1. Energy variance [Hubig2018] When doing MPS computations involving SVD truncations of virtual bonds,

the results should be computed for several values of the bond dimension, \mathcal{D} , to check convergence as $D \rightarrow \infty$. Often it is also necessary to extrapolate the results to $D = \infty$, e.g. by plotting results versus n/D or some power thereof.

However, for some computational schemes, it is not a priori clear how the observable of interest scales with D, nor how it should be extrapolated to $D = \infty$. An example is ground state energy when computed using 1-site DMRG with subspace expansion [Hubig2015], because it does not rely on SVD truncation of bonds.

Thus, it is of interest to have a reliable error measure without requiring costly 2-site DMRG. A convenient scheme was proposed in [Hubig2018], based on a smart way to approximate the full energy variance,

 $\Delta_{E} := \left\| \left(H - E \right) \psi \right\|^{2} = \left\langle \psi \right| \left(\dot{H} - E \right)^{2} \left| \psi \right\rangle \quad (= \text{ zero for an exact eigenstate}) (1) \quad J \\ = \left\langle \psi \right| \left(\dot{H}^{2} \left| \psi \right\rangle - E^{2} \right), \quad \text{with} \quad E = \left\langle \psi \right| \left| \dot{H} \right| \psi \rangle \quad (z) \quad \Psi \in E_{S}^{exact}$

Computing $\langle \psi | \hat{\mu}^{\dagger} | \psi \rangle$ directly is costly for large systems with long-ranged interactions, such as 2D systems treated by DMRG snakes. Also, computing Δ_{c} as the difference between two potentially large numbers is prone to inaccuracies. [Hubig2018] found a computation scheme in which the subtraction of such large numbers is avoided a priori.

Key idea: use projectors $\mathcal{P}^{\mathsf{NL}}$ onto mutually orthogonal, irreducible spaces $\mathcal{V}^{\mathsf{NL}}$

Then extrapolations can be done by computing quantity of interested for several \mathbb{D} ,

but plotting the results via $\[Delta_{\rm E}\]$, and extrapolating to $\[Delta_{\rm E}\]$

Recall (2.11):
$$I_{V} = I_{d}^{\otimes k} = \sum_{\substack{n=0\\ n \neq 0}}^{k} p^{n} I_{n} p^{n} I_{n} p^{n} I_{n} \int_{completeness}^{n} (4) p^{n} I_{n} \int_{completeness}^{n} (4)$$

 $P^{2L} = \sum_{l=1}^{k} \frac{1}{\sqrt{2}}$

Insert completeness into definition of variance:
$$\Delta_{\boldsymbol{\varepsilon}} \stackrel{(4)}{=} \langle \psi | (\hat{\boldsymbol{\mu}} - \boldsymbol{\varepsilon}) \sum_{\boldsymbol{\lambda} \in \boldsymbol{\varepsilon}} P^{\boldsymbol{\mu} \boldsymbol{\lambda}} (\hat{\boldsymbol{\mu}} - \boldsymbol{\varepsilon}) | \psi \rangle = : \sum_{\boldsymbol{\lambda} \in \boldsymbol{\varepsilon}} \Delta_{\boldsymbol{\varepsilon}}^{\boldsymbol{\mu} \boldsymbol{\lambda}}$$

Now two crucial simplifications occur:

 $P^{1L} = \sum_{i=1}^{N} \sum_{i=1}$

(3)

(7)

(8)

If quantity of interest is energy, then extrapolation is linear, $\mathcal{F}_{g}(\Delta_{\mathcal{E}}) = \mathcal{F}_{q}^{e_{\mathcal{E}}e_{\mathcal{E}}} + a \cdot \Delta_{\mathcal{E}}$

TTT

n=0

Now two crucial simplifications occur:

$$\Delta_{E}^{oL} \stackrel{(5)}{=} \langle \psi | (\hat{\mu} - E) | \psi \rangle \langle \psi | (\hat{\mu} - E) \rangle | \psi \rangle = (E - E) (E - E) = o$$
(9)
(9)
(9)
(9)
(9)
(9)

N>0

.

$$\Delta_{E}^{nL} = \langle \psi | (\hat{H} - E) P^{nL} (\hat{H} - E) | \psi \rangle = \langle \psi | \hat{H} P^{nL} \hat{H} | \psi \rangle, \text{ since } P^{(n>0)L} | \psi \rangle = 0 \quad (10)$$
$$= \rho^{nL} \rho^{nL} \hat{H} \psi ||^{2} \qquad (10)$$

$$\Delta_{E} \simeq \Delta_{E}^{2S} = \Delta_{E}^{1L} + \Delta_{E}^{2L} = \langle \chi | \hat{H} P^{1S} \hat{H} | \chi \rangle + \langle \chi | \hat{H} P^{2S} \hat{H} | \chi \rangle \quad (12)$$

(11) is exact if longest-range terms in $\hat{\mu}$ are nearest-neighbor, because then $p(N \ge 3) \perp \hat{\mu} \mid \hat{\psi} \ge 0$ [Gleis2022a]

$$h = (: \text{ Recall } P^{1L} = \sum_{\ell=1}^{(r \le 11, 2, 16)} \sum_{\ell=1}^{\ell} \cdots \sum_{\ell=1}^{(r \le 11, 2, 16)} \sum_{\ell=1}^{\ell} \sum_{\ell=1}^{(r \le 11, 2, 16)} \sum_{\ell=1}^{(r \ge 11, 2, 16)} \sum_{\ell=1}^{(r \le 11, 2, 16)} \sum_{\ell=1}^{(r \ge 11, 2, 16)} \sum_{\ell=1}^{(r \ge$$

$$= \sum_{l=1}^{n} \sum_$$

$$M = z : \text{Recall} \qquad P^{2 \perp} = \sum_{l=1}^{2} \int_{\ell=1}^{\ell-1} \int_{\ell=1}^{\ell} \int_{\ell=1}^{\ell} \int_{\ell=1}^{\ell} \int_{\ell=1}^{\ell} P^{DD}_{\ell,\ell+1} \qquad (z_{P})$$

$$\Delta_{E}^{2\perp} = \langle \chi | \hat{H} p^{2\perp} \hat{H} | \chi \rangle = \| p^{2\perp} H \psi \|^{2} = \sum_{l=1}^{2} \| p_{l,l+1}^{D} H \psi \|^{2}$$
(21)

2. Controlled bond expansion (CBE) for DMRG [Gleis2022]

Problem: when exploiting symmetries, 1-site DMRG performs poorly, because it does not explore subspaces with different quantum numbers. An early remedy for this is 2-site DMRG, but that is computationally much more expensive than 1-site DMRG. Subsequent suggestions for 1-site DMRG with symmetries are 'density matrix perturbation' [White2005], the 'center matrix wave function formalism [McCulloch2007], 'subspace expansion' [Hubig2015], and 'controlled bond expansion' (CBE) [Gleis2022], which performs best.

Reminder of 1-site DMRG, in site-canonical representation: Local basis: $|\alpha, 6, \beta\rangle := |\alpha\rangle_{p-1}|\sigma\rangle|\beta\rangle_{p}$

$$\frac{A}{\gamma} \frac{A}{4\epsilon_{-1}} \frac{c_{e}}{c_{e}} \frac{B_{e+1}}{B_{e+1}} \frac{B}{\epsilon_{e+1}} \cdots (1)$$

Minimize energy with constraint of fixed normalization, 1 site at a time:

Solve for 'eigenvector' with lowest eigenvalue, say $\widetilde{\mathfrak{V}}_{\ell}^{\prime s}$, then do SVD on it to move to next site:

$$D \xrightarrow{\psi_{\ell}^{15}} B_{\ell+1} D \xrightarrow{f} D \xrightarrow{$$

Important: dimensions of C are fixed, hence truncation is neither needed nor possible!

