1．Thermodynamic observables
Thermal expectation values：

$$
\begin{equation*}
\langle\hat{O}\rangle_{T}=\operatorname{Tr}[\hat{\rho} \hat{O}]=\frac{\operatorname{Tr}\left[e^{-\beta \hat{H}} \hat{O}\right]}{\operatorname{Tr}\left[e^{-\beta \hat{H}}\right]}=\frac{\sum_{\alpha} e^{-\beta E_{\alpha}}\langle\alpha| \hat{O}|\alpha\rangle}{\sum_{\alpha} e^{-\beta E_{\alpha}}} \tag{1}
\end{equation*}
$$

Trace is over a complete set of many－body states，$\{|\alpha\rangle\}$ ．A complete set was not available in Wilson＇s formulation of NRG（it was found only in 2005 by Anders \＆Schiller in 2005，to be discussed later）．However，Wilson argued that dominant contribution comes from states with $E_{\alpha} \simeq T$ ．Reason：

For $E_{\alpha} \gg T$ ，we have $e^{-\beta E_{a}} \ll 1$（＇thermal suppression＇）
For $E_{\alpha} \ll T$ ，we have $e^{-\beta E_{a}} \simeq 1$ ，but there are much fewer such states than
states with $E_{\alpha} \simeq T$ ，hence their weight in the trace is negligibly small（＇counting suppression＇）

Wilson＇s iteration scheme yields，for each chain length ℓ ，a＇shell＇of eigenstates of $\hat{H} l$ ：

$$
\begin{equation*}
\hat{H}^{l}|\alpha\rangle_{l}=E_{\alpha}^{l}|\alpha\rangle_{l}, \quad \alpha=1, \ldots, D_{\text {kept }} \quad \overline{\text { — }} \text { 三 高饤襄 } \tag{5}
\end{equation*}
$$

He thus proposed to compute the expectation value using only a single shell（single－shell approximation）， namely the one，say shell ℓ_{T} ，whose characteristic energy matches the temperature：

$$
\begin{align*}
& \Lambda^{-\left(l_{T}-1\right) / 2} \simeq T, \quad \text { hence } l_{T} \simeq 2 \ln (1 / T) / \ln \Lambda+1 \tag{6}\\
& \langle\hat{O}\rangle_{T} \simeq \frac{\sum_{\alpha \in \text { shell } l_{T}} e^{-\beta\left(E_{\alpha}^{l_{T}}-E_{G}^{l_{T}}\right)_{l_{T}}\langle\alpha| \hat{O}|\alpha\rangle_{l_{T}}}}{\sum_{\alpha \in \text { shell } l_{T}} e^{-\beta\left(E_{\alpha}^{l_{T}}-E_{S}^{l_{T}}\right)}} \tag{7}
\end{align*}
$$

To compute（7）explicitly，express it in terms of rescaled energies and temperature：

$$
\begin{equation*}
\tilde{E}_{\alpha}^{\ell}=\Lambda^{(\text {NRG-II.4.4) }}={ }^{(\ell-1) / 2}\left(E_{\alpha}^{\ell}-E_{g}^{\ell}\right), \tilde{\beta}_{\ell}:=\Lambda^{-(\ell-1) / 2} \beta \tag{8}
\end{equation*}
$$

Thermodynamic observables of physical interest

Spin susceptibility:

$$
\begin{align*}
& X=\left.\frac{d}{d h}\left\langle S_{z}(h)\right\rangle_{T}\right|_{h=0} \\
& =\frac{d}{d h} \frac{\left.\operatorname{Tr}\left[e^{-\beta\left(H-h S_{z}\right.}\right] S_{z}\right]}{\operatorname{Tr}\left[e^{-\beta\left(H-h S_{z}\right]}\right]} \\
& =\beta \frac{\operatorname{Tr}\left[e^{-\beta H} S_{z}^{2}\right]}{\operatorname{Tr}\left[e^{-\beta H}\right]}-\beta\left[\frac{\operatorname{Tr}\left[e^{-\beta H} S_{z}\right]}{\operatorname{Tr}\left[e^{-\beta H}\right]}\right]^{2} \tag{12}\\
& X=\beta\left(\left\langle S_{z}^{2}\right\rangle_{T}-\left\langle S_{z}\right\rangle_{T}^{2}\right) \tag{13}
\end{align*}
$$

[Krishna-murthy1980a]
(10)

In NRG context: approximate $\left\rangle_{T}\right.$ by $\left\rangle_{\ell_{T}}\right.$ of (9).
Impurity contribution:

$$
\begin{align*}
& X_{\text {imp }}=X_{\text {tot }}-X_{\text {total system }} \tau_{\begin{array}{c}
\text { only conduction band, } \\
\text { without impurity }
\end{array}}^{\text {Tr }}=e^{-\beta F} \quad \text { with free energy } \quad F=-T \ln Z \tag{14}
\end{align*}
$$

Partition function: $Z=\operatorname{Tr}_{\sim} e^{-\beta H}=: e^{-\beta F}$ with free energy $\quad F=-T \ln Z$

Entropy:

$$
\begin{align*}
S & =-\frac{\partial F}{\partial T}=\ln z+T{\frac{\operatorname{Tr}\left[e^{-\beta H}(-H)\right]}{z} \underbrace{\left(\frac{\partial \beta}{\partial T}\right)}_{=-\frac{1}{T^{2}}}}=\ln z+u \beta, \quad \text { with } \quad u=\langle H\rangle_{T}
\end{align*}
$$

Specific heat: $\quad C=\frac{\partial U}{\partial T}=\frac{\partial}{\partial T}\left[\frac{\operatorname{Tr} e^{-\beta H} H}{\operatorname{Tr} e^{-\beta H}}\right]=\beta^{2}\left(\left\langle H^{2}\right\rangle_{T}-\langle H\rangle_{T}^{2}\right)$
alternatively:

$$
\begin{equation*}
C=\frac{\partial}{\partial T}[T(s-\ln z)] \tag{14}
\end{equation*}
$$

Impurity contribution: $C_{\text {imp }}=C_{\text {tor }}-C_{\text {bund }}$

Wilson ratio: (universal number, independent of T_{K})

For Kondo model and symmetric Anderson model: $\quad R=2$

Goal: to compute dynamical quantities such as

$$
\begin{equation*}
A^{B C}(\omega)=\int_{-\infty}^{\infty} \frac{d t}{2 \pi} e^{i \omega t}\langle\hat{B}(t) \hat{C}\rangle_{T}, \quad\langle\ldots\rangle_{T}=\operatorname{Tr}[\hat{\rho} \ldots] . \tag{1}
\end{equation*}
$$

Let $\{|\alpha\rangle\}$ be a complete set of many-body eigenstates of H,

$$
\begin{equation*}
\hat{H}|\alpha\rangle=E_{\alpha}|\alpha\rangle, \quad \sum_{\alpha}|\alpha\rangle\langle\alpha|=\mathbb{1}_{d^{d} x d^{d}} \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
A_{(\omega)}^{b c}=\int_{-\infty}^{\infty} \frac{d t}{2 \pi} e^{i \omega t} \sum_{\alpha \beta}\langle\alpha| \hat{\rho} e^{i \hat{H} t} \hat{B} e^{-i \hat{H} t}|\beta\rangle\langle\beta| \hat{C}|\alpha\rangle \tag{3}
\end{equation*}
$$

with density matrix $\hat{\rho}=e^{-\beta \hat{H}} / Z$ and partition function $Z=\sum_{\alpha} e^{-\beta E_{\alpha}}$

$$
\begin{align*}
& A^{B C}(\omega)=\sum_{\alpha \beta} \frac{e^{-\beta E_{\alpha}}}{Z}\langle\alpha| \hat{B}|\beta\rangle \underbrace{\left.\left.\int_{-\infty}^{\infty} \frac{d t}{2 \pi} e^{i t\left(\omega+E_{\alpha}-E_{\beta}\right)}\langle\beta| \hat{C} \right\rvert\, \alpha\right)}_{\delta\left(\omega-E_{\beta \alpha}\right)} \quad E_{\beta \alpha}=E_{\beta}-E_{\alpha} \\
& A^{B C}(\omega)=\sum_{\alpha \beta} \frac{e^{-\beta E_{\alpha}}}{Z}\langle\alpha| \hat{B}|\beta\rangle \delta\left(\omega-E_{\beta \alpha}\right)\langle\beta| \hat{C}|\alpha\rangle \quad \begin{array}{l}
\text { 'Lehmann } \\
\text { representation' }
\end{array}
\end{align*}
$$

Spectral sum rule:

$$
\begin{equation*}
\int d \omega A^{B C}(\omega)=\sum_{\alpha \beta} \frac{e^{-\beta E} \alpha}{Z}\langle\alpha| \hat{B}|\underbrace{|\beta\rangle\langle\beta|}_{1} \hat{C}| \alpha\rangle=\langle\hat{B} \hat{C}\rangle_{T} \tag{7}
\end{equation*}
$$

Zero temperature

$$
\begin{equation*}
\left.A^{B C}(\omega)\right|_{T=0} ^{(b)}=\sum_{\beta}^{(}\langle G| \hat{B}|\beta\rangle \delta\left(\omega-E_{\beta G}\right)\langle\beta| \hat{C}|\xi\rangle \tag{8}
\end{equation*}
$$

NRG gives energy shells,

$$
\tilde{H}^{l}|\alpha\rangle_{l}=\tilde{E}_{\alpha}^{l}|\alpha\rangle_{l}
$$

Choose shell ℓ for which $\Lambda^{-(\ell-1) / 2} \simeq \omega$
[Sometimes one can average this over several shells.]

Broaden: $A_{\text {smote }}^{B C}(\omega)=\int d \omega^{\prime} K\left(\omega, \omega^{\prime}\right) A^{B C}\left(w^{\prime}\right)$
[Weichselbaum2007, supplementary information (Ref. 13)]

Plotted on log scale: $\quad K\left(\omega, \omega^{\prime}\right)$

peak width is set by:
$\ln |\omega| \omega^{\prime} \mid \simeq \alpha$ $\Longrightarrow \omega \simeq \omega^{\prime} e^{\alpha}$

Plotted on linear scale:
Rapid falloff at $\omega<\omega^{\prime}$ ensures that when averaging over several shells, broadening of high-energy shells does not spoil

long tail generates overbroadening at large ω
resolution obtained from lower-lying shells.
Nonzero temperature

$$
\left.\left.A(\omega) \stackrel{(6)}{=} \sum_{\alpha \beta} \frac{e^{-\beta E} \alpha}{Z}\langle\alpha| \hat{B}|\beta\rangle \delta\left(\omega-E_{\beta \alpha}\right)\langle\beta| \hat{C} \right\rvert\, \alpha\right)
$$

Typical 'initial state' $\langle\alpha\rangle$ has energy $E_{\alpha}<T$.
So we have to average over a range of shells around the one with $\quad \Lambda^{-(l-1) / 2} \simeq T$.
To combine their contributions, interpolation schemes ('patching rules') have been devised [Bulla2001]:

$$
\begin{equation*}
A_{\text {tot }}(\omega)=A_{l}(\omega) p(\omega)+A_{l-1}(\omega)(1-p(\omega)) \tag{b}
\end{equation*}
$$

But this is rather ad hoc, and does not satisfy sum rules precisely.

It will be useful below to have a graphical depiction for basis changes.
Consider a unitary transformation defined on chain of length $\ell \quad$, spanned by basis $\left\{\left|\vec{\sigma}_{\ell}\right\rangle\right\}$:

$$
\begin{equation*}
|\alpha\rangle=\left|\vec{\sigma}_{l}\right\rangle U_{\alpha}^{\vec{\sigma}_{l}} \quad \times{\underset{\sim}{\vec{\sigma}_{l}}}_{\longrightarrow} \tag{1}
\end{equation*}
$$

Unitarity guarantees resolution of identity on this subspace:

$$
\begin{equation*}
\sum_{\alpha}|\alpha\rangle\langle\alpha|=\left|\vec{\sigma}_{l}^{\prime}\right\rangle \underbrace{U^{\vec{\sigma}_{l}^{\prime}} U_{\alpha}^{t_{\alpha}} \vec{\sigma}_{l}}_{\mathbb{1}_{l} \vec{\sigma}_{l}^{\prime} \bar{\sigma}_{l}}\left\langle\vec{\sigma}_{l}\right|=\sum_{\vec{\sigma}_{l}}\left|\vec{\sigma}_{l}^{\prime}\right\rangle \mathbb{1}_{l}^{\vec{\sigma}_{l}^{\prime}}\left\langle\vec{\sigma}_{l}\right| \quad \underset{\vec{\sigma}_{l}}{\stackrel{\rightharpoonup}{8}} \times \frac{\hat{\sigma}_{l}^{\prime}}{\vec{\sigma}_{l}} \alpha \alpha=\left\{_{\vec{\sigma}_{l}^{\prime}}^{\vec{\sigma}_{l}}\right. \tag{2}
\end{equation*}
$$

Transformation of an operator defined on this subspace:

$$
\begin{equation*}
\hat{B}=\left|\vec{\sigma}_{l}^{\prime}\right\rangle[B]^{B} \vec{\sigma}_{l}^{\prime} \vec{\sigma}_{l}\left\langle\vec{\sigma}_{l}\right|=\sum_{\alpha^{\prime} \alpha}\left|\alpha^{\prime}\right\rangle\left\langle\alpha^{\prime}\right| \hat{B}|\alpha\rangle\langle\alpha|=\left|\alpha^{\prime}\right\rangle[B]_{\alpha}^{\alpha^{\prime}}\langle\alpha| \tag{3}
\end{equation*}
$$

Matrix elements: $\quad B_{\alpha}^{\alpha^{\prime}}=\left\langle\alpha^{\prime} \mid \vec{\sigma}_{l}^{\prime}\right\rangle[B] \vec{\sigma}_{l}^{\prime} \bar{\sigma}_{l}\left\langle\vec{\sigma}_{l} \mid \alpha\right\rangle=U^{+} \alpha^{\prime} \vec{\sigma}_{l}^{\prime}(B) \vec{\sigma}_{l}^{l_{l}^{\prime}} \vec{\sigma}_{l} U^{\vec{\sigma}_{l}}{ }_{\alpha}$

If the states $|\alpha\rangle$ are MPS:
$|\alpha\rangle=\left|\sigma_{l}\right\rangle \ldots\left|\sigma_{\text {min }}\right\rangle\left(A_{l}^{\sigma_{\text {min }}} \ldots A_{l}^{\sigma_{l}}\right)_{\alpha}^{\prime}$

Key insight by F. Anders \& A. Schiller (AS): discarded states can be used to construct a complete manybody basis, suitable for use in Lehmann representation. This requires keeping track of 'environmental states'. This section describes how to do this, the next section how to construct the complete basis.

Suppose a short chain of length ℓ_{0} has been diagonalized exactly (no truncation):
Then split its eigenstates into 'discarded' states (D) and 'kept' states (K).

For $\ell>\ell_{0}$, iteratively use kept states as input, add one site at a time, diagonalize, and split again:

Include environment When diagonalizing shell $l: \quad H^{\ell}:=H^{\mathcal{L}}\left(t_{l^{\prime}}=0 \quad \forall \ell^{\prime}>\ell\right)$
Every state $|\alpha\rangle_{\ell}^{x}$ in shell ℓ has same 'environment', the rest of chain, with degeneracy $d^{\mathcal{d}-\ell}$: product state
are added in opposite order to that of sketch)

Combine shell states and environment states into states defined on entire length $-\mathscr{L}$ chain:

$$
\begin{equation*}
|\alpha, e\rangle_{l}^{x}:=|\alpha\rangle_{l}^{x}\left|e_{l}\right\rangle=\prod_{\text {shorthand for } e_{l}=\left(\sigma_{l+1}, \cdots, \sigma_{l}\right)}^{\left.\left.\prod_{\sigma_{\text {imp }}} \sigma_{0}^{k} \sigma_{\sigma_{1}}^{k}\right|_{\alpha^{\prime}} ^{k}\right|_{\sigma_{l}} ^{k}{ }^{\alpha x}}\left\|_{\ell}^{\infty}\right\| \| \tag{s}
\end{equation*}
$$

At last iteration, declare all states to be 'discarded': $\quad|\alpha, e\rangle_{\mathcal{L}}^{D}=|\alpha\rangle_{\mathcal{L}}$

Notation for kept \& discarded states
(cf. TNB-II)

Orthogonality of kept and discarded states

$$
\begin{align*}
& =\lambda_{\alpha^{\prime} x^{\prime}}^{\sum_{e_{l}^{\prime}}^{\alpha x} 1} \int_{\ell}^{e_{l}}=\delta_{x}^{x^{\prime}} \delta_{\alpha}^{\alpha^{\prime}} \delta_{l}^{e_{l}^{\prime}} \tag{10}
\end{align*}
$$

Early D, late X

$$
\begin{align*}
& {\left[\left[A_{l+1}^{K} K\right]^{\sigma_{l^{\prime}+1}^{\prime}} \ldots\left[A_{l}^{K} x\right]^{\sigma_{l}^{\prime}}\right]^{\alpha^{\prime}} \cdots \delta_{l}^{e_{l}^{\prime}}} \tag{13}
\end{align*}
$$

Rule of thumb: \quad shell-off-diagonal overlaps are non-zero only for 'early K with late X '
Summary:

