We consider time evolution using 'time-dependent variational principle' (TDVP)

1. 1-site TDVP [Haegeman2016, App. B]
tangent space of MPS having one

Schrödinger equation for MPS:

$$
\begin{equation*}
i \frac{d}{d t}|\bar{\psi}[M(t)]\rangle=\hat{H}|\bar{\psi}[m(t)]\rangle \tag{1}
\end{equation*}
$$ updated tensor

space of MPS with specified dimensions

if we insist on using MPS with fixed bond dimensions, left side has following form:

Each term differs from $|\Psi(t\rangle\rangle$ by precisely one site tensor or on bond tensor, so left side is a state in the tangent space, \mathbb{V}^{15} of $|\Psi(t)\rangle$. But right side of (1) is not, since since $H|\Psi(t)\rangle$ can have larger bond dimensions than $\mid \Psi(\{ \rangle\rangle$.

So, project right side of (1) to $V^{1 s}$: $\left.\left.\quad i \frac{d}{d t}|\underline{\psi}[M(t)]\rangle \underset{\hat{\lambda}}{\approx} \hat{p}^{1 s} \hat{H} \right\rvert\, \psi[m(t)]\right)$ tangent space approximation

Left and right sides of (4) are structurally consistent. To see this, consider bond ℓ
Left side of (4) contains:

$$
\begin{equation*}
\frac{d}{d t} \frac{A_{l} \Lambda_{l} B_{l+1}}{40 \frac{p}{p}}=\frac{\dot{A}_{l} \Lambda_{l} B_{l+1}}{4}+\frac{A_{l} \dot{\Lambda}_{l} B_{l+1}}{4}+\frac{A_{l} \Lambda_{l} \dot{B}_{l+1}}{p} \tag{5}
\end{equation*}
$$

Decompose: $\dot{A}_{l}=A_{l} \Lambda_{l}^{\prime}+\bar{A}_{l} \bar{\Lambda}_{l}^{\prime}, \quad B_{l+1}=\Lambda_{l}^{\prime \prime} B_{l+1}+\bar{\Lambda}^{\prime \prime} \bar{B}_{l+1}$
Then we find:

Right side of (4) requires tangent space projector. Consider its form (TS-I.5.25):

The three terms with $\bar{l}=l, \quad l^{\prime}=l, \quad \bar{l}=l+1$, applied to , $\hat{H}|\bar{\Psi}(t)\rangle$, yield

matching structure of (7). Thus, $p^{1 s}$, applied to $H(\Psi(t))$, yields terms of precisely the right structure!

To integrate projected Schrödinger eq. (4), we write tangent space projector in the form (TS-I.5.26):
and write (4) as

Right side is sum of terms, each specifying an update of one $\psi_{l}^{\text {ls }}$ or $\psi_{l}^{\frac{1}{b}}$ on the left. Eq. (4) can be integrated one site at a time, by defining the updates through the following local Schrödinger equations:

In site-canonical form, site ℓ involves two terms linear in $C_{l}: \quad i C_{l}(t)=H_{l}^{1 S} C_{l}(t)$
Their contribution can be integrated exactly: replace $C_{e}(t)$ by $\quad C_{l}(t+\tau)=e^{-i H_{l}^{\prime S} \tau} C_{l}(t) \quad(1 /)$

In bond-canonical form, site ℓ involves two terms linear in $\Lambda_{l}: \quad i \Lambda_{l}(t)=-H_{l}^{b} \Lambda_{l}(t) \quad(15)$

Their contribution can be integrated exactly: replace Λ_{ℓ}
(t) by $\Lambda_{e}(t-\tau)=e^{i H_{l}^{b} \tau} \Lambda_{l}(t)$

In practice, $e^{-i H_{l}^{\prime S} \tau} C_{l}$ and $e^{i H_{l}^{b} \tau} \Lambda_{l} \quad$ are computed by using Krylov methods.
Build a Krylov space by applying $H_{l}^{1 s}$ multiple times to C_{l}, set up the tridiagonal representation $\left[\mathrm{H}_{l}^{\text {cs }}\right]_{\text {Krylov }}$ of $H_{l}^{1 / s}$ in this basis, then compute the matrix exponential in this basis, and apply result to C_{l}.
Likewise for H_{l}^{b} and Λ_{l}.

To successively update entire chains, alternate between site- and bond-canonical form, propagating forward or backward in time with H_{ℓ}^{15} or H_{ℓ}^{b}, respectively:

$$
C_{1}(t):=2
$$

1. Forward sweep, for $l=1, \ldots, \mathcal{L}-1 \quad$, starting from

$$
\begin{equation*}
B_{1}(t) B_{2}(t) \ldots B_{\mathcal{L}}(t) \tag{17}
\end{equation*}
$$

$$
\begin{aligned}
& C_{e}(t) B_{l+1}(t) \\
& \xrightarrow[H_{l(a)}^{(s)}]{H_{l}^{(s)}} C_{e}(t+\tau) B_{l+1}^{1(b)}(t) \\
& =\overbrace{A_{l}(t+\tau) \widetilde{\Lambda}_{l}(t+\tau) B_{l+1}(t)}
\end{aligned}
$$

$$
\xrightarrow[I(c)]{\stackrel{H_{l}^{b}}{\longrightarrow}} A_{l}(t+\tau) \underbrace{\hat{\Lambda}_{l}(t) B_{l+1}(t)}_{l(d)}
$$

$$
=A_{l}(t+\tau) C_{l+1}(t)
$$

until we reach last site, and MPS described by
2. Turn around: $C_{\mathcal{L}}(t)$

3. Backward sweep, for $\ell=\mathcal{L}-1, \ldots, 1$, starting from $A_{1}(t+\tau) \ldots A_{\mathcal{L}-1}(t+\tau) C_{\mathcal{L}}(t+2 \tau)$

$$
A_{\ell}(t+\tau) C_{\ell+1}(t+2 \tau)
$$

$$
\begin{array}{lll}
t+2 \tau \uparrow \tag{21}\\
t+\tau- & A & A \\
t & Y & M
\end{array}
$$

$$
\begin{aligned}
& \xrightarrow[2(a)]{H_{\mathcal{L}}^{1 s}} C_{\mathcal{L}}(t+\tau) \\
& \xrightarrow[2(6)]{H_{\mathcal{L}}^{15}} C_{\mathcal{L}}(t+2 \tau)
\end{aligned}
$$

$$
A_{\ell}(t+\tau) C_{\ell+1}(t+\tau \tau)
$$

$$
=A_{l(a)}(t+\tau) \tilde{\Lambda}_{l}(t+2 \tau) B_{l+1}(t+2 \tau)
$$

$\xrightarrow[3(c)]{H_{l}^{b}} \underbrace{A_{l}(t+\tau)}_{3(c)} \hat{\Lambda}_{l}(t+\tau) B_{l+1}(t+2 \tau)$
$=C_{l}(t+\tau) B_{\ell+1}(t+2 \tau)$
$\xrightarrow[3(\alpha)]{H_{l}^{15}} C_{l}(t+2 \tau) B_{l+1}(t+2 \tau)$
until we reach first site, and MPS described by

The scheme described above involves 'one-site updates'. This has the (major!) drawback (as in one-site DMRG), that it is not possible to dynamically explore different symmetry sectors. To overcome this drawback, a 'two-site update' version of tangent space methods can be set up [Haegemann2016, App. C].

A systematic comparison of various MPS-based time evolution schemes has been performed in [Paeckel2019]. Conclusion: 2-site-update tangent space scheme is most accurate!

A scheme for doing 1-site TDVP while nevertheless expanding bonds, called 'controlled bond expansion (CBE), was proposed in [Li2022] (see next lecture!).

The construction of tangent space $V^{1 / 3}$ and its projector $P^{1 / 3}$ can be generalized to n sites [Gleis2022a]. We focus on $n=2$ (but general case is analogous). Define space of 2-site variations:

$$
\begin{align*}
\mathbb{V}^{2 s} & =\text { span of all states }\left|\Psi^{\prime}\right\rangle \text { differing from }|\Psi\rangle \text { on precisely } 2 \text { neighboring sites } \\
& =\operatorname{span}\left\{\left|\Psi^{\prime}\right\rangle=\right. \tag{I}\\
\text { formal definition: } & =\operatorname{span}\left\{\operatorname{im}_{\operatorname{im}_{\text {image }}}\left(P_{\ell}^{2 s}\right) \mid \ell \in[1, \mathcal{L}-1]\right\} \tag{2}
\end{align*}
$$

Recall:

Global $2 s$ projector $\hat{P}^{2 s}$, such that $\mathbb{V}^{2 s}=\operatorname{im}\left(P^{2 s}\right)$, can be found with a Gram-Schmidt scheme analogous to our construction of $\hat{P}^{\text {'s }}$, see [Gleis2022a]:
compare (TS-I.5.22)

All summand are mutually orthogonal, ensuring that $\left(P^{2 s}\right)^{2}=P^{2 s}$, and that $P^{23} P_{R^{\prime}}^{25}=P_{\ell^{\prime}}^{25}$.
Alternative expression:
compare (TS-I.5.26)

This projector is used for 2-site TDVP (see TS-II.3)

Orthogonal n-site projectors

For any given MPS $|\bar{\Psi}[M]\rangle$, full Hilbert space of chain can be decomposed into mutually orthogonal subspaces:

$$
\begin{equation*}
\mathbb{V}=V_{1} \omega \cdots \mathbb{V}_{\mathcal{L}}=\oplus_{n=0}^{\mathcal{L}} V^{n_{\perp}} \tag{8}
\end{equation*}
$$

with $\mathbb{V}^{0+}:=\mathbb{V}^{0 S}:=\operatorname{span}\{|\Psi\rangle\}$
'irreducible' $\mathbb{V}^{n \perp}$ is complement of $\mathbb{V}^{(n-1) s}$ in $\mathbb{V}^{n s}=\mathbb{V}^{(n-1) s} \oplus \mathbb{V}^{n \perp}$
(10) $=$ span of states differing from $\mid \Psi$) on η contiguous sites, not expressible through subsets of $u^{\prime}<u$ sites Correspondingly, identity can be decomposed as:

$$
\begin{equation*}
\mathbb{I}_{V}=\mathbb{1}_{d}^{\otimes R}=\sum_{\substack{n=0 \\ \text { completeness }}}^{\mathcal{L}} p n^{n}, \quad p n_{1} p n_{\perp}^{\prime}=\delta^{n n^{\prime}} p n^{\prime} \tag{II}
\end{equation*}
$$

where $p \nsim$ is defined as the projector having $\mathbb{V}^{n \perp}$ as image: $\quad \operatorname{im}(p n \downarrow)=\mathbb{V}^{n \perp}$

$$
\text { POL }=\text { pOS }=|\Psi\rangle\langle\psi|=\frac{1-1}{\frac{1}{y}+\frac{1}{y}+\lambda}
$$

$n \geq 1: p^{n L}:=p^{n s}\left(\mathbb{1}_{v}-p^{(n-1) s}\right)=p^{k s}-p^{(n-1) s}$

Consider $\mathrm{n}=1$:

$$
\text { since } \begin{align*}
\left.\mathbb{V}^{(n-1) s}\right) \subset \mathbb{V}^{u s} & \Rightarrow \operatorname{im}\left(p^{(n-1) s}\right)<i m\left(p^{n s}\right) \tag{14}\\
& \Rightarrow p^{n s} p^{(n-1) s}=p^{(n-1) s}
\end{align*}
$$

$$
p^{\prime 1}=p^{1 s}-p^{\circ s}
$$

choose $\ell^{\prime}=\mathcal{L}$
projects onto all 1-site variations orthogonal to $|\Psi\rangle$
(16)
(TS-I.4.17) $P_{\ell+1}^{0 S}$
Consider $\mathrm{n}=2$:

$$
\begin{align*}
& p^{21}=p^{2 s}-p s=\left(\sum_{l=1}^{\mathcal{L}-1} p_{l}^{2 s}-\sum_{l=2}^{\mathcal{L}-1} p_{l}^{1 s}\right)-\left(\sum_{l}^{\mathcal{L}}\right. \tag{17}\\
& =\sum_{l=1}^{\mathcal{L}-1}\left(p_{l}^{2 s}-p_{l+1}^{1 s}-p_{l}^{1 s}+p_{l+1}^{0 s}\right)
\end{align*}
$$

(TS-I.3.28)

very important result! (20)

2 -site tangent space methods are analogous to 1 -site methods, but use a 2 -site projector. There is a conceptual difference, though: the main reason for using 2 -site schemes is that they allow sectors with new quantum numbers to be introduced if the action of H requires this. However, states with different ranges of quantum numbers live in different manifolds, hence this procedure 'cannot easily be captured in a smooth evolution described using a differential equation. However, like most numerical integration schemes, the aforementioned algorithm is intrinsically discrete by choosing a time step, and it poses no problem to formulate an analogous two-site algorithm'. [Haegeman2016, Sec. V]. In other words: the tangent space approach is conceptually not as clean for the 2 -site as for the 1 -site scheme.

Schrödinger equation, projected onto 2 -site tangent space, now takes the form

$$
i \frac{d}{d t}|\psi[M(t)]\rangle=\hat{\rho}^{2 s} \hat{H}|\psi[m(t)]\rangle
$$

This yields [compare (1.11)]:

Right side is sum of terms, each specifying an update of one $\psi_{l}^{2 s}$ or $\psi_{l}^{1 s}$ on the left. Eq. (4) can be integrated one site at a time, by defining the updates through the following local Schrödinger equations:

Right side is sum of terms, each linear in a factor appearing on the left. Can be integrated one site at a time:
In 2-site-canonical form, site ℓ involves two terms linear in $\psi_{l}^{2 s}: \quad i \psi_{l}^{2 s}(t)=H_{l}^{2 s} \psi_{l}^{2 s}(t)$
Their contribution can be integrated exactly: replace $\psi_{l}^{2 s}(t)$ by $\quad \psi_{l}^{2 s}(t+\tau)=e^{-i H_{l}^{2 s} \tau} \psi_{l}^{2 s}(t)$ forward time step

In 1-site-canonical form, site $\ell+1$ involves two terms linear in $\psi_{l+i}^{1 /}: \quad i \quad \psi_{l+1}^{1 s}(t)=-H_{l+1}^{1 s} \psi_{l+1}^{1 s}(t)$ Their contribution can be integrated exactly: replace $\psi_{l+1}^{(s)}(t)$ by $\quad \psi_{l+1}^{(s)}(t-\tau)=e^{i H_{l+1}^{(s} \tau} \psi_{l+1}^{(s)}(t)$

Their contribution can be integrated exactly: replace $\psi_{l+1}^{(s}(t)$ by $\quad \psi_{l+1}^{(s}(t-\tau)=e^{i H_{l+1}^{(s} \tau} \psi_{l+1}^{(s)}(t) \quad$ (3)

To successively update entire chains, alternate between 2-site- and 1-site-canonical form, propagating forward or backward in time with $H_{\ell}^{2 s}$ or H_{l}^{15}, respectively (analogously to 1-site scheme).

A systematic comparison of various MPS-based time evolution schemes has been performed in [Paeckel2019]. Conclusion: 2-site-update tangent space scheme is most accurate!

When doing MPS computations involving SVD truncations of virtual bonds, the results should be computed for several values of the bond dimension, D, to check convergence as $D \rightarrow \infty$. Often it is also necessary to extrapolate the results to $D=\infty$, e.g. by plotting results versus $1 / D$ or some power thereof.

However, for some computational schemes, it is not a prior clear how the observable of interest scales with D, nor how it should be extrapolated to $D=\infty$. An example is ground state energy when computed using 1-site DMRG with subspace expansion [Hubig2015], because it does not rely on SVD truncation of bonds.

Thus, it is of interest to have a reliable error measure without requiring costly 2 -site DMRG. A convenient scheme was proposed in [Hubig2018], based on a smart way to approximate the full energy variance,

$$
\begin{aligned}
\Delta_{E}: & =\|(H-E) \psi\|^{2}=\langle\psi|(\hat{H}-E)^{2}|\psi\rangle & & \text { (= zero for an exact eigenstate) (1) } \\
& =\langle\psi| \hat{H}^{2}|\psi\rangle-E^{2}, & & \text { with } \quad E=\langle\psi| H|\psi\rangle
\end{aligned}
$$

Then extrapolations can be done by computing quantity of interested for several D, If quantity of interest is energy, then extrapolation is linear, $\quad E_{g}\left(\Delta_{E}\right)=E_{G}^{\text {exact }}+a \cdot \Delta_{E}$

Computing $\langle\psi| \hat{H}^{2}|\psi\rangle$ directly is costly for large systems with long-ranged interactions, such as 2 D systems treated by DMRG snakes. Also, computing Δ_{E} as the difference between two potentially large numbers is prone to inaccuracies. [Hubig2018] found a computation scheme in which the subtraction of such large numbers is avoided a prior.

Key idea: use projectors $P^{И_{\perp}}$ onto mutually orthogonal, irreducible spaces $V^{u_{\perp}}$
 with $P^{\circ \perp}=|\Psi\rangle\langle\Psi|$

Insert completeness into definition of variance:

$$
\begin{equation*}
\left.\Delta_{E} \stackrel{(4)}{=}\langle\psi|(\hat{H}-E) \sum_{n=0}^{\mathcal{L}} p^{n \mathcal{1}}(\hat{H}-E)\right)|\psi\rangle=: \sum_{n=0}^{\mathcal{L}} \Delta_{E}^{n \perp} \tag{8}
\end{equation*}
$$

Now two crucial simplifications occur:

$$
\begin{equation*}
\Delta_{\hat{E}}^{0 \perp} \stackrel{(5)}{=}\langle\psi|(\hat{H}-E) \underbrace{|\psi\rangle\langle\psi|}_{\text {(b) } 0 \perp}(\hat{H}-E))|\psi\rangle=(E-E\rangle(E-E)={ }_{\text {largest contribution to variance cancels by construction! }} \tag{9}
\end{equation*}
$$

$n>0$

$$
\begin{align*}
\left.\Delta_{E}^{n_{1}}=\langle\psi|(\hat{H}-E) P^{n \perp}(\hat{H}-E)\right)|\psi\rangle= & \langle\psi| \hat{H} \underbrace{P^{n \perp}} \hat{H}|\psi\rangle \text {, since } p^{(n>0\rangle \perp}|\psi\rangle \stackrel{(5,6)}{=} p^{(T S-I I .2 .11)} \tag{10}
\end{align*}
$$

$$
\begin{equation*}
=\left\|p^{n \perp} \hat{H} \psi\right\|^{2} \tag{II}
\end{equation*}
$$

In practice, approximate Δ_{E} by the first two nonzero terms:

$$
\begin{equation*}
\Delta_{E} \simeq \Delta_{E}^{2 S}=\Delta_{E}^{11}+\Delta_{E}^{2 \perp}=\langle\psi| \hat{H} p^{15} \hat{H}|\psi\rangle+\langle\psi| \hat{H} P^{2 s} \hat{H}|\psi\rangle \tag{12}
\end{equation*}
$$

(11) is exact if longest-range terms in \hat{H} are nearest-neighbor, because then $p(n \geqslant 3) \perp 1 \hat{H}|\Psi\rangle=0$

Explicit computations:

We would like to avoid computing ${ }_{d}^{D}$ explicitly, because of its large image dimension.
So rewrite, using isometry condition for discarded sector: $\quad \square=C$
and completeness of kept together with discarded isometries: $\left.\frac{\Delta}{T}=>1-\frac{\lambda}{T} \right\rvert\,$ (18)

$$
\begin{align*}
& \Delta_{E}^{1 L}=\langle\psi| \hat{H} P^{1 \perp} \hat{H}|\psi\rangle=\|p 1 \perp H \psi\|^{2}=\sum_{l=1}^{\mathcal{L}}\left\|P_{l, l+1}^{D k} H \psi\right\|^{2} \tag{15}
\end{align*}
$$

 \qquad
(19)

$$
\begin{align*}
& \Delta_{E}^{2 \perp}=\langle\psi| \hat{H}{\underset{p}{ }}_{2 \perp}^{p^{2 \perp}} \hat{H}|\psi\rangle \quad=\left\|p^{2 \perp} H \psi\right\|^{2}=\sum_{l=1}^{L-1}\left\|P_{l, l+1}^{D} H \psi\right\|^{2} \tag{21}\\
& =\sum_{l=1}^{\mathcal{L}-1} \mid \tag{23}
\end{align*}
$$

