
TS-I.1

[Haegeman2013]  Detailed exposition of (improved version of) algorithm.

[Haegeman2014a] Mathematical foundations of tangent space approach in language of diff. geometry.

                           (For a gentle introduction to diff. geometry, see Altland & von Delft, chapters V4, V5.)

[Haegeman2016] Unifying time evolution and optimization within tangent space approach.

[Zauner-Stauber2018] Variational ground state optimization for uniform MPS (for infinite systems).

[Vanderstraeten2019] Review-style lecture notes on tangent space methods for uniform MPS.

This lecture follows [Gleis2022a] for construction of tangent space projector, and [Haegeman2016], 

for discussion of time evolution using the time-dependent variational principle (TDVP).

If a small change in an MPS            is to be computed during 

time-evolution with a small time step, this change lives in the 'tangent space' of the manifold defined by

the MPS, spanned by all states obtained by 'one-site (1s) variations of          , i.e. by changing only 

one tensor. Thus construct a projector         onto this space, and do time evolution using                         

space of MPS with
specified dimensions

full Hilbert space
of dimension

tangent space 
of MPS having one
updated tensor

Tangent space: spanned by vectors 
tangent to curves running within a 
smooth geometric structure.

Basic insight: 'If you need to do a projection, do that at the outset, and then work

in the projected space, without further approximations!'

Basic idea [Haegeman2011]:

[Gleis2022a], [Gleis2022], [Li2022] Research performed in the von Delft group.

Motivation: why is tangent space useful?1.

[Lubich2015a] Concrete, explicit formula for tangent space projector.          Breakthrough result! 

Consider Schrödinger equation: 

This is a very fundamental and general idea. It is applicable to Hamiltonians with hopping 

or interactions of arbitrary range(!) (which is important for applications to 2D systems, 

treated via 1D snake paths). It has been elaborated in a series of publications:

Tangent space methods I
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TS-I.2

Consider     -site MPS with open boundary conditions:

where is matrix with elements , of dimension                    , with 

Gauge freedom: is unchanged under 'gauge transformation' on bond indices:

group of general complex linear transformation in        dimensionswith 

Gauge freedom can be exploited to bring MPS into site- or bond-canonical form:

Bond-canonical: 

             ,                   form orthonormal bases for 'kept'       subspaces representing left- and right parts 

shorthand: space of tensors with specified dimensions

full Hilbert space
of dimension

space of MPS with
specified dimensions

space of
tensors
of specified
dimensions

         is a differential manifold, since it depends smoothly on the tensors in   

with 

'orbit' of tensors 
specifying same state
due to gauge freedom

requiring this fixes gauge uniquely

[Haegeman2014a] discusses this aspect in detail. In our discussion, though, it plays no role.

of chain.

2. MPS canonical forms
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Matrix elements of Hamiltonian, represented as MPO:

1-site-canonical:

2-site-canonical:

Relation between 1-site- and bond-canonical:

Relation between 1-site- and 2-site-canonical:

2-site (2s):

1-site  (1s):

bond (b):

Related by:
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TS-I.3

left 'kept' (K) space of site 

right 'kept' (K) space of site 

Definition of kept spaces: 

Action of isometries: generates new kept spaces:

Isometric conditions, ensure orthonormality of kept basis states.

'left parent (P) space'

'right parent (P) space'

Dimensions: 

Dimensions: 

The image spaces of          and            are smaller than their parent spaces. 

Let           and            be their complements, mapping onto 'discarded' (D) spaces orthogonal to kept ones: 

'left parent space'

'right parent space'

Dimensions: 

Dimensions: 

rectangular matrix

for simplicity: assume all virtual 
bonds have same dimension, D

filled triangles: 'discarded'

open triangles: 'kept'

3. Kept and discarded spaces
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Dimensions: 

By definition, and are unitary maps on their parent spaces:

Unitarity 

implies: 

'orthogonality':

'When K meets K, or D meets D, they yield unity;         when K meets D or D meets K, they yield zero.'

Unitarity implies:  

'completeness':

Similarly: and imply:

'orthogonality': 
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'completeness':

'When K meets K, or D meets D, they yield unity;       when K meets D or D meets K, they yield zero.'

The completeness relations imply several identities that will be useful later:

1s projector can be expressed through bond projectors in two ways: 

2s projector can be expressed through four bond projectors:

DD projector can be expressed through 2s, 1s and bond projectors that only involve K sectors:
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TS-I.4

Structure of spaces explored by bond-, 1s or 2s schemes can be elucidated by introducing local projectors:

(sum over      implied) (sum over      implied)

For example:

Projector properties:

Left K projector  (cf. MPS-II.1): Right K projector:

Bond projector:

1s projector:

ns projector:

Projector property:
   follows from (2)

The projectors                               mutually commute (since they are all diagonal in same basis        )

However, they are not mutually orthogonal (see below).

(sum over      implied) (sum over      implied)

Left D projector  (cf. MPS-II.1): Right D projector:

sites sites

4. Kept and discarded projectors
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Hamiltonian matrix elements can be obtained from full Hamiltonian via local projectors,

For example: 

Projectors for K and D sectors

These fulfill numerous orthogonality relations; e.g.

e.g.

if 

if 

e.g.

e.g.

Same-site-indices - orthogonal:

D on earliest or latest site - yields zero:

two D's on same side but different sites - yield zero:

Bond, 1s and ns projectors are all KK projectors:
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s projectors are not orthogonal. E.g. 

, e.g.

   s projector is annihilated by left D on its left or right D on its right: 

if 

if 

e.g.

Any     s projector can be expressed through two (       )s projectors, in two different ways: E.g.

or

(3.17)

(3.23)

Similarly:

or

(3.17)

(3.23)
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TS-I.5

Let                denote the 'tangent space' of           , i.e. the space of all     s variations of            :          

formal definition: 

span of all states              differing from               on precisely      sites

The 'tangent space projector' is defined by the property that its image is the tangent space:

We seek to construct           explicitly. Note that                       does not work, since summands are not 

mutually orthogonal (see below). 

for all 

Formally: has the defining properties: 

image

Define             ,   obtained from                     by projecting out the overlap with

subtraction generates D sectors!

Note in (17) & (18): subtraction generates D sectors, via (3.17) & (3.24):

Due to the D's, the following orthogonality conditions hold:

We attempt to orthogonalize them by a Gram-Schmidt type of procedure:

(4.23)

(4.24)

(4.20)

5. Tangent space projector
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for any 

for all 

for all 

e.g.

e.g.

Tangent space projector is defined by following sum, where       can be freely chosen from 

Projector properties (14) hold, because the summands are mutually orthogonal projectors: For example:

hence (13) holds: for all 

Another alternative expression for tangent space projector, without any D sectors: use (17), (18) in (22):

for any 

(26) for tangent space projector was first found in [Lubich2015a]. It is often used in the literature [Haegeman2016], 

[Vanderstraeten2019, Sec. 3.2], e.g. for time evolution with time-dependent variational principle (TDVP), see (TS.6).

Alternative expression for tangent space projector, expressed purely through bond projectors:

use (3.17) for         term of (22):
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