Goal: computing spectral functions via Lehmann representation using complete basis.

1. Completeness of Anders-Schiller basis
 [Anders2005], [Anders2006]

The combination of all sets of discarded states constructed in (NRG-III.5), $\left\{|\alpha, e\rangle_{\ell}^{D} \mid \ell=\ell_{0}, \ldots, \mathscr{L}\right\}$ forms a complete basis in full Hilbert space of length- \mathcal{L} chain, known as 'Anders-Schiller (AS) basis':

$$
\begin{align*}
& \checkmark \text { (proof follows below) } \\
& \sum_{\vec{\sigma}_{\mathscr{L}}}\left|\vec{\sigma}_{\mathscr{L}}\right\rangle\left\langle\left.\left.\vec{\sigma}_{\mathscr{L}}\right|^{=} \mathbb{I}_{d^{\mathscr{L}}}{ }_{x d} \stackrel{\begin{array}{c}
\text { exact basis } \\
\text { transformation }
\end{array}}{=} \sum_{\ell} \sum_{\alpha e_{\ell}} \right\rvert\, \alpha, e\right\rangle^{D} \stackrel{D}{\langle }\langle e| \tag{1}
\end{align*}
$$

These basis states are approximate eigenstates of Hamiltonian of length- \mathcal{L} chain:

$$
\begin{equation*}
\hat{H}^{\mathscr{L}}|\alpha, l\rangle_{l} \simeq \hat{H}^{\ell}|\alpha, e\rangle_{l}=E_{\alpha}^{\ell}|\alpha, e\rangle_{\ell} \tag{2}
\end{equation*}
$$

Here we made the 'NRG approximation': when acting on states from shell ℓ, approximate $\hat{H}^{\mathcal{L}}$ by \hat{H}^{ℓ}, i.e. neglect later-site parts of the Hamiltonian. Justification: they describe fine structure not relevant for capturing course structure of shell ℓ. The AS basis thus has following key properties:

- For small ℓ, energy resolution is bad, degeneracy high.
- As ℓ increases, energy resolution becomes finer, degeneracy decreases.

Projectors:

Projector onto sector X of shell ℓ :

$$
\begin{equation*}
\hat{p}_{l}^{x}=\sum_{\alpha e}|\alpha e\rangle_{\ell \ell}^{x / 2} \alpha e\left|=x_{k|k| k|k|}^{x|k| k|k|} \times|| |\right. \tag{13}
\end{equation*}
$$

K and D sectors partition shell into two disjoint sets of orthonormal states, hence

$$
\begin{equation*}
P_{l}^{x^{\prime}} P_{l}^{x}=\delta^{x^{\prime} x} P_{l}^{x} \tag{14}
\end{equation*}
$$

Refinement of K sector of shell ℓ :

$$
\begin{align*}
\hat{P}_{\ell}^{K} & =\hat{P}_{\ell+1}^{D}+\underbrace{\hat{P}_{\ell+1}^{K}}_{\ell+1} k<\overbrace{\ell+1}^{k} \tag{15}\\
& =\hat{P}_{\ell+1}^{D}+\hat{P}_{\ell+2}^{D}+\hat{P}_{\ell+2}^{K}=\ldots
\end{align*}
$$

Hence: (for any $\ell^{\prime \prime}>\ell$)

$$
\begin{equation*}
P_{\ell}^{K}=\sum_{x} P_{\ell+1}^{x}=\sum_{l^{\prime}>\ell^{\prime}}^{\ell^{\prime \prime}} P_{l^{\prime}}^{D}+P_{l^{\prime \prime}}^{K}=\sum_{\ell^{\prime}>\ell}^{N} P_{\ell^{\prime}}^{D} \tag{I6}
\end{equation*}
$$

For $\ell=l_{0}: \quad \mathbb{1}_{d} \mathcal{L}_{k d} \mathcal{L}=P_{\ell,}^{D}+P_{\ell_{0}}^{K}=\underbrace{\sum_{\ell}^{\mathcal{L}} \equiv \sum_{\ell}^{D}}_{\ell=l_{0}}$
Unit operator can be expressed as sum over D-projectors of all shells, hence AS basis is complete!
General projector products: $\quad P_{\ell^{\prime}}^{x^{\prime}} P_{\ell}^{x} \stackrel{(14,17)}{=}\left\{\begin{array}{llll}\delta^{K x^{\prime}} & P_{\ell}^{x} & \text { if } & l^{\prime}<l \\ \delta^{x^{\prime} x} & P_{\ell}^{x} & \text { if } & l^{\prime}=\ell \\ P_{\ell}^{x^{\prime}} & \delta^{x K} & \text { if } & l_{>l}^{\prime}\end{array}\right.$

shorthand
(1) $\quad 1$

Transform to basis which diagonalizes sites imp to ℓ_{0}, keeping (K) the full spectrum at each step):

Split into discarded and kept states. In latter sector, move one site from environment into system:

Now diagonalize, split again, and iterate:
split

Iterate until the entire chain is diagonal, and declare all states of last iteration as 'discarded':

The collection of all terms marked \longleftarrow is the resolution of identity in AS basis:

Below we will show that the Hamiltonian and 'local' operators have following structure in AS basis:

(I)

General operator: exclude KK to avoid overcounting!

$$
\begin{equation*}
\hat{H}^{(1.2)} \simeq \sum_{l} \sum_{\alpha e} E_{\alpha}^{l}|\alpha, e\rangle_{l}^{D} \sum_{l}^{D}\langle\alpha,,| \tag{2}
\end{equation*}
$$

$$
\hat{B} \simeq \sum_{l} \sum_{x^{\prime} x}^{\neq k k} \sum_{\alpha} \sum_{e}\left|\alpha_{,}^{\prime},\right\rangle_{l}^{x^{\prime}}\left[B_{[l] x}^{x^{\prime}}\right]_{l}^{x} / \alpha, e \mid
$$

Operators are diagonal in 'environment' states! Hence environment can easily be traced out!
The expression for $\hat{H}^{\mathcal{L}}$ follows from (IV.1.2). That for a local operator \hat{B} can be found as follows: Suppose \hat{B} is a 'local operator', living on sites $\leqslant \ell_{0}$, egg. on sites imp and 0 :

Start from the local operator's exactly known representation on length ℓ_{0} chain,

$$
\begin{equation*}
\hat{B}=\sum_{x x^{\prime} \in\{K, D\}}\left|\alpha^{\prime} e\right\rangle_{l_{0}}^{x^{\prime}}\left[B_{l_{0}}^{x^{\prime}} \quad\right]^{\alpha^{\prime}}{ }_{\alpha}^{x}<\alpha e \mid=: \sum_{l_{0}^{\prime} x} \hat{B}_{l_{0}}^{x^{\prime}} \tag{4}
\end{equation*}
$$

Define operator projections to $X^{\prime} X$ sector of shell : $\quad \hat{B}_{l}^{x^{\prime}} x=\hat{P}_{\ell}^{X^{\prime}} \hat{B}^{\prime} \hat{P}_{\ell}^{x}$

$$
\begin{equation*}
B_{l_{0}}^{x^{\prime}} \oint_{\alpha^{\prime} x^{\prime}}^{h^{\alpha x}}= \tag{7}
\end{equation*}
$$

can be computed iteratively during forward sweep, starting from $\quad l=l_{0}$

Refine KK sector iteratively, using $p_{l}^{K} \stackrel{(1.14)}{=} \sum_{x} p_{l+1}^{X}$:

$$
\begin{equation*}
\hat{B}_{l_{0} K}^{K}=\hat{P}_{l_{0}}^{K} \hat{B} \hat{P}_{l_{0}}^{K}=\sum_{x^{\prime} X}^{ \pm K K} \hat{P}_{l_{0+1}}^{X^{\prime}} \hat{B} \hat{P}_{l_{0+1}}^{X}+\hat{P}_{l_{0+1}^{K}}^{K} \hat{B}_{l_{0+1}}^{K} \tag{9}
\end{equation*}
$$

Iterate to end of chain: $=\sum_{l>\ell_{0}}^{\mathcal{L}} \sum_{x^{\prime} x}^{\neq K k} \hat{P}_{\ell}^{x^{\prime}} \hat{B}_{\ell} \hat{P}_{\ell}^{x}=\sum_{\ell>l_{0}} \sum_{x^{\prime} x}^{ \pm K k} \hat{B}_{l x}^{x^{\prime}}$

Note: matrix elements are always 'shell-diagonal' (computed using same-length chains).

Time-dependent operators

$$
\begin{equation*}
\hat{B}(t)=e^{i \hat{H}^{\mathscr{L}} t} \hat{B} e^{-i \hat{H}^{\mathscr{L}} t}=: \sum_{l} \sum_{x^{\prime} x}^{\neq k k} \hat{B}_{l x}^{x^{\prime}}(t) \tag{12}
\end{equation*}
$$

with time-dependent matrix elements, evaluated using NRG approximation (1.2):

$$
\begin{equation*}
\left[B_{l}^{x^{\prime}} x(t)\right]_{\alpha}^{\alpha^{\prime}} \cong \sum_{l}^{x^{\prime}}\left\langle\alpha^{\prime}\right| e^{i \hat{H}^{\ell} t} \hat{B} e^{-i \hat{H}^{l} t}|\alpha\rangle_{\ell}^{x}=\left[B_{\ell}^{x^{\prime}} x\right]_{\alpha}^{\alpha^{\prime}} e^{i\left(E_{\alpha^{\prime}}^{l}-E_{\alpha}^{l}\right) t} \tag{13}
\end{equation*}
$$

Important: since we iteratively refined only KK sector, the time-dependent factor is 'shell-diagonal': factors with $e^{i\left(E_{\alpha^{\prime}}^{e^{\prime}}-E_{\alpha}^{l}\right) t}, \ell^{\prime} \neq \ell$ do not occur. Using different shells to compute $E_{\alpha^{\prime}}$ and E_{α} would yield them with different accuracies, which would be inconsistent.

Fourier transform: $\quad \hat{B}(\omega)=\int \frac{d t}{2 \pi} e^{i \omega t} \hat{B}(t) \stackrel{(12,13)}{=} \sum_{l} \sum_{x^{\prime} x}^{\neq k k} \hat{B}_{l} x^{x^{\prime}} x^{(\omega)}$

$$
\begin{equation*}
\left[B_{\ell}^{x^{\prime}} x(\omega)\right]_{\alpha}^{\alpha^{\prime}}=\left[B_{l}^{x^{\prime}} x\right]_{\alpha}^{\alpha^{\prime}} \quad \delta\left(\omega-\left(E_{\alpha}^{l}-E_{\alpha}^{l}\right)\right) \tag{15}
\end{equation*}
$$

Operator product expansions: $\quad \hat{B} \hat{C} \quad$ Proceed iteratively, refining only KK-KK sector:

$$
\begin{equation*}
\hat{B}_{l}^{k}{ }_{k} \hat{C}_{l}^{k}{ }_{k}^{k}=\hat{P}_{l}^{k} \hat{B}^{P_{l}^{k}} \hat{C}_{l}^{P_{l}^{k}} \stackrel{(1.14)}{=} \sum_{x^{\prime \prime} x^{\prime} x} \hat{P}_{l+1}^{x^{\prime \prime}} \hat{B} \hat{P}_{l+1}^{x^{\prime}} \hat{C} \hat{P}_{l+1}^{x}=\sum_{x^{\prime} x x^{\prime \prime}} \hat{B}_{l+1}^{x^{\prime \prime}} x^{x^{C}} \hat{C}_{l+1}^{x^{\prime}} x \tag{17}
\end{equation*}
$$

Start from $\quad l=\ell_{0} \quad$ and iterate:

Sector projections of $\hat{\rho}$ for shell ℓ, defined as $\hat{\rho}_{\{\ell]^{\prime}}^{x^{\prime}}=\hat{P}_{\ell}^{x^{\prime}} \hat{\rho} \hat{P}_{\ell}^{x}$, are given by:

$$
\begin{equation*}
\hat{\rho}_{\ell}^{D} D, \quad \hat{\rho}_{\ell}^{K}{ }_{k}^{(1.19)}=\sum_{\ell^{\prime}>\ell}^{\mathcal{L}} \hat{\rho}_{\left[\ell^{\prime}\right] D}^{D}, \quad \hat{\rho}_{\ell}^{D}{ }_{K}^{D}=\hat{\rho}_{\ell}^{K} 0=0 \tag{3}
\end{equation*}
$$

Reduced density matrix for length ℓ chain is obtained by tracing out environment of all later sites:

$$
\begin{equation*}
\hat{\rho}_{\ell}^{x^{\prime}}=\operatorname{Tr}_{\text {sites }>\ell}\left[\hat{\rho}_{l}^{x^{\prime}} x\right] \tag{4}
\end{equation*}
$$

$$
\left(\bar{\rho}_{l} K_{D}=\bar{\rho}_{l}^{D}{ }_{k}^{(3)}=0\right)
$$

DD-sector:

$$
\hat{\bar{\rho}}_{l}^{D}{ }_{D}=\frac{1}{1}
$$

with matrix elements
(without environment)
KK-sector:

Starting at $\ell=N$, the KK matrix elements can be computed iteratively via a backward sweep.

$$
\begin{align*}
& \begin{array}{l}
{\left[\begin{array}{ll}
\bar{\rho}_{l}^{D} & D
\end{array}\right]_{\alpha}^{\alpha^{\prime}}=\left[\begin{array}{ll}
\rho_{l}^{D} & D
\end{array}\right]_{\alpha}^{\alpha^{\prime}}} \\
\text { re } Z_{l}^{D}=\sum_{\alpha}^{D} e^{-\beta E_{\alpha}^{l}}
\end{array} \tag{6}\\
& \text { is partition function for } D \text {-sector of shell } \ell \\
& \stackrel{(2)}{=} \delta_{\alpha}^{\alpha^{\prime}} \underbrace{e^{-\beta E_{\alpha}^{l}}}_{\text {density matrix of }} \underbrace{\frac{Z_{l}^{D}}{Z} d^{\mathcal{L}-\ell}}_{\begin{array}{c}
\mathcal{W}_{l} \\
\text { relative weir }
\end{array}} \\
& \text { relative weight of } \\
& \text { D-sector of shell } \ell \\
& \text { to total partition function, } \\
& \text { with } \sum_{l} w_{l}=1 \\
& \begin{array}{c}
\text { D-sector of shell } \ell \\
\text { (without environment) }
\end{array} \\
& \text { where } Z_{l}^{D}=\sum_{\alpha}^{D} e^{-\beta E_{\alpha}^{l}} \tag{7}
\end{align*}
$$

$$
\begin{align*}
& \hat{\rho} \equiv e^{-\beta \hat{H}^{\ell} \stackrel{\text { NRG approximation }}{\approx} \sum_{l} \sum_{\alpha e}|\alpha, e\rangle_{l}^{D} \frac{e^{-\beta E_{k}^{\ell}}}{Z} \sum_{l}^{D}, e \mid}=\sum_{\ell}^{\left.\frac{11}{11} 111_{l}^{D}| | \right\rvert\,} \tag{1}\\
& =\sum_{l=n_{0}}^{\mathcal{L}} \hat{\rho}_{l}^{D} D \quad, \quad\left[\begin{array}{ll}
D & \rho_{l} \\
\rho_{[l] D}
\end{array}\right]=\delta_{\alpha^{\prime}}^{\alpha} \frac{e^{-\beta E_{\alpha}^{l}}}{z} \tag{2}
\end{align*}
$$

The weights W_{l}, viewed as a function of l, are peaked near l_{\top}, with a width of five to ten shells (depending on Λ, d and $D_{\text {kept }}$)
Reason: the Boltzmann factors $e^{-\beta E_{S}^{l}}$ in partition
functions yield $\simeq 0$ for $E_{S}^{\ell} \gg T$ or $\simeq 1$
 for $E_{S}^{\ell} \ll \tau$. Hence

Thus, the weight functions ensure in a natural manner that shells whose characteristic energy lies close to temperature have dominant weight, while avoiding the brutal single-shell approximation $\quad w_{l}=\delta_{\ell_{1} \ell_{T}}$.

Thermal expectation value:

 trace out all sites $l>l_{0}$

$=\sum_{x} \operatorname{tr}\left[\bar{\rho}_{\text {shell } l_{0}}{ }^{x}{ }_{x} B_{l_{0}}^{x} x\right]=\sum_{x} \sum_{\alpha^{\prime} \alpha}\left[\bar{\rho}_{l_{0}}^{x} x\right]_{\alpha}^{\alpha^{\prime}}\left[B_{l_{0}}^{x}\right]_{\alpha^{\prime}}^{\alpha}$
can be computed using solely shell- ℓ_{0} matrix elements (but reduced density matrix requires backward sweep along entire chain)

Note: traces of shell-diagonal operator products simplify to traces of matrix products, with full density matrix replaced by reduced density matrix.
[Weichselbaum2007] [Lee2021]
AS basis, being complete set of (approximate) energy eigenstate, is suitable for use in Lehmann representation of spectral function, with the identification $\{|\alpha\rangle\}=\left\{|\alpha e\rangle_{\ell}^{D}, \ell=\ell_{0}, \ldots, \mathcal{L}\right\}$

$$
\begin{equation*}
A^{B C}(\omega)^{(N R G-I I .1)}=\int \frac{d t}{2 \pi} e^{i \omega t} \operatorname{Tr}[\hat{\rho} \hat{B}(t) \hat{C}] \underset{\text { trace is cyclic }}{=} \operatorname{Tr}[\hat{B}(\omega) \hat{C} \hat{\rho}] \tag{1}
\end{equation*}
$$

Insert representation of these three operators in complete AS basis:

Looks intimidating, but can be simplified by systematically using (NRG-III.5.12) for overlaps.
Simpler approach (leading to same result) uses operator product expansion (2.18):

$$
\begin{equation*}
A^{B C}(\omega)=\operatorname{Tr}[\hat{B}(\omega)(\hat{C} \hat{\rho})]=\sum_{\ell} \sum_{x^{\prime \prime} x^{\prime} x}^{* k k k} T_{r}[\hat{B}_{\ell}(\omega)^{x^{\prime \prime}} \underbrace{x}_{\text {trace is cyclic } \delta^{\prime}(\hat{C} \hat{\rho})_{\ell}^{x^{\prime \prime}} x} \tag{3}
\end{equation*}
$$

Perform trace in same way as for thermal expectation value, (3.10): trace over sites $\ell^{\prime}>\ell$ yields reduced density matrix, trace over sites $\ell^{\prime} \leqslant \ell$ yields matrix trace over shell ℓ :

$$
\begin{align*}
A^{B C}(\omega) & =\sum_{\ell} \sum_{x^{\prime} x}^{* k K} \operatorname{tr}\left[B_{\ell}(\omega)^{x} x^{\prime}(C \bar{\rho})_{l} x^{\prime} x\right] \tag{4}\\
& =\sum_{\ell} \sum_{x^{\prime} x}^{* k k} \sum_{\alpha \alpha^{\prime}}\left[B_{l}{ }^{x} x^{\prime}\right]^{\alpha} \alpha^{\prime} \delta\left(\omega-\left(E_{\alpha^{\prime}}^{\ell}-E_{\alpha}^{\ell}\right)\right)\left[C_{l}^{x^{\prime}} x \rho^{-x} x\right]_{\alpha}^{\alpha^{\prime}} \tag{5}
\end{align*}
$$

 resolves frequency at scale $\omega \sim \Lambda^{-\ell / 2}$

Each term involves a trace over matrix products involving only a single shell.
Easy to evaluate numerically.

$$
E=E_{\alpha^{\prime}}^{l}-E_{\alpha}^{l}
$$

To deal with delta functions, use 'binning': partition frequency axis into discrete bins, $I_{\underline{\varepsilon}}$, centered on set of discrete energies, $\{\underline{\varepsilon}\}$, and replace
$\delta(\omega-E)$ by $\delta(\omega-\underline{\varepsilon})=$ if $E \in I_{\underline{\varepsilon}}$
This assigns energy ε to all peaks lying in same bin.
Finally, broaden using log-Gaussian broadening kernel, (NRG-III.3.4).
(at particle-hole symmetry, $\varepsilon d=-U / 2$ $A_{s}(\omega):=A^{d_{s}^{t} d_{s}}(-\omega)+A^{d_{s} d_{s}^{t}}(\omega)$

Can be computed using fdm-NRG. Technical issues:

- Include Z-factors to take care of fermionic signs.
- Broaden final result using log-Gaussian broadening kernel (NRG-III.3.4).

Result: for $\Gamma / U \ll 1$ (e.g. $=0.1$) and $T \ll T_{K} \quad$ (e.g. = 0), one obtains

Exact result for peak height at $\mathrm{T}=0: \quad \pi \Gamma A_{s}(\omega=0)=1$
NRG reproduces this with an error of $<0.1 \%$ if $D_{\text {kept }}$ is large enough.
With increasing temperature, Kondo resonance broadens and weakens as T approaches and passes T_{k}.

Sum rule: we expect (for any temperature):

$$
\int d w A_{s}(w)=\left\langle d_{s}^{t} d s\right\rangle_{T}+\left\langle d_{s} d_{s}^{t}\right\rangle_{T}=\left\langle\left\langle d_{s}, d_{s}^{\dagger}\right\}\right\rangle_{T}=1
$$

Due to use of complete basis, fdmNRG fulfills this sum rules to machine precision, with error $<10^{-15}$

