Symmetries I: Abelian

NRG: [Wilson1975], [Toth2008], [Weichselbaum2012b]. DMRG: [McCulloch2001], [McCulloch2002] General tensor network: Singh, Pfeiffer, Vidal [Singh2010] Goal: exploit symmetries of Hamiltonian!

elements within blocks If Hamiltonian has a symmetry, $\begin{bmatrix} \hat{H} & \hat{Q} \end{bmatrix} = 0$, then \hat{H} is block-diagonal in \hat{Q} eigenbasis $\hat{Q}|Q_ii\rangle = Q|Q_ii\rangle \implies \hat{H}|Q_ii\rangle = |Q_ii'\rangle H_{[a]}^{i'}$ (l) $\langle a', i'|\hat{H}|a, i\rangle = \mathbf{1}^{a'} H_{iai}$ 'multiplicity index' \dot{i} enumerates different states with same β Separate diagonalization of each block yields simultaneous eigenbasis of $\hat{\mu}$ and $\hat{\delta}$. overbar will indicate energy eigenbasis $\hat{Q}|Q,\bar{i}\rangle = Q|Q,\bar{i}\rangle$ $\hat{H}|Q,\bar{i}\rangle = E_{Q,\bar{i}}|Q,\bar{i}\rangle$ (2) (For non-Abelian symmetries, degenerate multiplets arise -- next lecture.) $\langle 0, \overline{1} | \hat{H} | 0, \overline{1} \rangle = \prod_{i=1}^{n} \prod_{j=1}^{\overline{1}} E_{n,\overline{1}}$ Exploiting this structures reduces numerical costs! 1. Example, Abelian symmetry: XXZ-chain (spin 1/2) symmetry group: U(1) $\hat{H} = \sum_{k} \overline{J}_{k} \hat{S}_{k}^{2} \hat{S}_{l+1}^{2} + \sum_{k} \overline{J}_{k} (\hat{S}_{k}^{\dagger} \hat{S}_{l+1}^{-} + \hat{S}_{k}^{-} \hat{S}_{l+1}^{+}) = \hat{H}^{22} + \hat{H}^{sf}$ (3) Total spin, $\hat{S}_{tst}^{\dagger} = \sum_{l} \hat{S}_{l}^{\dagger}$, is conserved: $\begin{bmatrix} \hat{H} & \hat{S}_{tst}^{\dagger} \end{bmatrix} = 0$ 'Abelian U(1) symmetry' (4) For Abelian symmetry, conserved quantum number is often called 'charge': $Q = 2 S_{tal}^{t}$ to avoid proliferation of $\frac{1}{2}$ factors Conservation of δ_{ls}^{3} is obvious by inspection. But let us check explicitly: $\hat{S}_{\ell}^{t} = \hat{T}\begin{pmatrix} 1 & l \\ 0 & l \\ 0 & l \end{pmatrix} \qquad \hat{S}_{\ell} = \hat{T}\begin{pmatrix} 0 & b \\ 0 & 0 \\ 1 & 0 \end{pmatrix} \qquad \hat{Q}_{\ell} = 2\hat{S}_{\ell}^{2} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad (5)$ One site: Consider matrix representation of operators in the direct-product basis of sites 1 and 2: $\{| Q_1 \rangle \otimes | Q_2 \rangle\}$ $\hat{Q}_1 + \hat{Q}_2 = \hat{Q}_1 \otimes \hat{I}_1 + \hat{I}_1 \otimes \hat{Q}_2$ $\doteq \begin{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ - \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} + \begin{pmatrix} + \\ -1 \end{pmatrix} \\ + \begin{pmatrix} + \\ -1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \begin{pmatrix}$ (6)

