle \text {, since } p^{(n\rangle 0\rangle \perp}|\psi\rangle=0 \\
& =\rho^{n \perp} p^{(5,6)} \\
& =\left\|P^{n \perp} \hat{H} \psi\right\|^{2} \tag{II}
\end{align*}
$$

In practice, approximate Δ_{E} by the first two nonzero terms:

$$
\begin{equation*}
\Delta_{E} \simeq \Delta_{E}^{2 s}=\Delta_{E}^{11}+\Delta_{E}^{21}=\langle\psi| \hat{H} p^{15} \hat{H}|\psi\rangle+\langle\psi| \hat{H} p^{2 s} \hat{H}|\psi\rangle \tag{12}
\end{equation*}
$$

(11) is exact if longest-range terms in \hat{H} are nearest-neighbor, because then $p^{(n \geqslant 3) \perp} \hat{H}|\Psi\rangle=0$ [Gleis2022a]
Explicit computations:

$\Delta_{E}^{11} \stackrel{(10)}{=}\langle\psi| \hat{H} P^{\prime 1} \hat{H}|\psi\rangle \stackrel{(14)}{=} \sum_{\ell l^{\prime}=1}^{\mathcal{L}}\langle\psi| \hat{H} P_{l, l+1}^{D K} P_{l_{l}^{\prime} l^{\prime}+1}^{D K} \hat{H}|\psi\rangle=\sum_{l=1}^{\mathcal{L}}\left\|P_{l, l+1}^{D K} \hat{H} \psi\right\|^{2} \quad(i s)$

$$
\begin{equation*}
=\sum_{\ell=1}^{\mathcal{L}} \tag{16}
\end{equation*}
$$

We would like to avoid computing ${ }_{d}^{D}$ explicitly, because of its large image dimension.
So rewrite, using isometry condition for discarded sector:

$$
\square=C
$$

and completeness of kept together with discarded isometries:

$$
\begin{equation*}
\frac{\lambda}{1}=\Rightarrow\left|-\frac{\lambda}{y}\right| \tag{18}
\end{equation*}
$$

$$
\begin{align*}
\Delta_{E}^{2 \perp} & =\langle\psi| \hat{H} p^{2 \perp} \hat{H}|\psi\rangle \tag{21}
\end{align*}=\left\|p^{2 \downarrow} p^{2 \perp}, H \psi\right\|^{2}=\sum_{l=1}^{\mathcal{L}-1}\left\|p_{l, l+1}^{D} H \psi\right\|^{2}
$$

Problem: when exploiting symmetries, 1 -site DMRG performs poorly, because it does not explore subspaces with different quantum numbers. An early remedy for this is 2 -site DMRG, but that is computationally much more expensive than 1 -site DMRG. Subsequent suggestions for 1 -site DMRG with symmetries are 'density matrix perturbation' [White2005], the 'center matrix wave function formalism [McCulloch2007], 'subspace expansion' [Hubig2015], and 'controlled bond expansion' (CBE) [Gleis2022], which performs best.

Reminder of 1-site DMRG, in site-canonical representation: Local basis: $|\alpha, \sigma, \beta\rangle:=|\alpha\rangle_{\ell-1}|\sigma\rangle|\beta\rangle_{\ell+1}$

$\begin{aligned} & \text { Minimize energy with constraint of } \\ & \text { fixed normalization, } 1 \text { site at a time: }\end{aligned} \quad \frac{\partial}{\partial c_{l}^{\dagger}}[\langle\psi| \hat{H}|\psi\rangle-\lambda\langle\psi \mid \psi\rangle]=0$

$$
\begin{gathered}
{\left[H_{l}^{1 s}\right]^{a^{\prime}}\left[\psi_{l}^{1 s}\right]^{a}=E\left[\psi_{l}^{1 s}\right]^{a}} \\
a=(\alpha, 6, \beta)
\end{gathered}
$$

(4)

Solve for 'eigenvector' with lowest eigenvalue, say $\tilde{\psi}_{l}^{\prime s}$, then do SVD on it to move to next site:

Important: dimensions of \widehat{C} are fixed, hence truncation is neither needed nor possible!

Reminder of 2-site DMRG, in site-canonical representation:

Minimize energy two sites at a time:

$$
\begin{align*}
{\left[H_{l}^{2 s}\right]^{a^{\prime}}{ }_{a}\left[\psi_{l}^{2 s}\right]^{a} } & =E\left[\psi_{l}^{2 s}\right]^{a} \tag{7}\\
a & =(\alpha, \sigma, \bar{\sigma}, \gamma)
\end{align*}
$$

Solve for 'eigenvector' with lowest eigenvalue, $(\widetilde{M B})$, then do SVD and truncate (!) to move to next site:

Problem of single-site optimization: it is constrained to a variational space defined by outgoing state spaces $|\alpha\rangle_{\ell-1}|\beta\rangle_{\ell+1}$. If the ranges of quantum numbers Q_{k} and Q_{β} for these spaces are too small to accurately represent the ground state, single-site DMRG has no way to enlarge them.

Two-site optimization does not have this problem: the action of H on two sites enlarges bond dimension in between, adding the full range of quantum numbers needed on that bond. If a certain quantum number was missing on that bond before the action of H , but appears afterwards with non-negligible weight, it will survive after SVD and truncation. Hence: two-site optimization can add missing quantum numbers, if needed.

But this comes at a cost: effective two-site Hamiltonian has dimension $D^{2} d^{2} \times D^{2} d^{2}$. By contrast, effective one-site Hamiltonian has dimension $D^{2} d \times D^{2} d$.

Example: 4-site chain of spinless fermions, with total charge $Q_{4}=2$
 exploiting charge quantum numbers, with conservation law $Q_{\ell}=Q_{\ell-1}+\sigma_{\ell}$, where $\sigma_{\ell} \in\{0$, 1$\}$
i_{ℓ} enumerates distinct states with same charge

states spaces:

truncation on bond $\ell=2$ causes missing states on all later bonds

1s DMRG:

updated C_{3} has same bond dimensions as initial C_{3}

1-site optimization of truncated C_{3} will never find a good ground state if latter has non-negligible contributions from missing blocks.

2s DMRG:

2-site optimization can reinstate missing blocks!

Which part of 2-site space is missed by $H_{\ell}^{\text {cs }}$ and $H_{l+1}^{1 \text { s }}$?
$\begin{aligned} & \text { Recall kept+discarded decomposition: } \\ & D+\bar{D}=d D, \overline{\bar{D}}=\mathbf{D}(d-1)\end{aligned} \quad \frac{A_{\ell}}{D_{d} D} \oplus \frac{\bar{A}_{\ell}}{D_{d} \bar{D}}=\frac{A_{\ell}^{\mathbb{1}}}{D_{d} D}, \quad \frac{B_{\ell}^{\mathbb{1}}}{D d_{d} D}=\frac{B_{\ell}}{D \gamma_{d} D} \oplus \frac{\bar{B}_{\ell}}{\bar{D} \gamma_{d} D}$
Orthonormality of kept and discarded isometries:
$A_{\ell}^{\dagger} A_{\ell}={\underset{A}{A_{\ell}^{*}}}_{A_{\ell}}^{=}=\left(=\mathbb{1}_{\ell}^{\mathrm{K}}, \quad B_{\ell} B_{\ell}^{\dagger}=\frac{B_{\ell}}{B_{\ell}^{*}}=\right)=\mathbb{1}_{\ell-1}^{\mathrm{K}}$
$\bar{\Omega}_{\ell}=\left(=\mathbb{1}_{\ell}^{\mathrm{D}}, \quad \overline{\mathrm{X}}_{\ell}=0, \quad \underset{\ell}{\bigcap}=\right]=\mathbb{1}_{\ell-1}^{\mathrm{D}}, \quad \underset{\ell}{\bigcap}=0$

$$
\begin{align*}
& \{ \tag{166}
\end{align*}
$$

Completeness:

Compare action of 1-site and 2 -site Hamiltonians:

$$
(176)
$$

(17c)

This part is not
This can also seen by considering energy variance:
captured by 1s DMRG

Minimized by $1 s$ DMRG, vanishes for converged $1 \mathrm{~s}-\mathrm{GS}$. Minimized by 2 s DMRG, vanishes for converged $2 \mathrm{~s}-\mathrm{GS}$.
Subspace missed by 1s DMRG but explored by $2 s$ DMRG is the DD subspace: image $\left(\bar{A}_{\ell} \otimes \bar{B}_{\ell+1}(\nabla \otimes \nabla)\right)$

It contains 'missing' symmetry sectors (good!), but is huge (bad!)
dimension: $\bar{D} \times \bar{D}=$ huge!
(19)

Key insight [Gleis2022]: $H_{\ell}^{2 s} \psi_{\ell}^{2 s}$ has significant weight only on small subspace of DD, the 'relevant DD' (rDD)!
red arrows:

preselection for rDD

orange arrows:

View rDD as image $\left(\widetilde{A}_{\ell}^{\text {tr }} \otimes \bar{B}_{\ell+1}(\nabla \otimes \nabla)\right)$ or image $\left(\bar{A}_{\ell} \otimes \widetilde{B}_{\ell+1}^{\mathrm{tr}}\left(\overline{\mathrm{V}} \otimes \boldsymbol{\gamma}^{\prime}\right)\right)$

Truncated isometries ∇ or γ can be found via 'shrewd selection' $=(\mathrm{i})$ preselection, then (ii) final selection $h_{\text {(see next section) }}$
(i) Compute truncated isometry $\quad \widetilde{A}_{\ell}^{\text {tr }}(\nabla)$
(ii) expand bond ℓ :

so that initialized version of expanded bond = old bond:

$$
\begin{equation*}
A_{l}^{\text {acp }} C_{l}^{\text {lxp }}=A_{l} C_{l} \tag{zz}
\end{equation*}
$$

and construct expanded 1s Hamiltonian:

(iii) Find GS of expanded 1s Hamiltonian:
(e.g. Lanczos eigensolver), as in 1s DMRG:

(iv) Shift isometry center from $\ell+1$ to ℓ :

The truncated weight at step (iv), say ξ, serves as error measure.
In practice: suppose we want to gradually grow the bond dimension by a factor α per sweep. Then, for each update, we need to increase bond dimension from an initial D_{i} to a final $D_{f}=\alpha D_{i}$, with $\alpha>1$.

Thus, expand from D_{i} to $D_{i}+\tilde{D}=D_{f}(1+\delta)$, with $\delta>0$ and in (iv), truncate from $D_{f}(1+\delta)$ to D_{f}.
Typical choices: $\alpha=1.1, \delta=0.1$.

3. Shrewd selection

Goal:

Optimal truncation can be achieved via SVD; but that has 2 s costs, $\mathcal{O}\left(D^{3} d^{3}\right)$
Instead, use `shrewd selection' (cheap, efficient, practical, though not strictly optimal), involving two steps:
(i) Preselection: truncate

Truncate central bond in presence of its environment, with MPO bond open (to reduce numerical costs)

Truncate again, now in with MPO bond closed, as appropriate for $H_{l}^{2 s} \psi_{l}^{2 s}$

Details of preselection [steps (a-c)] and final selection [step (d)]:

- arrows indicate bond being opened before doing SVD
- shading and symbols in matching colors indicate SVD input and output
- output is written as USV or usv ${ }^{\dagger}$ when involving no or some truncation, respectively

$$
\text { - use } \begin{aligned}
\frac{\lambda}{\gamma_{\ell}} & =\left.\partial\right|_{\ell}-\frac{\lambda}{\gamma_{\ell}} \\
\sum_{\ell}^{\frac{\lambda}{r}} & ={ }_{\ell} c-\frac{\lambda}{{ }_{\ell} r}
\end{aligned}
$$

$$
D^{\prime}<D=\widehat{D}<\bar{D}=D(d-1)
$$

(d)

(a) Canonicalize right side (shaded pink) of diagram, assigning its weights to central MPS bond.
(b) Truncate central MPS bond,

$$
D \rightarrow D^{\prime}=D / w \quad \text { (reason for this choice: see (d)) }
$$

(c) Regroup, to combine truncated MPS bond and MPO bond into composite bond of dimension $\hat{D}=D^{\prime} w=D$ If using exact arithmetic, this would involve no truncation. In practice (numerically) zero singular values $\mathcal{O}\left(10^{-16}\right)$, may arise. They must be truncated to ensure $\bar{Y}=0$, so that image $(\bar{Y}) \subset$ image (\bar{Y}).
(d) Final selection: close MPO bond, then truncate central MPS bond: $\hat{D} \rightarrow \tilde{D}<D \quad$ (e.g. $\tilde{D}=0.1 D$). To ensure 1 s costs for this step, we need $D^{\prime} w=\hat{D}=D$, hence choose $D^{\prime}=D / w$ in (b).
\(\left.\begin{array}{l}Important: By design, every step has at most 1s costs, \mathcal{O}\left(D^{3} d w\right)

Moreover, CBE captures the most most relevant contributions from \quad H_{l}^{2 s}\end{array}\right\} \Rightarrow\)| $2 s$ accuracy and convergence |
| :--- |
| per sweep, at is cost !! |

Results for CBE-DMRG:

(a) CBE and $2 s$ DMRG have same convergence rate per sweep.
(b) CBE has 1 s costs $\sim \mathcal{O}(d)$, much faster than 2 s DMRG $\sim \mathcal{O}\left(d^{2}\right)$
(c,d) Reliable convergence with increasing D^{\dagger}, decreasing \mathcal{D}

Comparison of three truncation settings: grey: optimal truncation via SVD (grey)
serves as a reference
orange: moderate preselection, $D^{\prime *}=D_{f}^{*} / w^{*}$ then final selection $\quad \tilde{D}^{*}=0.1 D_{f}$ agrees rather well with reference!
brown: severe preselection, $D^{\prime *}=0.1 D_{f}^{*} / w^{*}$ then final selection $\tilde{D}^{*}=0.1 D_{f}$ misses some information from reference

Take-home message: optimal truncation requires computation of a huge amount of singular values, most of which are discarded anyway. Those that are kept can be very well captured using shrewd selection!

FIG. 3. Hubbard-Holstein (HH) model: (a) Convergence of the GS energy versus number of half-sweeps n_{s} at fixed $d^{*}=3\left(N_{\mathrm{ph}}^{\max }+1\right) . E_{0}$ was obtained by linear ξ extrapolation of data from $D_{\max }^{*} \in[1000,1200]$. (b) CPU time per sweep for various d^{*} at fixed $D_{\max }^{*}$, showing $d^{*}(\mathrm{CBE})$ vs $d^{* 2}(2 \mathrm{~s})$ scaling. Hubbard cylinders (HC): Error in GS energy vs ξ for (c) 10×4 and (d) $10 \times 6 \mathrm{HCs}$, obtained with CBE (black) and $2 s$ (red) DMRG, for various $D_{\max }^{*}$ (legends). Since $2 s$ CPU times far exceed those of CBE, $2 s$ data is only shown for $D_{\max }^{*} \leq 10 k$. Reference energies $E_{0}=-27.8816942(10 \times 4)$ and $-41.7474961(10 \times 6)$ are obtained by linear ξ extrapolation of the four most accurate CBE results to $\xi=0$ (gray line).

$$
\begin{aligned}
H_{\mathrm{HH}}= & -\sum_{\ell \sigma}\left(c_{\ell \sigma}^{\dagger} c_{\ell+1 \sigma}+\text { H.c. }\right)+0.8 \sum_{\ell} n_{\ell \uparrow} n_{\ell \downarrow} \\
& +0.5 \sum_{\ell} b_{\ell}^{\dagger} b_{\ell}+\sqrt{0.2 \sum_{\ell}}\left(n_{\ell \uparrow}+n_{\ell \downarrow}-1\right) \times\left(b_{\ell}^{\dagger}+b_{\ell}\right) \\
H_{\mathrm{HC}}= & -\sum_{\left\langle\ell, \ell^{\prime}\right\rangle, \sigma}\left(c_{\ell \sigma}^{\dagger} c_{\ell^{\prime} \sigma}+\text { H.c. }\right)+8 \sum_{\ell} n_{\ell \uparrow} n_{\ell \downarrow}
\end{aligned}
$$

FIG. S-10. Error in GS energy versus discarded weight for the Kondo-Heisenberg-Holstein (KHH) model on a 10×4 cylinder, with (a) only Kondo coupling, (b) Kondo and Heisenberg coupling, (c) Kondo and Holstein coupling and (c) Kondo, Heisenberg and Holstein coupling. Legends state our choices for J_{H} and $N_{\mathrm{ph}}^{\max }$, and corresponding values of $d^{*}[d]$ and $w^{*}[w]$.

$$
H_{\mathrm{KH}}=-\sum_{\left\langle\boldsymbol{\ell}, \ell^{\prime}\right\rangle, \sigma}\left(c_{\ell_{\sigma}}^{\dagger} c_{\ell^{\prime} \sigma}+\text { H.c. }\right)+J_{K} \sum_{\ell} \boldsymbol{S}_{\ell} \cdot s_{\ell}+\frac{1}{2} \sum_{\left\langle\ell, \ell^{\prime}\right\rangle} \boldsymbol{S}_{\ell} \cdot \boldsymbol{S}_{\ell^{\prime}}
$$

J_{K} tunes quantum phase transition between two phases with different Fermi surface volumes.

FIG. 4. Kondo-Heisenberg (KH) cylinder: Fermi wave vectors $\left|k_{F x}\left(k_{y}\right)\right|$ for a $40 \times 4 \mathrm{KH}$ cylinder for various values of J_{K}. Symbols are data points (error bars are below symbol size), lines are guides to the eye. In the insets, black lines sketch the presumed FS for $\mathscr{L}_{y} \rightarrow \infty$, dotted lines show the k_{y} values allowed for $\mathscr{L}_{y}=4$.

Schrödinger equation for MPS:

$$
\begin{align*}
& i \frac{d}{d t}|\underline{\Psi}[M(t)]\rangle=\hat{P}^{\prime} s \hat{H}|\Psi(m(t)]\rangle \tag{1}
\end{align*}
$$

1s TDVP algorithm (sweeping right-to-left):

(1) Integrate $\quad i \dot{C}_{l+1}=H_{l+1}^{\prime s} C_{l+1}$ from $t \rightarrow t^{\prime}=t+\delta$

(2) QR factorize $C_{\ell+1}\left(t^{\prime}\right)=\Lambda_{\ell}\left(t^{\prime}\right) B_{\ell+1}\left(t^{\prime}\right)$
(3) Integrate $\quad i \dot{\Lambda}_{\ell}=-i H_{\ell}^{b} \Lambda_{\ell}$ from $t^{\prime} \rightarrow t$
(4) Update $A_{l}(t) C_{l+1}(t) \rightarrow \underbrace{A_{l}(t) \Lambda_{l}(t)}_{=: C_{l}(t)} B_{l+1}\left(t^{\prime}\right)$ with

Advantages of 1s TDVP: applicable to long-ranged Hamiltonians, numerical stability, unitary time-evolution, energy conservation (because truncation happens before, not after, time step!)

1 s -TDVP has two leading errors:
(i) Lie-Trotter error, can be reduced by higher-order integration schemes, e.g. third-order, with error $0\left(\delta^{3}\right)$
(ii) Projection error, quantified by $\Delta_{p}=\left\|\left(1-\hat{p}^{1 s}\right) \hat{H} \psi(t)\right\|$

Projection error can be reduced by using 2s TDVP, $\quad i \frac{d}{d t}|\underline{\psi}[M(t)]\rangle=\hat{P}^{25} \hat{H}|\Psi \mathcal{\Psi}[m(t)]\rangle$
Then projection error becomes
$\Delta_{p}=\left\|\left(1-\hat{p}^{2 s}\right) H \psi(t)\right\|$

However, after time step, another truncation is needed to bring down bond dimension from $D d$ to D. This truncation-after-time-step leads to non-unitary time-evolution, non-conservation of energy.

CBE-TDVP
Key idea: use CBE to reduce $2 s$ contribution to Δ_{p}, given by $\Delta_{p}^{2+}=\|\underbrace{\hat{p}^{2 s}\left(1-\hat{p}^{1 s}\right)}_{p-1} \hat{H} \psi(t)\|$
$\Delta_{p}^{2 \perp}$ is the same object is that minimized for CBE-DMRG! Hence, CBE is also useful here!
We add just one step (0) to 1 s -TDVP algorithm (when sweeping right-to-left), using:
(0) expand $D \rightarrow D+\tilde{D}$ for bond l, using $A_{l} \rightarrow A_{l,}^{l x}, C_{l+1} \rightarrow C_{l+1}^{l_{x p}}, H_{l+1}^{1 s} \rightarrow H_{l+1,}^{15}$,

$$
\begin{align*}
& H_{\ell+1}^{(1, e \mathrm{ex})}=[\underbrace{\square}_{\ell+1}(\underbrace{-1})^{D+\widetilde{D}} . \tag{9}
\end{align*}
$$

Other steps remain as before, except that in (2), QR factorization is replaced by SVD, to 'trim bond dimension from $D+\hat{D}$ to final value D_{f}, chosen such that truncation error is $<10^{-12}$. (for early times), or such that $D_{f}=D_{\max }$ (for later times, to limit computational costs). Trimming error is characterized by discarded weight, $\xi(t)$, which can be controlled or monitored. TDVP properties of unitary time evolution and energy conservation hold within $O(\xi(t))$.

Benchmarking CBE-TDVP for exactly solvable XX model:

$$
H_{\mathrm{XX}}=\sum_{\ell}\left(S_{\ell}^{x} S_{\ell+1}^{x}+S_{\ell}^{y} S_{\ell+1}^{y}\right) \quad|\Psi(0)\rangle=|\uparrow \uparrow \ldots \uparrow \downarrow \downarrow \ldots \downarrow\rangle
$$

FIG. 1. 100-site XX spin chain: Time evolution of a domain wall, computed with time step $\delta=0.05$ and $\mathrm{U}(1)$ spin symmetry. (a) Local magnetization profile $S_{\ell}^{z}(t)$. (b) Entanglement entropy $\mathrm{EE}(t)$ between the left and the right half of the chain. (c) Bond dimension $D_{\mathrm{f}}(t)$ and its pre-trimming expansion $\widetilde{D}(t)$ per time step, for $D_{\max }=120$. (d,e) Error analysis: magnetization $\delta S^{z}(t)$ (solid line),i.e., the maximum deviation (over ℓ) of $S_{\ell}^{z}(t)$ from the exact result, , energy $\delta E(t)$ (dashed line), and discarded weight $\xi(t)$ (dotted line) for $D_{\max }=40$ (red), 80 (blue) and 120 (black), computed with (d) CBE-TDVP or (e) 2TDVP. Remarkably, the errors are comparable in size, although CBE-TDVP has much smaller computational costs.

FIG. S-1. (a) Forward-backward time evolution for the computation of $F(t)$. (b,c) Back-evolution of the domain wall, described by $\left|\Psi_{-}(\bar{t})\right\rangle$, computed using (b) CBE-TDVP and (c) 1TDVP. (d) Time evolution of $\delta F(\bar{t})=1-F(\bar{t})$, computed via 1TDVP with $D=120$ (dash-dotted line), and via CBETDVP using three values of $\widetilde{\epsilon}$, and either with $D_{\text {max }}=120$ (dashed lines) or $D_{\max }=\infty$ (solid lines). (e) Time evolution of the corresponding bond dimensions $D_{\mathrm{f}}(\bar{t})$ (solid lines) and $\widetilde{D}(\bar{t})$ (dots). (The solid green curve shows $D_{\mathrm{f}} / 5$.)

Phonon-induced pair attraction during electron-electron scattering

$$
\begin{aligned}
& H_{\mathrm{PH}}=\sum_{\ell} U n_{\ell \uparrow} n_{\ell \downarrow}+\sum_{\ell} \omega_{\mathrm{ph}} b_{\ell}^{\dagger} b_{\ell} \\
&+\sum_{\ell \sigma}\left(c_{\ell \sigma}^{\dagger} c_{\ell+1 \sigma}+\text { h.c. }\right)\left(-t+b_{\ell}^{\dagger}+b_{\ell}-b_{\ell+1}^{\dagger}-b_{\ell+1}\right) \\
& n_{\text {ph }}^{\max }=8, \quad d=4\left(n_{p h}^{\max }+1\right)=36
\end{aligned}
$$

FIG. 4. Peierls-Hubbard model: Real-space scattering of two electron wave packets, for $U=10$ and $\omega_{\mathrm{ph}}=3$, computed with $\delta=0.05, n_{\max }^{\mathrm{ph}}=8$ and $\mathrm{U}(1)$ spin symmetry. (a,b) Spin magnetic moment $S^{z}(x, t)$ for $g=0$ and $g=1$. (c) Phonon density $n^{\mathrm{ph}}(x, t)$, (d) bond dimensions, and (e) error analysis: energy $\delta E(t)$ (dashed line) and discarded weight $\xi(t)$ (dotted line), all computed for $g=1$, with $D_{\max }=500$.
(a) Without electron-phonon coupling, two wave packets bounce off each other due to strong U repulsion.
(b) With electron-phone coupling, the wave packets tend to stick together, while (c) phonons get activated.

