NRG: [Wilson1975], [Toth2008], [Weichselbaum2012b]. DMRG: [McCulloch2001], [McCulloch2002]
General tensor network: Singh, Pfeiffer, Vidal [Singh2010]
Goal: exploit symmetries of Hamiltonian!
label matrix elements within blocks

If Hamiltonian has a symmetry, $[\hat{H}, \hat{Q}]=0$ generator of symmetry group then \hat{H} is block-diagonal in \hat{Q} eigenbasis:

$$
\begin{align*}
& \hat{Q}|Q, i\rangle=Q|Q, i\rangle \Rightarrow \hat{H}|Q, i\rangle=\left|Q, i^{\prime}\right\rangle H_{[Q]^{i}}^{i^{\prime}} i \tag{1}\\
& \text { 'multiplicity index' } i \text { enumerates different states with same } Q
\end{align*}
$$

$\left\langle Q^{\prime}, i^{\prime}\right| \hat{H}|Q, i\rangle=\mathbb{1}_{Q}^{Q^{\prime}} H_{[Q]} i^{i^{\prime}} i$

Separate diagonalization of each block yields simultaneous eigenbasis of \hat{H} and \hat{Q}.

$$
\begin{array}{lll}
\hat{Q}|Q, \bar{i}\rangle=Q|Q, \bar{i}\rangle, \quad \hat{H}|Q, \bar{i}\rangle=E_{Q, \bar{i}}|Q, \bar{i}\rangle & \text { (}) \tag{2}\\
\text { (For non-Abelian symmetries, degenerate multiplets arise -- next lecture.) } & \Delta_{\bar{i}}^{\bar{v}^{\prime}} \\
& \Delta_{\bar{i}}^{\bar{i}^{\prime}} \\
& \Delta_{\bar{i}}^{Q^{\prime}}
\end{array}
$$ Q Exploiting this structures reduces numerical costs!

$$
\left\langle Q^{\prime}, i^{\prime}\right| \hat{H}|Q, \tau\rangle=\mathbb{1}_{Q}^{Q^{\prime}} \mathbb{1}_{i}^{i^{\prime}} E_{Q, \bar{\imath}}
$$

1. Example, Abelian symmetry: XXZ-chain (spin $1 / 2$)

$$
\begin{equation*}
\hat{H}=\sum_{l} J_{z} \hat{S}_{l}^{z} \hat{S}_{l+1}^{z}+\sum_{l} \frac{J}{2}\left(\hat{S}_{l}^{+} \hat{S}_{l+1}^{-} \hat{S}_{l}^{-} \hat{S}_{l+1}^{+}\right)=\hat{H}^{z z}+\hat{H}^{\kappa^{s f}} \tag{3}
\end{equation*}
$$

Total spin, $\quad \hat{S}_{\text {tot }}^{z}=\sum_{l} \hat{S}_{l}^{z}$, is conserved: $\left[\hat{H}, \hat{S}_{\text {tot }}^{z}\right]=0 \quad$ 'Abelian $U(1)$ symmetry' (4)
For Abelian symmetry, conserved quantum number is often called 'charge': $\quad \hat{Q} \leqq 2 \hat{S}_{\text {tad }}^{z}$. to avoid proliferation of $1 / 2$ factors
Conservation of $\hat{Q}_{\text {tot }}^{\hat{z}}$ is obvious by inspection. But let us check explicitly:
One site: $\left.\quad \hat{S}_{l}^{t}=\begin{array}{l}\uparrow \\ \downarrow\end{array}\left(\begin{array}{ll}\hat{1} & \downarrow \\ 0 & 1 \\ 0 & 0\end{array}\right) . \quad \hat{S}_{l}^{-}=\begin{array}{cc}\uparrow & 1 \\ \downarrow & 0 \\ 1 & 0\end{array}\right) \quad \hat{Q}_{l}=2 \hat{S}_{l}^{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
Consider matrix representation of operators in the direct-product basis of sites 1 and 2: $\left\{\left|Q_{1}\right\rangle \otimes\left|Q_{2}\right\rangle\right\}$

$$
\begin{align*}
& \hat{Q}_{1}+\hat{Q}_{2}=\hat{Q}_{1} \otimes \hat{I}_{2}+\hat{\mathbb{I}}_{1} \otimes \hat{Q}_{2} \\
& =\left(\begin{array}{lll}
+1 \cdot\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right) & \\
& -1 \cdot\left(\begin{array}{ll}
1 & 1
\end{array}\right)
\end{array}\right)+\left(\begin{array}{ccc}
1 \cdot\left(\begin{array}{ll}
+1 & \\
& -1
\end{array}\right) & & \\
& & 1 \cdot\left(\begin{array}{ll}
+1 & \\
& \\
& \\
&
\end{array}\right)
\end{array}\right) \tag{b}
\end{align*}
$$

Total charge has 3 eigenvalues,
$Q \in\{2,0,-2\}$
degeneracies match number of ways to arrive at specified total charge:

(7)
(8)

Both (8) and (9) are block-diagonal $\Rightarrow\left[\hat{Q}_{\text {tot }}, \hat{H}_{12}\right]=0$
Eigenstates of \hat{H}_{12} will carry Q-eigenvalue as one of their quantum numbers.

Bookkeeping for 2 sites (using $Q=z$ (Eigenvalue of $\hat{S}_{\text {tot }}^{z}$ as label)
(II)

Label states as $|Q, i\rangle$, where the 'multiplicity label' i enumerate states having the same Q.
List of states needed to describe 2 sites:

no sites	one site	two sites
Q	Q	Q
		2
0	1	0
	-1	-2

2-site Hamiltonian:

List of sectors ('blocks')
arising for 2-site Hamiltonian:
The task of diagonalizing
Hamiltonian splits into three separate tasks: diagonalizing three blocks (two of which are trivial).

3. Sites

Next consider three sites 1,2 and 3 , with direct product basis $\left\{\left|Q_{1}\right\rangle \otimes\left|Q_{2}\right\rangle \otimes\left|Q_{1}\right\rangle\right\}$
$\hat{Q}_{\text {tot }}=\sum_{l=1}^{3} \hat{Q}_{l}$ has 4 eigenvalues, $Q \in\{3,1,-1,-3\}$
total charge \quad with degeneracies: $\quad 1331$

Matrix representation of Hamiltonian in direct product basis:

$\frac{\hat{H}^{s+}}{\frac{1}{2} J}=\left(\hat{S}_{1}^{+} \hat{S}_{2}^{-}+\hat{S}_{1}^{-} \hat{S}_{2}^{+}\right) \hat{1}_{3}+\hat{1}_{1}\left(\hat{S}_{2}^{+} \hat{S_{3}}+\hat{S}_{2}^{-} \hat{S}_{3}^{+}\right)$

(16)

The direct-product scheme does not automatically produce a block-diagonal structure for $\hat{H}^{\text {sf }}$, because it orders basis states in such a way that not all states with same Q appear in a contiguous block. To arrive at a block-diagonal structure, interchange 4th and 5th basis vectors (switch rows $4 \leftrightarrow 5$ \& columns $4 \leftrightarrow 5$).

In rearranged basis with contiguous blocks of Q 's, all terms of H are block-diagonal:

(17)

Bookkeeping for 3 sites

List of states needed to describe 3 sites:

	charge	$L^{\text {enumerates states with same charge }}$		
ν	Q	$i^{\text {en }}$	explicit representation	state
1	3	1	1	$\|\uparrow \uparrow \uparrow\rangle$
		1	$(1,0,0)^{\top}$	$\|\uparrow \uparrow \downarrow\rangle$
2	1	2	$(0,1,0)^{\top}$	$\|\uparrow \downarrow \uparrow\rangle$
		3	$(0,0,1)^{\top}$	$\|\downarrow \uparrow \uparrow\rangle$
		1	$(1,0,0)^{\top}$	$\|\uparrow \downarrow\rangle\rangle$
3	-1	2	$(0,1,0)^{\top}$	$\mid \downarrow \uparrow \downarrow)$
		3	$(0,0,1)^{\top}$	$\|\downarrow \downarrow \uparrow\rangle$
4	-3	1	1	$\|\downarrow \downarrow\rangle\rangle$

3-site Hamiltonian:

List of sectors ('blocks') arising for 3-stite Hamiltonian:

Hamiltonian can be split into four separate tasks (two of which are trivial).

Summary of lessons learnt from example

For an Abelian symmetry, with $[\hat{H}, \hat{Q}]=0$, the \hat{Q}-eigenstates can be labeled as $|Q, i\rangle$

- 'Q-label' or 'symmetry label': $Q \quad$, eigenvalues of \hat{Q}
- 'i-label' or 'multiplicity label': 2 , enumerates different irreducible multiplets having same \mathcal{Q}

For an abelian symmetry each 'multiplet' contains just a single state, hence Q suffices for labeling states.
(For nonabelian symmetry, it could contain several states, hence another internal label is needed: $|Q q, i\rangle$) In group theory language: $|0, i\rangle$ is a 'reducible multiplet' of \hat{Q}, the index i serves to 'reduce' it. We need systematic, automatable way of generating all states $|Q, i\rangle$ and computing matrix elements

$$
\begin{equation*}
\hat{H}_{[\theta]^{i^{\prime}} i}=\left\langle Q, i^{\prime}\right| \hat{H}|\theta, i\rangle \tag{22}
\end{equation*}
$$

Diagonalizing $H_{[Q]}$ yields symmetry- and energy eigenstates, $|Q, \bar{\imath}\rangle=|Q, i\rangle U_{[Q]}{ }^{l} \bar{\imath}$

Build chain iteratively, in $|Q, i\rangle$ basis:
Local basis for each site: $\quad|\sigma\rangle=:|R\rangle \in\{|1\rangle,|-1\rangle\} \quad$ for spin-1/2 chain

Ket:

'sum rule' at each vertex:

$$
\begin{equation*}
\underbrace{Q_{\ell-1}+R_{\ell}}_{\text {in }}=Q_{\ell} \tag{1}
\end{equation*}
$$

The 'identity matrix' I_{ℓ} transforms to 'symmetry eigenbasis':
$\left|Q_{l, i_{l}}\right\rangle=\left|R_{l}\right\rangle\left|Q_{l-1}, i_{l-1}\right\rangle\left(I_{l}^{Q_{l-1}, R_{l}} Q_{l}\right)^{i_{l-1}}, i l \quad Q_{l-1, i_{l-1}}^{I_{R_{l}}}{I_{l}}_{Q_{l, i}}$
The i-index is often omitted in diagrams.

$I_{l} \quad$-matrices encode the sum rules, thereby yielding a block-diagonal Hamiltonian. Induction: if H_{l-1} is block-diagonal, so is $H_{l}=H_{l-1} \otimes \mathbb{1}_{l}+S_{l-1}^{+} \otimes S_{l}^{-}+S_{l-1}^{-} \otimes S_{l}^{+}$:

These relations imply: $\quad Q_{l}^{\prime} \stackrel{(6)}{=} Q_{\ell-1}^{\prime}+R_{l}{ }^{(4)}=Q_{l-1}+R_{l} \stackrel{(5)}{=} Q_{l} \Rightarrow$ block-diagonal
(9)

These relations imply: $\quad Q_{l}^{\prime} \stackrel{(11)}{=} Q_{l-1}^{\prime}+R_{l}^{\prime}=\left(Q_{\ell-1}+1\right)+\left(R_{\ell}-1\right)^{(5)}=Q_{\ell} \Rightarrow$ block-diagonal This is no surprise: if every vertex satisfies charge conservation, so does entire diagram!

Strategy for iterative diagonalization

(i) Add new site, (ii) transform to symmetry eigenbasis to make Hamiltonian block-diagonal.
(iii) Diagonalize each block, (iv) transform to energy eigenbasis.
(i) $\hat{H}_{l}=\hat{H}$
sites $1 \ldots \ell \quad$ eigenbasis of $\hat{H}_{l}{ }^{\text {sites } 1 \ldots \ell-1}$

$\hat{h}_{l}+$
local term
 coupling between sites $\ell-1, \ell$
(ii) Symmetry eigenbasis:

$$
\begin{align*}
& \text { Symmetry eigenbasis: } \\
& \qquad\left|Q_{l, i_{l}}\right\rangle=\left|R_{l}\right\rangle\left|Q_{\ell-1}, \bar{i}_{l-1}\right\rangle\left[I_{\ell}^{Q_{l-1}, R_{l}} Q_{l}\right]_{i_{l-1}}^{\bar{i}_{l}} \quad Q_{\ell-1,} \bar{i}_{\ell-1} I_{l} Q_{l} Q_{l}, i_{l} \tag{15}\\
& \text { To transform to this basis, attach 'identity matrices' to legs of } H_{l}:
\end{align*}
$$

(iii) Diagonalize block:

$$
\begin{align*}
\left.H_{\left(Q_{l}\right]} \mid Q_{l}, \bar{i}_{l}\right) & =E_{Q_{l}, i_{l}}\left|Q_{l}, \bar{i}_{l}\right\rangle \tag{17}\\
\left|Q_{l,}, i_{l}\right\rangle & =\left|Q_{l, i_{l}}\right\rangle U_{\left[Q_{l}\right]}^{i_{l}} \bar{i}_{l}
\end{align*} \xrightarrow{Q_{l, i l} U_{\left[Q_{l}\right]} Q_{l}, \bar{i}_{l}}
$$

(iv) Transform to energy eigenbasis:

Applying this transformation to

H_{ℓ} yields diagonal representation:

here we need only those blocks of $H_{\ell-1}$ (see 14) which contribute to total charge Q_{ℓ}

So, transformation from old to new eigenbasis is described by A-matrices (only these need to be saved to disk):
determined by group theory determined by dynamics
(symmetries of Hamiltonian) (details of Hamiltonian)

'Identity matrix' relates direct product basis of bond $\ell-1$ and site ℓ to basis of bond $\ell:$

$$
\left(I_{l}^{Q_{\ell-1}, R_{\ell}} Q_{\ell}\right)^{i_{l-1}+1 / \ell} i_{\ell}:=\left\langle Q_{l-1}, \bar{i}_{\ell-1}\right|\left\langle R_{\ell}, i_{l} \mid Q_{\ell, i_{l}}\right\rangle
$$

Each site hosts just one spin $1 / 2$, hence physical leg needs no multiplet index

$$
\left.\left\langle\mid R_{\ell}\right\rangle \in\{1+1\rangle,|-1\rangle\right\}
$$

Cviewed as composite index

Exploit sparse structure by storing only nonzero blocks, i.e. those with charge labels satisfying $Q_{\ell}=Q_{\ell-1}+R_{\ell}$. Make list in which each row describes one such block, containing $Q_{l-1}, R_{\ell}, Q_{\ell}$ and the block matrix elements:

List index $\mathcal{V}:$\begin{tabular}{ccccc}
incoming bond \& $Q_{\ell-1}$ \& R_{ℓ} \& Q_{ℓ} \& $M_{\ell-1} \times 1, M_{\ell}$

\quad

physical leg

\end{tabular}

Sites 0 and $1 \quad\left(I_{1}^{Q_{0} R_{1}} Q_{1}\right)^{\bar{\tau}_{0}}{ }_{i_{1}}=Q_{0}, i_{0} \xrightarrow[T_{R_{1}}]{I_{1}} Q_{1, i_{1}}$

$$
\begin{aligned}
& Q_{0}=0 \\
& R_{1} \in\{ \pm 1\} \\
& Q_{1}=Q_{0}+R_{1} \in\{ \pm 1\}
\end{aligned}
$$

each grey box is 1×1 matrix, since multiplet indices take only one value, $\bar{i}_{0}=, i_{1}=$ i.e. $M_{0}=, M_{1}=$

Sites 2 and 3

$$
\left(I_{3}^{Q_{2} R_{3}} Q_{3}^{i_{2}}\right)_{i}=Q_{2, i_{2}} \rightarrow I_{1 R_{3}}^{I_{3}} Q_{3}, i_{3} \quad \begin{aligned}
& Q_{2} \in\{ \pm 2,0\} \\
& R_{3} \in\{ \pm 1\} \\
& Q_{3}=Q_{2}+R_{3} \in\{ \pm 3, \pm 1\}
\end{aligned}
$$

The scheme for producing such tables can be automated!

