
TS-III.1

[Hubig2018]

When doing MPS computations involving SVD truncations of virtual bonds, 

the results should be computed for several values of the bond dimension,       , 

to check convergence as               . Often it is also necessary to extrapolate the 

results to               ,  e.g. by plotting results versus             or some power thereof. 

However, for some computational schemes, it is not a priori  clear how the observable of interest scales 

with      , nor how it should be extrapolated to              . An example is ground state energy when computed 

using 1-site DMRG with subspace expansion [Hubig2015], because it does not rely on SVD truncation of bonds. 

Thus, it is of interest to have a reliable error measure without requiring costly 2-site DMRG. A convenient

scheme was proposed in [Hubig2018], based on a smart way to approximate the full energy variance, 

(= zero for an exact eigenstate)

with 

Computing                       directly is costly for large systems with long-ranged interactions,

such as 2D systems treated by DMRG snakes. Also, computing          as the difference 

between two potentially large numbers is prone to inaccuracies. [Hubig2018] found

a computation scheme in which the subtraction of such large numbers is avoided a priori.

Then extrapolations can be done by computing quantity of interested for several     ,

but plotting the results via            , and extrapolating to           

If quantity of interest is energy, then extrapolation is linear, 

Key idea: use projectors           onto mutually orthogonal, irreducible spaces    

orthogonality

Insert completeness into 

definition of variance: 

Now two crucial simplifications occur:

Recall (2.11): 

completeness

with 

(2.16) (2.17)

Energy variance1.

Tangent space methods III: Energy variance, 
controlled bond expansion (CBE)
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Now two crucial simplifications occur:

largest contribution to variance cancels by construction!

since 

In practice, approximate              by the first two nonzero terms:            

(11) is exact if longest-range terms in        are nearest-neighbor, because then 

Explicit computations:

Recall

mutually 
orthogonal!
(TS-I.4.15)

We would like to avoid computing explicitly, because of its large image dimension. 

So rewrite, using isometry condition for discarded sector: 

and completeness of kept together with discarded isometries: 

(TS-II.2.16)

(TS-II.2.11)

[Gleis2022a]
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(2.17)

Recall

again use 
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TS-III.2

Problem: when exploiting symmetries, 1-site DMRG performs poorly, because it does not explore 

subspaces with different quantum numbers. An early remedy for this is 2-site DMRG, but that is 

computationally much more expensive than 1-site DMRG. Subsequent suggestions for 1-site DMRG with 

symmetries are 'density matrix perturbation' [White2005], the 'center matrix wave function formalism 

[McCulloch2007],  'subspace expansion' [Hubig2015], and 'controlled bond expansion' (CBE) [Gleis2022], 
which performs best.

Minimize energy with constraint of 

fixed normalization, 1 site at a time:

Reminder of 1-site DMRG,

in site-canonical representation:

Local basis:

close 
zipper

Reminder of 2-site DMRG, 

in site-canonical representation:

Minimize energy two sites at a time:

Solve for 'eigenvector' with lowest eigenvalue, say            , then do SVD on it to move to next site:

Solve for 'eigenvector' with lowest eigenvalue,             , then do SVD and truncate (!) to move to next site:

Important: dimensions of           are fixed, hence truncation is neither needed nor possible!

[Gleis2022]

SVD

SVD
truncate

Local basis:

reshape

QR

cost ~

cost ~

2. Controlled bond expansion (CBE) for DMRG
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Problem of single-site optimization: it is constrained to a variational space defined by outgoing state spaces

                     .  If the ranges of quantum numbers        and        for these spaces are too small to accurately

represent the ground state, single-site DMRG has no way to enlarge them. 

Two-site optimization does not have this problem: the action of H on two sites enlarges bond dimension in

between, adding the full range of quantum numbers needed on that bond. If a certain quantum number was 

missing on that bond before the action of H, but appears afterwards with non-negligible weight, it will survive

after SVD and truncation. Hence: two-site optimization can add missing quantum numbers, if needed.

But this comes at a cost: effective two-site Hamiltonian has dimension

By contrast, effective one-site Hamiltonian has dimension 

SVD
truncate QR

1s DMRG:

updated      has same      

bond dimensions as initial 

truncation

2s DMRG:

states spaces: 

contains all quantum numbers consistent with 

updated            can have larger

bond dimensions than initial    

1-site optimization of truncated         will never find a good ground state if latter has non-negligible contributions 
from missing blocks. 

2-site optimization can reinstate missing blocks!

truncation on bond            causes missing states on all later bonds

Example: 4-site chain of spinless fermions, with total charge       

exploiting charge quantum numbers, with conservation law                            , where

                                                                                           enumerates distinct states with same charge

empty 
site

occupied 
site
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Which part of 2-site space is missed by            and          ?              

Recall kept+discarded decomposition:

Orthonormality of kept and 

discarded isometries:

Completeness:

Compare action of 1-site 

and 2-site Hamiltonians: 

This part is not 
captured by 1s DMRGThis can also seen by considering energy variance:

Minimized by 1s DMRG, vanishes for converged 1s-GS. Minimized by 2s DMRG, vanishes for converged 2s-GS.

Subspace missed by 1s DMRG but explored by 2s DMRG is the DD subspace:   image

dimension: = huge!It contains  'missing' symmetry sectors (good!), but is huge (bad!)

Key insight [Gleis2022]:                   has significant weight only on small subspace of DD, the 'relevant DD' (rDD) !

Hence, it suffices to expand bond to include only the rDD !

grey arrows: DD orange arrows: 
final selection for rDD

red arrows: 
preselection for rDD

View rDD as image

or image 

Truncated isometries         or         can be found via 'shrewd selection' = (i) preselection, then  (ii) final selection 

(see next section)

(III.1.16) (III.1.22)
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Controlled bond expansion (CBE)

(ii) expand bond 

and construct expanded 1s Hamiltonian: 

(i) Compute truncated isometry    

[for right-to-left sweep]

replace                    

so that initialized version of expanded bond = old bond: 

initial

(iii) Find GS of expanded 1s Hamiltonian:

     (e.g. Lanczos eigensolver), as in 1s DMRG:

(iv) Shift isometry center from           to         :

SVD, truncate

In practice: suppose we want to gradually grow the bond dimension by a factor       per sweep. Then, for each

update, we need to increase bond dimension from an initial        to a final                    , with         .            

Thus, expand from to , with 

  and in (iv), truncate from 

Typical choices: 

to 

The truncated weight at step (iv), say        ,  serves as error measure.

since
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TS-III.3

Goal:               truncate                                      to minimize

Instead, use `shrewd selection' (cheap, efficient, practical, though not strictly optimal), involving two steps: 

(i) Preselection: truncate                                      to minimize

(ii) Final selection: truncate           to minimize

Truncate central bond in presence of its environment, 

with MPO bond open (to reduce numerical costs)

orthogonal 
complement

truncated
complement

orthogonal 
complement

preselected 
complement

preselected 
complement

truncated 
complement

Truncate again, now in with MPO bond closed, 

as appropriate for 

Details of preselection [steps (a-c)] and final selection [step (d)]:

(a) Canonicalize right side (shaded pink) of diagram, assigning its weights to central MPS bond.

arrows indicate bond being 
opened before doing SVD

-

shading and symbols in 
matching colors indicate SVD 
input and output

-

output is written as          or
when involving no or some 
truncation, respectively

-

use -

(b) Truncate central MPS bond, (reason for this choice: see (d))

(c) Regroup, to combine truncated MPS bond and MPO bond into composite bond of dimension 

(d) Final selection: close MPO bond, then truncate central MPS bond: 

If using exact arithmetic, this would involve no truncation. In practice (numerically) zero singular values         

               , may arise. They must be truncated to ensure , so that  image image 

To ensure 1s costs for this step, we need                              , hence choose                      in (b). 

(e.g.                   ).

Optimal truncation can be achieved via SVD; but that has 2s costs, 

Important: By design, every step has at most 1s costs, 

Moreover, CBE captures the most most relevant contributions from 

2s accuracy and convergence 

per sweep, at 1s cost !!

3. Shrewd selection
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Comparison of three truncation settings:

grey: optimal truncation via SVD (grey)

        serves as a reference

Take-home message:  optimal truncation requires

computation of a huge amount of singular values,

most of which are discarded anyway. Those that are 

kept can be very well captured using shrewd selection!

orange: moderate preselection,                    

            then final selection

            agrees rather well with reference!

brown: severe preselection, 

           then final selection

           misses some information from reference

Results for CBE-DMRG:

(a) CBE and 2s DMRG have same convergence rate per sweep.

(b) CBE has 1s costs ~        , much faster than 2s DMRG ~

(c,d) Reliable convergence with increasing       , decreasing 

tunes quantum phase transition between two phases
with different Fermi surface volumes.
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TS-III.4[Li2022]

Schrödinger equation for MPS:

Recall 1s TDVP:

1s TDVP algorithm (sweeping right-to-left):

(1) Integrate from         

(2) QR factorize 

(3) Integrate from          

(4) Update with 

1s-TDVP has two leading errors:   

(i) Lie-Trotter error, can be reduced by higher-order integration schemes, e.g. third-order, with error 

(ii) Projection error, quantified by 

Advantages of 1s TDVP:  applicable to long-ranged Hamiltonians, numerical stability, unitary 

time-evolution, energy conservation  (because truncation happens before, not after, time step!)

Projection error can be reduced by using 2s TDVP, 

Then projection error becomes 

However, after time step, another truncation is needed to bring down bond dimension from           to       .

This truncation-after-time-step leads to non-unitary time-evolution, non-conservation of energy.

CBE-TDVP

Key idea: use CBE to reduce 2s contribution to           , given by 

          is the same object is that minimized for CBE-DMRG!  Hence, CBE is also useful here!

We add just one step (0) to 1s-TDVP algorithm (when sweeping right-to-left), using:

(0) expand for bond      , using 

4. CBE-TDVP 
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Other steps remain as before, except that in (2), QR factorization is replaced by SVD, to 'trim bond

dimension from                  to final value           , chosen such that truncation error is 

(for early times), or such that                        (for later times, to limit computational costs).

Trimming error is characterized by discarded weight,            , which can be controlled or monitored.

TDVP properties of unitary time evolution and energy conservation hold within                   .

Benchmarking CBE-TDVP for exactly solvable XX model:

Phonon-induced pair attraction during electron-electron scattering

(a) Without electron-phonon coupling, two wave packets bounce off each other due to strong U repulsion.

(b) With electron-phone coupling, the wave packets tend to stick together, while (c) phonons get activated.
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