A A Ae Ae Beti B Reminder of 2-site DMRG, in site-canonical representation: Local basis: $|\alpha, 6, \overline{\sigma}, \gamma\rangle := |\gamma\rangle_{\alpha} |\overline{\sigma}\rangle |\sigma\rangle |\alpha\rangle_{\beta}$ Minimize energy two sites at a time: Al Ne Beri (7) $\left[H_{\ell}^{2s}\right]^{\alpha'} \left[\Psi_{\ell}^{2s}\right]^{\alpha} = E\left[\Psi_{\ell}^{2s}\right]^{\alpha}$ $\alpha = (\mathbf{x}, \mathbf{c}, \mathbf{\bar{c}}, \mathbf{y})$ $\cot x = O(D^3 d^3 + D^3 d^2 t)$ Solve for 'eigenvector' with lowest eigenvalue, (\widetilde{MB}) , then do SVD and <u>truncate</u> (!) to move to next site:

Page 4

TS-III.2

Problem of single-site optimization: it is constrained to a variational space defined by outgoing state spaces $|\alpha\rangle_{\ell-1}|\beta\rangle_{\ell+1}$. If the ranges of quantum numbers \bigotimes_{κ} and \bigotimes_{β} for these spaces are too small to accurately represent the ground state, single-site DMRG has no way to enlarge them.

Two-site optimization does not have this problem: the <u>action of H</u> on two sites <u>enlarges</u> bond dimension in between, adding the full range of quantum numbers needed on that bond. If a certain quantum number was missing on that bond before the action of H, but appears afterwards with non-negligible weight, it will survive after SVD and truncation. Hence: two-site optimization can <u>add</u> missing quantum numbers, if needed.

But this comes at a cost: effective two-site Hamiltonian has dimension $D^2 d^2 \times D^2 d^2$. By contrast, effective one-site Hamiltonian has dimension $D^2 d \times D^2 d^2$. (9)

2-site optimization can reinstate missing blocks!

Which part of 2-site space is missed by $H_{\ell}^{(s)}$ and $H_{\ell+1}^{(s)}$?

Recall kept+discarded decomposition: $D + \overline{D} = dD$, $\overline{D} = D(d - i)$

Orthonormality of kept and discarded isometries:

Completeness:

$$\frac{A_{\ell}}{D \stackrel{}{}_{d} D} \oplus \frac{\overline{A}_{\ell}}{D \stackrel{}{}_{d} \overline{D}} = \frac{A_{\ell}^{\mathbb{I}}}{D \stackrel{}{}_{d} D d}, \quad \frac{B_{\ell}^{\mathbb{I}}}{D d \stackrel{}{}_{d} D} = \frac{B_{\ell}}{D \stackrel{}{}_{d} D} \oplus \frac{\overline{B}_{\ell}}{\overline{D} \stackrel{}{}_{d} D} \quad (s)$$

$$A_{\ell}^{\dagger}A_{\ell} = \bigcap_{A_{\ell}^{*}}^{A_{\ell}} = \left(= \mathbb{1}_{\ell}^{\mathsf{K}}, \qquad B_{\ell}B_{\ell}^{\dagger} = \bigcup_{B_{\ell}^{*}}^{B_{\ell}} = \right) = \mathbb{1}_{\ell-1}^{\mathsf{K}} \qquad \text{(16a)}$$

$$(\prod_{\ell} = \left(= \mathbb{1}_{\ell}^{\mathrm{D}}, \quad (\prod_{\ell} = 0, \quad \prod_{\ell} = \right) = \mathbb{1}_{\ell-1}^{\mathrm{D}}, \quad \prod_{\ell} = 0$$
 (16b)

$$\frac{1}{\nabla_{\ell}} + \frac{1}{\nabla_{\ell}} = \left. \supset \right|_{\ell} = \mathbb{1}_{\ell}^{P}, \qquad \underbrace{k}_{\ell} + \underbrace{k}_{\ell} = \left| c = \mathbb{1}_{\ell-1}^{P} \right|_{\ell} \quad \text{(66)}$$

This can also seen by considering energy variance:

Minimized by 1s DMRG, vanishes for converged 1s-GS.

captured by 1s DMRG

$$\Delta_E^{2\perp} = \sum_{\ell=1}^{\mathcal{L}-1} \left\| \underbrace{\begin{array}{c} \mathcal{L} \\ \mathcal{L} \\ \ell \end{array}}_{\ell+1} \right\|^2 = \left\| \mathbf{p}^{\mathbf{2}\mathbf{1}} \mathbf{\mu} \mathbf{\psi} \right\|^2$$

Minimized by 2s DMRG, vanishes for converged 2s-GS.

Subspace missed by 1s DMRG but explored by 2s DMRG is the DD subspace: image $\left(\overline{A}_{\ell} \otimes \overline{B}_{\ell+1}(\neg \otimes r)\right)$ It contains 'missing' symmetry sectors (good!), but is huge (bad!) dimension: $\overline{D} \times \overline{D}$ = huge!

Key insight [Gleis2022]: $H_{\ell}^{25} \psi_{\ell}^{25}$ has significant weight only on <u>small</u> subspace of DD, the 'relevant DD' (rDD) !

Hence, it suffices to expand bond to include only the rDD ! View rDD as image $\left(\widetilde{A}_{\ell}^{\mathrm{tr}} \otimes \overline{B}_{\ell+1}(\mathbf{T} \otimes \mathbf{\mathcal{P}})\right)$ or image $\left(\overline{A}_{\ell} \otimes \widetilde{B}_{\ell+1}^{\mathrm{tr}}(\mathbf{T} \otimes \mathbf{\mathcal{P}})\right)$

Truncated isometries \uparrow or \uparrow can be found via 'shrewd selection' = (i) preselection, then (ii) final selection \checkmark (see next section)

[for right-to-left sweep]

(i) Compute truncated isometry $\widetilde{A}_{\ell}^{\mathrm{tr}}$ (\checkmark)

(ii) expand bond ℓ :

so that initialized version of expanded bond = old bond: $A_{\ell}^{\alpha\rho}C_{\ell}^{\mu\rho} = A_{\ell}C_{\ell}$ $\int_{D_{d}} \int_{d} \int_{d}$

$$H_{\ell+1}^{1s,ex} = \underbrace{\begin{array}{c} & & \\ & &$$

 $\mathbf{D} \xrightarrow{A_{\ell}} \underbrace{\widehat{C}_{\ell+1}}_{D+\widetilde{D}} \underbrace{D}_{\ell} \xrightarrow{\Sigma} \underbrace{D}_{\ell} \xrightarrow{\Sigma} \underbrace{D}_{\ell} \xrightarrow{\widetilde{C}_{\ell}} \underbrace{\widetilde{B}_{\ell+1}}_{D} \underbrace{D}_{\ell} \xrightarrow{(\tau_{\mathcal{F}})}$

$$E = E \qquad (24)$$

(28)

and construct expanded 1s Hamiltonian:

- (iii) Find GS of expanded 1s Hamiltonian:(e.g. Lanczos eigensolver), as in 1s DMRG:
- (iv) Shift isometry center from l_{+1} to l_{-1} :

The truncated weight at step (iv), say \int , serves as error measure.

In practice: suppose we want to gradually grow the bond dimension by a factor \checkmark per sweep. Then, for each update, we need to increase bond dimension from an initial \mathbb{D}_i to a final $\mathbb{D}_f \approx \ll \mathbb{D}_i$, with $\ll > 1$. (26)

Thus, expand from	Di	to	$D_i + \widetilde{D}$	2	$D_f(1+\delta)$), with	8 > 0		(52)
-------------------	----	----	-----------------------	---	-----------------	---------	-------	--	------

and in (iv), truncate from $\mathcal{D}_{f}(1 \neq S)$ to \mathcal{D}_{L} .

Typical choices: $\mathscr{A} = 1.1$ $\mathfrak{I} = 0.1$ (29)

Optimal truncation can be achieved via SVD; but that has 2s costs, $\mathcal{O}(\mathcal{D}^3 \mathcal{U}^3)$

Instead, use `shrewd selection' (cheap, efficient, practical, though not strictly optimal), involving two steps:

(i) Preselection: truncate
$$\overline{A}_{\ell}(\nabla) \rightarrow \widehat{A}_{\ell}^{\mathrm{pr}}(\nabla)$$
 to minimize
orthogonal preselected
complement complement
Truncate central bond in presence of its environment,
with MPO bond open (to reduce numerical costs)
(ii) Final selection: truncate $\widehat{A}_{\ell}^{\mathrm{pr}}(\nabla) \rightarrow \widetilde{A}_{\ell}^{\mathrm{tr}}(\nabla)$ to minimize $\zeta_{3} = \begin{bmatrix} w & w & w & w \\ 0 & w & w & w \\ 0 & 0 & 0 & 0 \end{bmatrix}$ (3)
(ii) Final selection: truncate $\widehat{A}_{\ell}^{\mathrm{pr}}(\nabla) \rightarrow \widetilde{A}_{\ell}^{\mathrm{tr}}(\nabla)$ to minimize $\zeta_{3} = \begin{bmatrix} w & w & w & w \\ 0 & w & w & w \\ 0 & 0 & 0 & 0 \end{bmatrix}$ (3)

Truncate again, now in with MPO bond closed, as appropriate for $\exists_{\ell}^{z_s} \psi_{\ell}^{z_s}$

Details of preselection [steps (a-c)] and final selection [step (d)]:

- arrows indicate bond being opened before doing SVD
- shading and symbols in matching colors indicate SVD input and output
- output is written as USV^{\dagger} or usv^{\dagger} when involving no or some truncation, respectively
- use $= \left|_{\ell} = \left|_{\ell} \left|_{\ell} \right|_{\ell}$
- $\begin{array}{c} A_{\ell} & \Lambda_{\ell} & B_{\ell+1} \\ \hline D & D \\ w \\ \overline{D} & \overline{D} \\ d \\ \overline{D} & \overline{D} \\ d \\ \overline{D} & \overline{D} \\ d \\ \overline{D} & \overline{D} \\ \overline{D} \\$
- (a) Canonicalize right side (shaded pink) of diagram, assigning its weights to central MPS bond.
- (b) Truncate central MPS bond, D → D^f = D/w (reason for this choice: see (d))
 (c) Regroup, to combine truncated MPS bond and MPO bond into composite bond of dimension D = D^f w = D
 If using exact arithmetic, this would involve no truncation. In practice (numerically) zero singular values
 Ø(ro⁻¹⁶), may arise. They must be truncated to ensure = O, so that image (T) ⊂ image(T).
- (d) Final selection: close MPO bond, then truncate central MPS bond: $\hat{D} \rightarrow \hat{D} < \mathcal{D}$ (e.g. $\tilde{D} = 0.1 \hat{D}$). To ensure 1s costs for this step, we need $\hat{D}' \omega = \hat{D} = \mathcal{D}$, hence choose $\hat{D}' = \hat{D}/\omega$ in (b).

Important: By design, every step has at most 1s costs, $\mathcal{O}(\underline{n}^3 d \omega)$ Moreover, CBE captures the most most relevant contributions from $H_{\underline{k}}^{25}$ 2s accuracy and convergence per sweep, at 1s cost !!

Results for CBE-DMRG:

Comparison of three truncation settings: grey: optimal truncation via SVD (grey)

serves as a reference

orange: moderate preselection, $\mathcal{D}^{t*} = \mathcal{D}_{f}^{t} / \omega^{*}$ then final selection $\widetilde{\mathcal{D}}^{*} = 0.1 \mathcal{D}_{f}$ agrees rather well with reference!

brown: severe preselection, $\mathcal{D}^{\prime \sharp} = \mathfrak{d} \cdot \mathfrak{D}_{f}^{\sharp} / \mathfrak{W}^{\sharp}$ then final selection $\widetilde{\mathcal{D}}^{\sharp} = \mathfrak{d} \cdot \mathfrak{D}_{f}$ misses some information from reference

Take-home message: optimal truncation requires computation of a huge amount of singular values, most of which are discarded anyway. Those that are kept can be very well captured using shrewd selection!

FIG. 3. Hubbard-Holstein (HH) model: (a) Convergence of the GS energy versus number of half-sweeps n_s at fixed $d^* = 3(N_{\rm ph}^{\rm max} + 1)$. E_0 was obtained by linear ξ extrapolation of data from $D_{\rm max}^* \in [1000, 1200]$. (b) CPU time per sweep for various d^* at fixed $D_{\rm max}^*$, showing d^* (CBE) vs d^{*2} (2s) scaling. Hubbard cylinders (HC): Error in GS energy vs ξ for (c) 10×4 and (d) 10×6 HCs, obtained with CBE (black) and 2s (red) DMRG, for various $D_{\rm max}^*$ (legends). Since 2s CPU times far exceed those of CBE, 2s data is only shown for $D_{\rm max}^* \leq 10k$. Reference energies $E_0 = -27.881\,694\,2$ (10×4) and $-41.747\,496\,1$ (10×6) are obtained by linear ξ extrapolation of the four most accurate CBE results to $\xi = 0$ (gray line).

$$\begin{split} H_{\rm HH} &= -\sum_{\ell\sigma} (c^{\dagger}_{\ell\sigma} c_{\ell+1\sigma} + {\rm H.c.}) + 0.8 \sum_{\ell} n_{\ell\uparrow} n_{\ell\downarrow} \\ &+ 0.5 \sum_{\ell} b^{\dagger}_{\ell} b_{\ell} + \sqrt{0.2} \sum_{\ell} (n_{\ell\uparrow} + n_{\ell\downarrow} - 1) \times (b^{\dagger}_{\ell} + b_{\ell}) \\ H_{\rm HC} &= -\sum_{\langle \ell, \ell' \rangle, \sigma} (c^{\dagger}_{\ell\sigma} c_{\ell'\sigma} + {\rm H.c.}) + 8 \sum_{\ell} n_{\ell\uparrow} n_{\ell\downarrow} \end{split}$$

FIG. S-10. Error in GS energy versus discarded weight for the Kondo-Heisenberg-Holstein (KHH) model on a 10×4 cylinder, with (a) only Kondo coupling, (b) Kondo and Heisenberg coupling, (c) Kondo and Holstein coupling and (c) Kondo, Heisenberg and Holstein coupling. Legends state our choices for $J_{\rm H}$ and $N_{\rm ph}^{\rm max}$, and corresponding values of $d^*[d]$ and $w^*[w]$.

$$H_{\rm KH} = -\sum_{\langle \boldsymbol{\ell}', \boldsymbol{\ell}' \rangle, \sigma} (c^{\dagger}_{\boldsymbol{\ell}'\sigma} c_{\boldsymbol{\ell}'\sigma} + {\rm H.c.}) + J_K \sum_{\boldsymbol{\ell}'} S_{\boldsymbol{\ell}'} \cdot s_{\boldsymbol{\ell}'} + \frac{1}{2} \sum_{\langle \boldsymbol{\ell}', \boldsymbol{\ell}' \rangle} S_{\boldsymbol{\ell}'} \cdot S_{\boldsymbol{\ell}'}$$

 J_{k} tunes quantum phase transition between two phases with different Fermi surface volumes.

FIG. 4. Kondo-Heisenberg (KH) cylinder: Fermi wave vectors $|k_{Fx}(k_y)|$ for a 40 × 4 KH cylinder for various values of J_K . Symbols are data points (error bars are below symbol size), lines are guides to the eye. In the insets, black lines sketch the presumed FS for $\mathcal{L}_y \to \infty$, dotted lines show the k_y values allowed for $\mathcal{L}_y = 4$.

4. CBE-TDVP [Li2022]

Recall 1s TDVP:

Schrödinger equation for MPS:

$$i \frac{d}{dt} |\bar{\psi}[m(t)]\rangle = \hat{P}^{is}\hat{H} |\bar{\psi}[m(t)]\rangle$$
 (1)

$$\Psi = * \underbrace{A_1 \quad A_2}_{D \quad d} \underbrace{A_\ell}_{D \quad d} \underbrace{C_{\ell+1} \quad B_{\ell+2}}_{D \quad d} \underbrace{B_{\mathcal{L}-1} \quad B_{\mathcal{L}}}_{T \quad d} \underbrace{B_{\mathcal{L}}}_{T \quad d}$$

$$\mathcal{P}^{1s} = \sum_{\ell'=1}^{\mathscr{L}} * \prod_{1}^{\mathscr{L}} \left| \bigcup_{\ell'} \mathsf{V}_{\mathscr{L}}^{\mathscr{L}} - \sum_{\ell'=1}^{\mathscr{L}-1} * \prod_{1}^{\mathscr{L}} \mathsf{V}_{\ell'} \mathsf{V}_{\mathscr{L}}^{\mathscr{L}} \right|$$
(3)

1s TDVP algorithm (sweeping right-to-left):

- $i\dot{C}_{\ell+1} = H_{\ell+1}^{(s)} C_{\ell+1}$ from $t \rightarrow t' = t + 8$ (1) Integrate
- (2) QR factorize $\zeta_{\ell+1}({\mathfrak{t}}) = \Lambda_{\ell}({\mathfrak{t}}) \mathcal{B}_{\ell+1}({\mathfrak{t}})$
- (3) Integrate $i\dot{\Lambda}_{\ell} = -i H_{\ell}^{b} \Lambda_{\ell}$ from $t' \rightarrow t$
- $A_{\ell}(\ell) (_{\ell+1}(\ell) \rightarrow \underbrace{A_{\ell}(\ell) \wedge_{\ell}(\ell) }_{=: C_{\ell}(\ell)} (\ell') \text{ with}$ (4) Update

Advantages of 1s TDVP: applicable to long-ranged Hamiltonians, numerical stability, unitary time-evolution, energy conservation (because truncation happens before, not after, time step!)

1s-TDVP has two leading errors:

(i) Lie-Trotter error, can be reduced by higher-order integration schemes, e.g. third-order, with error $O(s^3)$ $\Delta_{\mathbf{P}} = \left\| \left(1 - \hat{\mathbf{P}}^{1s} \right) \hat{\mathbf{H}} \psi(t) \right\|$ (ii) Projection error, quantified by (4)

Projection error can be reduced by using 2s TDVP,

Then projection error becomes $\Delta_{P} = \| (1 - \hat{P}^{2S}) \| \psi(t) \|$

However, after time step, another truncation is needed to bring down bond dimension from \mathbb{D} \measuredangle to \mathbb{D} . This truncation-after-time-step leads to non-unitary time-evolution, non-conservation of energy.

CBE-TDVP

Key idea: use CBE to reduce 2s contribution to Δ_{p} , given by $\Delta_{p}^{2\perp} = \| \hat{p}^{2\perp} (1 - \hat{p}^{1\perp}) \hat{H} \psi(t) \|$ (7) $\mathcal{P}^{2\perp} = \sum_{\ell=1}^{\mathscr{L}-1} \underbrace{\mathbb{I}}_{\mathcal{N}} \underbrace{\mathbb{I}}_{\mathcal{N}} \underbrace{\mathbb{I}}_{\mathcal{N}} \underbrace{\mathbb{I}}_{\mathcal{N}} \underbrace{\mathbb{I}}_{\mathcal{L}} \underbrace{\mathbb{I$ (8)

 $\Delta_{\rho}^{2\perp}$ is the same object is that minimized for CBE-DMRG! Hence, CBE is also useful here!

We add just one step (0) to 1s-TDVP algorithm (when sweeping right-to-left), using: (0) expand $\mathcal{D} \rightarrow \mathcal{D} + \widetilde{\mathcal{D}}$ for bond ℓ , using $A_{\ell} \rightarrow A_{\ell}^{\ell \kappa}$, $C_{\ell+1} \rightarrow C_{\ell+1}^{\ell \kappa p}$, $H_{\ell+1}^{\ell s} \rightarrow H_{\ell+1}^{\ell s,\ell c p}$

$$\frac{d}{dt} \left| \overline{\psi}[m(t)] \right\rangle = \hat{P}^{2s} \hat{H} \left| \overline{\psi}[m(t)] \right\rangle \qquad (5)$$

$$\mathcal{P}^{2s} = \sum_{\ell=1}^{\mathscr{L}-1} \frac{\mathcal{A}}{1} \Big|_{\ell} \Big| \frac{\mathcal{A}}{\mathcal{P}\mathcal{P}} - \sum_{\ell=2}^{\mathscr{L}-1} \frac{\mathcal{A}}{1} \Big|_{\ell} \frac{\mathcal{A}}{\mathcal{P}\mathcal{P}\mathcal{P}} \tag{6}$$

2+1

H14[M(H)])

TS-III.4

$$\frac{A_{\ell}}{D d} \oplus \frac{\widetilde{A}_{\ell}^{\text{tr}}}{D d} = \frac{A_{\ell}^{\text{ex}}}{D d} \underbrace{C_{\ell+1}^{\text{ex}}}_{(D+\widetilde{D})' d} = \underbrace{C_{\ell+1}^{\ell+1}}_{\ell+1}, \qquad (9)$$

$$H_{\ell+1}^{(1,\mathrm{ex})} = \underbrace{\begin{array}{c}} & & \\ & &$$

Other steps remain as before, except that in (2), QR factorization is replaced by SVD, to 'trim bond dimension from $\mathcal{D} + \widetilde{\mathcal{D}}$ to final value \mathcal{D}_{f} , chosen such that truncation error is $\leq 10^{-12}$. (for early times), or such that $\mathcal{D}_{f} = \mathcal{D}_{\text{MAX}}$ (for later times, to limit computational costs). Trimming error is characterized by discarded weight, $\mathcal{J}(\mathcal{L})$, which can be controlled or monitored. TDVP properties of unitary time evolution and energy conservation hold within $(\mathcal{O}(\mathcal{I}(\mathcal{L})))$.

Benchmarking CBE-TDVP for exactly solvable XX model:

$$H_{\rm XX} = \sum_{\ell} \left(S^x_{\ell} S^x_{\ell+1} + S^y_{\ell} S^y_{\ell+1} \right) \quad |\Psi(0)\rangle = |\uparrow\uparrow\dots\uparrow\downarrow\downarrow\dots\downarrow\rangle$$

FIG. 1. 100-site XX spin chain: Time evolution of a domain wall, computed with time step $\delta = 0.05$ and U(1) spin symmetry. (a) Local magnetization profile $S_{\ell}^{z}(t)$. (b) Entanglement entropy EE(t) between the left and the right half of the chain. (c) Bond dimension $D_{\rm f}(t)$ and its pre-trimming expansion $\tilde{D}(t)$ per time step, for $D_{\rm max} = 120$. (d,e) Error analysis: magnetization $\delta S^{z}(t)$ (solid line), i.e., the maximum deviation (over ℓ) of $S_{\ell}^{z}(t)$ from the exact result, , energy $\delta E(t)$ (dashed line), and discarded weight $\xi(t)$ (dotted line) for $D_{\rm max} = 40$ (red), 80 (blue) and 120 (black), computed with (d) CBE–TDVP or (e) 2TDVP. Remarkably, the errors are comparable in size, although CBE–TDVP has much smaller computational costs.

 $F(\bar{t}) = |\langle \Psi_{-}(\bar{t})|\Psi_{+}(t)\rangle|^{2}, \quad \bar{t} = t_{\max} - t \in [0, t_{\max}]$

FIG. S-1. (a) Forward-backward time evolution for the computation of F(t). (b,c) Back-evolution of the domain wall, described by $|\Psi_{-}(\bar{t})\rangle$, computed using (b) CBE–TDVP and (c) 1TDVP. (d) Time evolution of $\delta F(\bar{t}) = 1 - F(\bar{t})$, computed via 1TDVP with D = 120 (dash-dotted line), and via CBE–TDVP using three values of $\tilde{\epsilon}$, and either with $D_{\max} = 120$ (dashed lines) or $D_{\max} = \infty$ (solid lines). (e) Time evolution of the corresponding bond dimensions $D_{\rm f}(\bar{t})$ (solid lines) and $\tilde{D}(\bar{t})$ (dots). (The solid green curve shows $D_{\rm f}/5$.)

Phonon-induced pair attraction during electron-electron scattering

$$H_{\rm PH} = \sum_{\ell} U n_{\ell\uparrow} n_{\ell\downarrow} + \sum_{\ell} \omega_{\rm ph} b_{\ell}^{\dagger} b_{\ell} + \sum_{\ell \sigma} (c_{\ell\sigma}^{\dagger} c_{\ell+1\sigma} + \text{h.c.}) (-t + b_{\ell}^{\dagger} + b_{\ell} - b_{\ell+1}^{\dagger} - b_{\ell+1})$$

$$H_{\rm ph}^{\text{wax}} = 8, \quad d = u (M_{\rm ph}^{\text{wax}} + 1) = 36$$

FIG. 4. Peierls–Hubbard model: Real-space scattering of two electron wave packets, for U=10 and $\omega_{\rm ph}=3$, computed with $\delta = 0.05$, $n_{\rm max}^{\rm ph}$ = 8 and U(1) spin symmetry. (a,b) Spin magnetic moment $S^z(x,t)$ for g=0 and g=1. (c) Phonon density $n^{\rm ph}(x,t)$, (d) bond dimensions, and (e) error analysis: energy $\delta E(t)$ (dashed line) and discarded weight $\xi(t)$ (dotted line), all computed for g=1, with $D_{\rm max} = 500$.

(a) Without electron-phonon coupling, two wave packets bounce off each other due to strong U repulsion.

(b) With electron-phone coupling, the wave packets tend to stick together, while (c) phonons get activated.