SYM-I.1

 $Q \in \{Z, o, -z\}$ degeneracies match Total charge has 3 eigenvalues, number of ways to arrive (7) at specified total charge: with degeneracies: (8) LL IL IT $\frac{\hat{H}^{sf}}{\frac{t}{2}J} = \hat{S}_{1}^{t}\hat{S}_{2}^{-} + \hat{S}_{1}^{-}\hat{S}_{2}^{+} \doteq \begin{pmatrix} 1\cdot\begin{pmatrix} \circ & \circ \\ 1 & \circ \end{pmatrix} \\ 0 & \end{pmatrix} + \begin{pmatrix} O \\ 1 & \circ \end{pmatrix} = \hat{1}_{1} \begin{pmatrix} \circ \\ 1 & 0 \end{pmatrix} = \hat{1}_{1} \begin{pmatrix} O \\ 1 & 0 \end{pmatrix} = \hat{1}_{1} \begin{pmatrix} O \\ 1 & 0 \end{pmatrix} = \hat{1}_{1} \begin{pmatrix} O \\ 1 & 0 \end{pmatrix} = \hat{1}_{1} \begin{pmatrix} O \\ 0$ (9) Both (8) and (9) are block-diagonal $\Rightarrow \left[\hat{k}_{++}, \hat{k}_{+}\right] = \mathbf{0}$ (10) Eigenstates of H_{μ} will carry \emptyset -eigenvalue as one of their quantum numbers. (using $\bigotimes = \mathbf{z}$ (Eigenvalue of $S_{L_{t}}^{k}$ as label) Bookkeeping for 2 sites (u)la, i> , where the 'multiplicity label' i enumerate states having the same ${\sf Q}$. Label states as List of states needed enumerates states with same charge list index charge to describe 2 sites: Q Y Ż explicit representation state two sites one site no sites Q I 2 Q Q 1 11) $(1, o)^{\mathsf{T}} := \begin{pmatrix} i \\ 0 \end{pmatrix}$ 2 1 (12)0 ſ 2 $(o, c)^{\mathsf{T}} := \begin{pmatrix} \circ \\ c \end{pmatrix}$ D ζ - 2 ١ 3 - 2 $H_{12} = \frac{(8,9)}{4} J_{z}$ + ½ J 2-site Hamiltonian: List of sectors ('blocks') (a'| H | a> ~ 1ª a 0 Q ν arising for 2-site Hamiltonian: 4 J2

l

2

3

٢

0

- 2

Ζ

0

- 2

 $-\frac{1}{4}J_{z}(1) + \frac{1}{2}J(1)$

(13)

÷ J2

The task of diagonalizing Hamiltonian splits into three separate tasks: diagonalizing three blocks (two of which are trivial).

The direct-product scheme does not automatically produce a block-diagonal structure for $\hat{\mu}^{sf}$, because it orders basis states in such a way that not all states with same Q appear in a contiguous block. To arrive at a block-diagonal structure, interchange 4th and 5th basis vectors (switch rows $4 \leftrightarrow 5$ & columns $4 \leftrightarrow 5$).

In rearranged basis with contiguous blocks of Q's, all terms of H are block-diagonal:

Bookkeeping for 3 sites

Summary of lessons learnt from example

For an Abelian symmetry, with $\begin{bmatrix} \hat{\mu} & \hat{\alpha} \end{bmatrix} = \mathbf{b}$, the $\hat{\alpha}$ -eigenstates can be labeled as $\begin{vmatrix} \hat{\alpha} & \hat{i} \end{vmatrix}$ (21) • 'Q-label' or 'symmetry label': $\hat{\mathbf{Q}}$, eigenvalues of $\hat{\mathbf{Q}}$

'i-label' or 'multiplicity label': , enumerates <u>different</u> irreducible multiplets having same Q
 For an abelian symmetry each 'multiplet' contains just a single state, hence Q suffices for labeling states.
 (For nonabelian symmetry, it could contain several states, hence another internal label is needed: Q , i >)
 In group theory language: 10, i > is a 'reducible multiplet' of Q , the index i serves to 'reduce' it.

We need systematic, automatable way of generating all states $|0,i\rangle$ and computing matrix elements

$|H_{[0]}^{i'} = \langle Q, i' | \hat{H} | Q, i \rangle \qquad (22)$

Diagonalizing $H_{[\alpha]}$ yields symmetry- and energy eigenstates, $(\alpha, \overline{\iota}) = (\alpha, \iota) U_{[\alpha]}^{-1} \overline{\iota}$ (ιs) with eigenenergies $E_{[\alpha]}\overline{\iota}$ overbar will indicate energy eigenbasis

2. Iterative diagonalization with Abelian symmetry

Build chain iteratively, in
$$[Q_{1,1}]$$
 basis:
Local basis for each site: $[e^{>} =: [R_{>}] \in \{[1]_{>}, [-1]\}$ for spin-1/2 chain
Ket: $\begin{bmatrix} T_{1} & T_{2} & T_{3} \\ \vdots & \vdots & R_{1} & R_{1} & R_{1} & R_{1} & R_{2} & R_{3} &$

Sym-I.2

This is no surprise: if every vertex satisfies charge conservation, so does entire diagram!

- (i) Add new site, (ii) transform to symmetry eigenbasis to make Hamiltonian block-diagonal.
- (iii) Diagonalize each block, (iv) transform to energy eigenbasis.

(ii) Symmetry eigenbasis:

10 0

12

(15)

(17)

(18)

To transform to this basis, attach 'identity matrices' to legs of H_l:

Qe, Ze

- (iii) Diagonalize block:
- (iv) Transform to energy eigenbasis:

Hp Applying this transformation to

yields diagonal representation:

 $|Q_{\ell}, \tilde{i}_{\ell}\rangle = |Q_{\ell}, \tilde{i}_{\ell}\rangle U_{\ell q}$

 $H_{(Q_{\alpha})}|Q_{\ell},\tilde{i}_{\ell}\rangle = E_{Q_{\ell},\tilde{i}_{\ell}}$

So, transformation from old to new eigenbasis is described by A-matrices (only these need to be saved to disk):

determined by group theory (symmetries of Hamiltonian)

determined by dynamics (details of Hamiltonian)

QIII =: QI-1, Te-1 Qg-1, Ve-1 He (ap) Qe, in (zo)

Qe-1, RI

'Identity matrix' relates direct product basis of bond $\ell_{-\ell}$ and site ℓ to basis of bond ℓ :

$$\left(\begin{array}{c} \prod_{l=1}^{l_{l+1}} \mathcal{R}_{\ell} \\ \mathcal{R}_{\ell} \end{array} \right)^{\overline{i}_{\ell-1}} \mathcal{H}_{i_{\ell}}^{\prime} := \langle \mathbb{Q}_{\ell-1} \\ \overline{i}_{\ell-1} \langle \mathcal{R}_{\ell} \\ \mathcal{R}_{\ell} \rangle \left(\mathcal{R}_{\ell} \\ \mathcal{R}_{\ell} \right)^{\overline{i}_{\ell-1}} \\ \mathcal{R}_{\ell} \\ \mathcal{R}_{\ell} \rangle \left(\mathcal{R}_{\ell} \\ \mathcal{R}_{\ell} \\ \mathcal{R}_{\ell} \right)^{\overline{i}_{\ell-1}} \\ \mathcal{R}_{\ell} \\ \mathcal{R}_{\ell} \rangle \left(\mathcal{R}_{\ell} \\ \mathcal{R}_{\ell} \\ \mathcal{R}_{\ell} \\ \mathcal{R}_{\ell} \\ \mathcal{R}_{\ell} \right)^{\overline{i}_{\ell-1}} \\ \mathcal{R}_{\ell} \\ \mathcal{R}$$

each grey box is 1x1 matrix, since multiplet indices take only one value, $\overline{\iota}_{o} = , i_{i} =$ i.e. $M_{o} = , M_{i} =$

<u>Sites 1 and 2</u>) (2 ; 20	$\mathbb{I}_{2}^{\mathbf{Q}_{1}}$	$\left(\begin{array}{c} R_{2} \\ Q_{2} \end{array} \right)^{T}$	i2 :	= 8	Q 1, 71 ->	Iz r	_Q 2, iz		Q R Q	$e \{\pm 1\}$ $z \in \{\pm 1\}$ $z = Q_1 + R_2 = Q_1$	§±2,0}
$\langle Q_1, \overline{\iota}_1 \langle R_2 $	M	12,17 Pr	10,17 PL	10,27 LT	1.2,7	/	(2	Qi	Rz	Qz	M1 × 1, Mz	$\left(\mathbf{I}_{Q_1}^{\mathbf{R}_1} \mathbf{R}_{\mathbf{Z}_{Q_2}} \right)_{i_1}^{\mathbf{U}_1}$
<u> </u>	††	l					(+1	ŧ١	+2	xr, 1	1
<+1, 11<-11	11		1	0		≈: •	2	+1	-1	Ø	1*(, 2	10
<- 1, 1] <+ 1]	11		0	I			3	-1	~1	0	X (, Z	0 \
<-1,1]<-1]	t↑				1		4	~1	-1	~ 2	181,1	ſ

Sym-I.3

The scheme for producing such tables can be automated!

A-matrix obtained by diagonalizing H has same structure:

