- The Density Matrix Renormalization Group (DMRG) was invented by Steve White (student of Ken Wilson) to solve general quantum chain models. [White1992], [White1993]
- First realization of connection between MPS and DMRG in limit $\mathcal{L} \rightarrow \infty$: Ostlund \& Rommer [Ostlund1995]
- Realization that finite-size DMRG leads to MPS: Dukelsky, Martin-Delgado, Nishino, Sierra [Dukelski1998]
- Modern formulation: Vidal [Vidal2003], [Vidal2004], Cirac \& Verstraete [Verstraete2004]
- Time evolution: Daley, Kollath, Schollwöck, Vidal [Daley2004], White, Feiguin [White2004]
- Connection to NRG: Weichselbaum, Verstraete, Schollwöck, Cirac, von Delft [arXiv:0504305], [Weichselbaum2009]

DMRG. 1 Iterative ground state search

View space of all MPS of given bond dimension, D, as variational space.
Graphical representation, assuming site-canonical form with orthogonality center at site ℓ :

$$
\begin{align*}
& |\Psi\rangle=|\alpha\rangle\left|\sigma_{l}\right\rangle|\beta\rangle\left[C_{l}\right]^{\alpha \sigma_{l} \beta} \tag{1}\\
& \left.H=\left|\vec{\sigma}^{\prime}\right\rangle \prod_{l} \mid W_{l}\right]^{\sigma_{l}^{\prime}} \sigma_{l}\langle\vec{\sigma}|
\end{align*}
$$

Arrow convention: use same arrow directions on virtual bonds for MPO as in MPS. Then, orientation of MPS triangles, $\bar{Y}, \boldsymbol{P}, \perp, \perp$, hence we henceforth drop most (soften all) arrows.

Minimize $\langle\Psi| \hat{H}|\bar{\Psi}\rangle$ in this space, subject to constraint of unit normalization, $\langle\Psi \mid \Psi\rangle=1$.

$\underset{\substack{-1}}{\substack{\text { E-1 }}}$
Do this one tensor at a time:

$$
\begin{equation*}
\frac{\partial}{\partial c_{l}^{\dagger}}[\langle\Psi| \hat{H}|\Psi\rangle-\lambda\langle\Psi \mid \Psi\rangle]=0 \tag{5}
\end{equation*}
$$

Structure of (6): 1-site Schrödinger equation!

$$
\begin{array}{ll}
1-1_{l}^{(1)} \psi_{l}^{(1)}=\lambda \psi^{(1)} & \text { with } \psi_{l}^{(1)}=C_{l} \\
\psi_{l}^{+(1)} \psi_{l}^{(1)}=1 & \underbrace{1_{l}^{l}}_{C_{l}^{+}}=1 \tag{y}
\end{array}
$$

with normalization

Here, C_{l} is viewed as vector, labeled by composite index $a^{\prime}=\left(\alpha^{\prime} \sigma^{\prime} \beta^{\prime}\right)$, and $H_{l}^{(1)}$ as a matrix:

$$
\begin{equation*}
\left.\left(1-\left.\right|_{l} ^{(1)}\right]_{a}^{1}\right]_{\text {compare (MPS.15.11) }}\left[C_{l}\right]_{l}^{a}=\lambda\left(C_{l}\right]^{a^{\prime}} \quad \text { with normalization } \quad\left[C_{l}^{t}\right]_{a}\left[C_{l}\right]^{a}=1 \tag{9}
\end{equation*}
$$

(7) is an eigenvalue equation for C_{ℓ}. The lowest eigenvalue and eigenvector can be found with standard linear algebra tools (e.g. Lanczos algorithm, next section), without having to construct $H_{l}^{(1)}$ fully.
It suffices to know how to compute $H_{\ell}^{(1)} C_{\ell}$.
$\left[\begin{array}{l}\text { More generally: if }|\psi\rangle \text { is not represented in site-canonical form, one obtains a generalized } \\ \text { eigenvalue equation of the form } \quad H_{\ell}^{(1)} C_{\ell}=N_{\ell}^{(1)} C_{\ell}, \text { with } N_{\ell}^{(1)} \text { defined by r.h.s. of (6) . }\end{array}\right]$ Use the 'eigenvector' with the lowest eigenvalue (= current estimate of ground state energy), say C_{ℓ}^{G}, to 'update' MPS, then move to next site, use SVD on $\tilde{C}_{\{\ell]}$ to shift orthogonality center to site $\ell+1$:

optimize $C_{\ell+1}$, etc..

'Sweep' back and forth until convergence of ground state energy has been achieved. This works remarkably well for 1D chains with short-ranged interactions.

Cost of 1-site DMRG $=$ cost of computing $H_{l}^{(1)} \psi_{l}^{(1)}: \quad O\left(D^{3} d w+D^{2} d^{2} w^{2}\right)$
Note: the full $H_{\ell}^{(1)}$ of dimension $D^{2} d \times D^{2} d \quad$ (expensive!) need not be constructed explicitly!

- Fast way of finding extrema eigenvalues of an Hermitian NuN matrix, H.
- Prerequiste: an algorithm for computing $H|\psi\rangle$, for any vector $|\psi\rangle$.

We seek the extrema value of

$$
\begin{equation*}
E[|\psi\rangle]=\frac{\langle\psi| H|\psi\rangle}{\langle\psi \mid \psi\rangle} \tag{1}
\end{equation*}
$$

Denote extremal value by

$$
\begin{equation*}
E_{g}=\min E[|\psi\rangle]=: E\left[\left|\psi_{g}\right\rangle\right] \tag{2}
\end{equation*}
$$

The direction of steepest ascent of the functional $E[|\psi\rangle]$, evaluated at $|\psi\rangle$, is given by
'functional gradient': $\quad \frac{\delta E[|\psi\rangle]}{\delta\langle\psi|}:=\frac{H|\psi\rangle}{\langle\psi \mid \psi\rangle}-\frac{\langle\psi| H|\psi\rangle}{\langle\psi \mid \psi\rangle^{2}}|\psi\rangle$

$$
\begin{equation*}
=\frac{H-E[|\psi\rangle]}{\langle\psi \mid \psi\rangle}|\psi\rangle=:\left|\psi_{a}\right\rangle \tag{4}
\end{equation*}
$$

Moving in opposite direction will thus lower the energy:

$$
\begin{equation*}
E\left[|\psi\rangle-\alpha\left|\psi_{a}\right\rangle\right]<E[|\psi\rangle] \quad \text { for small, positive } \alpha \tag{5}
\end{equation*}
$$

To find optimal value for α, minimize $E\left[|\psi\rangle-\alpha\left|\psi_{a}\right\rangle\right] \quad$ w.r.t. the 'variational parameter' α, in the 'Krylov space' $K_{1}:=\operatorname{span}\left\{|\psi\rangle,\left\langle\psi_{a}\right\rangle\right\}=\operatorname{spman}\{|\psi\rangle, H|\psi\rangle\}$. (6)

Starting from the random initial state $|\psi\rangle$, construct a normalized basis $\left\{\left|v_{0}\right\rangle,\left|v_{1}\right\rangle\right\}$ for this space:

First basis vector:

$$
\begin{equation*}
\left|v_{0}\right\rangle:=\frac{|\psi\rangle}{\sqrt{\langle\psi \mid \psi\rangle}} \tag{7}
\end{equation*}
$$

First Krylov step: explore the second direction in Krylov space by applying H to $\left|v_{0}\right\rangle$:
Define

$$
\begin{equation*}
\left|\tilde{v_{1}}\right\rangle:=H\left|v_{0}\right\rangle \tag{8}
\end{equation*}
$$

Orthogonalize w.r.t. $\left|v_{0}\right\rangle: \quad\left|v_{1}^{\perp}\right\rangle:=\left|\tilde{v}_{1}\right\rangle-\left|v_{0}\right\rangle\left\langle v_{0} \mid \tilde{v}_{1}\right\rangle$
ensuring

$$
\begin{equation*}
\left\langle v_{0} \mid v_{1}^{1}\right\rangle=0 \tag{9}
\end{equation*}
$$

Compute norm and normalize:

$$
\begin{equation*}
b_{1}:=\sqrt{\left\langle\left.\frac{1}{v_{1}} \right\rvert\, \frac{1}{v_{1}}\right\rangle} \in \mathbb{R} \tag{10}
\end{equation*}
$$

2nd basis vector:

$$
\begin{equation*}
\left|v_{1}\right\rangle:=\left|v_{1}^{\perp}\right\rangle / b_{1} \tag{ir}
\end{equation*}
$$

Rewrite (9): $\quad\left\langle v_{1}\right\rangle b_{1} \stackrel{(11)}{=}\left|v_{1}^{1}\right\rangle=H\left(v_{0}\right)-\left|v_{0}\right\rangle\left\langle v_{0}\right| H\left|v_{0}\right\rangle$

Rewrite (9): $\quad\left|v_{1}\right\rangle b_{1} \stackrel{(11)}{=}\left|v_{1}^{1}\right\rangle=H\left(v_{0}\right\rangle-\left|v_{0}\right\rangle \underbrace{\left\langle v_{0}\right| H\left|v_{0}\right\rangle}_{\text {define }:=a_{0}}=\left\langle v_{0} \mid v_{1}\right\rangle$
(13)

Rearrange (13):

$$
\begin{equation*}
H\left|v_{0}\right\rangle \stackrel{\left(v_{0}\right\rangle}{=} a_{0}+\left|v_{1}\right\rangle b_{1} \tag{14}
\end{equation*}
$$

$\left\langle v_{1}\right|$ (14) and (10) yield: $\left\langle v_{1}\right| H\left|v_{0}\right\rangle=\begin{gathered}(10\rangle \\ 0\end{gathered}+b_{1}=\begin{aligned} & \left\langle v_{0}\right| H\left|v_{1}\right\rangle \\ & \text { since } b_{1} \text { is real, (11) }\end{aligned}$
Finally, define

$$
\begin{equation*}
a_{1}:=\left\langle v_{1}\right| H\left|v_{1}\right\rangle \stackrel{(27)}{=}\left\langle v_{1} \mid \tilde{v}_{2}\right\rangle \tag{16}
\end{equation*}
$$

Now we have orthonormal basis for 2-dimensional Krylov space: $\quad K_{1}:=\operatorname{xpman}\left\{\left|v_{0}\right\rangle,\left|v_{1}\right\rangle\right\}=\operatorname{span}\left\{\left|v_{0}\right\rangle, H\left(v_{0}\right\rangle\right\}$

In the space K_{1}, the Hamiltonian has the matrix representation

$$
H_{k_{1}}=\left(\begin{array}{cc}
\left\langle v_{0}\right| H\left|v_{0}\right\rangle & \left\langle v_{0}\right| H\left|v_{1}\right\rangle \tag{18}\\
\left\langle v_{1}\right| H\left|v_{0}\right\rangle & \left\langle v_{1}\right| H\left|v_{1}\right\rangle
\end{array}\right)=\left(\begin{array}{ll}
a_{0} & b_{1} \\
b_{1} & a_{1}
\end{array}\right)
$$

The ground state of $H_{K_{1}}$, say $|\mathcal{G}\rangle_{K_{1}}$, with energy $E_{k_{1}}^{G}$, yields the optimal choice for α. Now we could iterate: use $|\xi\rangle_{K_{1}}$, as starting point for another optimization step. Convergence is rapid. Monitor quality of result by computing the residual energy variance,

$$
\begin{equation*}
\tau[|\psi\rangle] \equiv \|(H-E)|\psi\rangle \|^{2}=\langle\psi| H^{2}|\psi\rangle-\langle\psi| H|\psi\rangle^{2} \tag{19}
\end{equation*}
$$

for $|\psi\rangle=|\zeta\rangle_{k}, E=E_{k}, \quad$ and stop when it drops below some threshold.
After N steps, starting from $\left\langle v_{0}\right\rangle$, the resulting vector will live in

$$
\begin{aligned}
K_{N}\left(\left|v_{0}\right\rangle\right) & =\operatorname{span}\left\{\left|v_{0}\right\rangle, H\left|v_{0}\right\rangle, H^{2}\left|v_{0}\right\rangle, \ldots, H^{N}\left|v_{0}\right\rangle\right\} \\
& =\text { 'Krylov space of H over }\left|v_{0}\right\rangle \text { ' (dimension } N+1 \text {). }
\end{aligned}
$$

Instead of repeatedly minimizing in 2×2 subspaces, we could first construct K_{N}, then compute its ground state. (This is faster, since it amounts to using N simultaneous variational parameters instead of N separate ones.) To do this, iteratively construct a 'Krylov basis' for K_{N}, such that

$$
\begin{equation*}
K_{N}\left(\left|v_{0}\right\rangle\right)=\operatorname{span}\left\{\left|v_{0}\right\rangle,\left|v_{1}\right\rangle, \ldots,\left|v_{N}\right\rangle\right\} \text {, with }\left\langle v_{n} \mid v_{n^{\prime}}\right\rangle=\delta_{n_{n}} \tag{21}
\end{equation*}
$$

We now elaborate this iteration strategy, first for the 2nd Krylov step, then for the ($n+1$)-th step.
Second Krylov step: explore a new direction in Krylov space by applying H to $\left|\mho_{1}\right\rangle$:
Define

$$
\begin{equation*}
\left|\tilde{v}_{2}\right\rangle:=H\left|v_{1}\right\rangle \tag{22}
\end{equation*}
$$

Define

$$
\begin{equation*}
\left|\tilde{v}_{2}\right\rangle:=H\left|v_{1}\right\rangle \tag{22}
\end{equation*}
$$

Orthogonalize:

$$
\begin{align*}
& \left|v_{2}^{1}\right\rangle:=\left|\tilde{v}_{2}\right\rangle-\sum_{j=0}^{1}\left|v_{j}\right\rangle \underbrace{\left\langle v_{j}\right| H\left|v_{1}\right\rangle}_{\left\langle v_{j} \mid \tilde{v}_{2}\right\rangle} \\
& \left\langle v_{j} \mid v_{2}^{1}\right\rangle=0 \quad j=0,1 \tag{24}
\end{align*}
$$

ensuring

Normalize:

$$
\begin{equation*}
b_{2}:=\sqrt{\left\langle v_{2}^{1} \mid v_{2}^{1}\right\rangle} \quad \in \mathbb{R} \tag{25}
\end{equation*}
$$

3rd basis vector:

$$
\begin{equation*}
\left|v_{2}\right\rangle=\left|v_{2}^{1}\right\rangle / b_{2} \tag{26}
\end{equation*}
$$

Rewrite (23): $\left|v_{2}\right\rangle b_{2} \stackrel{(2 b)}{=}\left|v_{2}^{\perp}\right\rangle \stackrel{(23,2 \tau)}{=} H\left|v_{1}\right\rangle-\left|v_{1}\right\rangle\langle\underbrace{\left|v_{1}\right|}_{\left.\text {define }:=v_{1}|H| v_{1}\right\rangle}-| v_{1}\left|\tilde{v}_{2}\right\rangle \quad\left|v_{0}\right\rangle\langle\underbrace{\left\langle v_{0}\right| H\left|v_{1}\right\rangle}_{(15)=v_{1}}$
Rearrange (27): $\quad H\left|v_{1}\right\rangle \stackrel{(27)}{=}\left|v_{0}\right\rangle b_{1}+\left|v_{1}\right\rangle a_{1}+\left|v_{2}\right\rangle b_{2}$
$\left\langle v_{2}\right|$ (28) and (24) yield: $\left\langle v_{2}\right| H\left|v_{1}\right\rangle=\begin{gathered}5^{(24)} 2 \\ 0+0+b_{2}= \\ \left\langle v_{1}\right| H\left|v_{2}\right\rangle \\ \text { since } b_{2} \text { is real, (25) } \\ \text { elements }\end{gathered}$
 and we orthogonalized $\left|v_{2}\right\rangle$ w.r.t. $\left|v_{0}\right\rangle,\left|v_{1}\right\rangle$ [see $(23,24)$]
($\mathrm{n}+1$)-th Krylov step: explore a new direction in Krylov space by applying H to $\left|v_{n}\right\rangle$:
Define $\quad\left|\tilde{v}_{n+1}\right\rangle:=H\left|v_{n}\right\rangle$
Define: $\quad a_{n}:=\left\langle v_{n} \mid \tilde{v}_{n+1}\right\rangle=\left\langle v_{n}\right| H\left|v_{n}\right\rangle \quad$ diagonal elements
Orthogonalize: $\quad\left|v_{n+1}^{\perp}\right\rangle:=\left|\tilde{v}_{n+1}\right\rangle-\sum_{j=0}^{n}\left|v_{j}\right\rangle\left\langle v_{j} \mid \tilde{v}_{n+1}\right\rangle$
ensuring

$$
\begin{equation*}
\left\langle v_{j} \mid v_{n+1}^{\perp}\right\rangle=0 \quad \text { for } \quad 0 \leq j \leq n \tag{34}
\end{equation*}
$$

Normalize:

$$
\begin{equation*}
b_{n+1}:=\sqrt{\left\langle v_{n+1}^{\perp} \mid v_{n+1}^{1}\right\rangle} \tag{35}
\end{equation*}
$$

$(n+1)$-th basis vector: $\left|v_{n+1}\right\rangle:=\left|v_{n+1}^{1}\right\rangle / b_{n+1}$
[If it happens that $b_{n+1}=0$, pick an arbitrary $\left|v_{n+1}\right\rangle$ orthonormal to all $\left|v_{j}\right\rangle, j=0, \ldots, n$.] Rewrite (33):

$$
\begin{equation*}
\left|v_{n+1}\right\rangle b_{n+1} \stackrel{(3 n)}{=}\left|v_{n+1}^{1}\right\rangle \stackrel{(31,30)}{=} H\left|v_{n}\right\rangle-\left|v_{n}\right\rangle \underbrace{\left.v_{n}|H| v_{n}\right\rangle}_{(32):=a_{n}}-\left|v_{n-1}\right\rangle\langle\underbrace{\left.v_{n-1}|H| v_{n}\right\rangle}_{(36)=v_{n-1}}-\underbrace{0}_{(38)} \tag{37}
\end{equation*}
$$

All other terms vanish: $\quad\left\langle v_{j}\right| H\left|v_{n}\right\rangle=\left\langle v_{n}\right| H\left|v_{j}\right\rangle=0 \underset{\text { farther-than-next-to-diagonal }}{j \leqslant n-z}$
since by construction, $H\left|v_{j}\right\rangle \in \operatorname{span}\left\{\left|v_{i}\right\rangle, 0 \leq i \leq j+1\right\}$ and for $j \leqslant n-2$,
ie. $i \leq j+1 \leq n-1,\left|v_{n}\right\rangle$ is orthogonal to them all: $\left\langle v_{n} \mid v_{i}\right\rangle \stackrel{(34)}{=} 0$ for $i \leq n-1$
orthonormal Krylov basis:

Rearrange (37):

$$
\begin{equation*}
H\left|v_{n}\right\rangle=\left|v_{n-1}\right\rangle b_{n}+\left\langle v_{n}\right\rangle a_{n}+\left|v_{n+1}\right\rangle b_{n+1} \tag{40}
\end{equation*}
$$

$\left\langle v_{n}\right|(40)$ and (34) yield $\quad b_{n+1}=\left\langle v_{n+1}\right| H\left|v_{n}\right\rangle=\left\langle v_{n}\right| H\left|v_{n+1}\right\rangle \underset{\substack{\text { next-to-diagonal } \\ \text { elements }}}{\text { (ul) }}$
(38) holds if computations are done using exact arithmetic. In numerical practice, it does not hold strictly (typical violations are $O\left(10^{-12}\right)$), and errors accumulate. Hence it is advisable to orthogonalize a second time, directly after (32), before proceeding. This will be made explicit see below.

Ground state of $H_{K_{N}}$ satisfies the eigenvalue equation $\quad\left(H_{K_{N}}\right)_{j}^{i}\left(\psi_{g}^{N}\right)^{j}=E_{g}^{N}\left(\psi_{y}^{N}\right)^{i}$ (43) Thus

$$
\begin{equation*}
E_{g}^{N} \text { and }\left|\psi_{g}^{N}\right\rangle=\sum_{j=0}\left|v_{j}\right\rangle\left(\psi_{g}^{N}\right) j \tag{4,4}
\end{equation*}
$$

are the best approximations, within the Krylov space K_{N}, of true ground state energy and ground state.
The Lanczos scheme converges exponentially fast, with a rate \sim [gap to first excited state] $^{/ 2}$.

Summary Construct Krylov space of dimension $N+1$ as follows:

1. Initialization: start with arbitrary (normalized) state $\left|v_{0}\right\rangle$

Then repeat steps 2 to 4 for $n=0, \ldots, N-1$:
2. Explore new direction in Krylov space by applying H :

$$
\left|\tilde{v}_{n+1}\right\rangle:=H\left|v_{n}\right\rangle, \quad a_{n}:=\left\langle\tilde{v}_{n+1} \mid v_{n}\right\rangle
$$

3. Orthogonalize w.r.t. all previous Krylov vectors (twice, for safety!):

$$
\begin{aligned}
\left|v_{n+1}^{\perp}\right\rangle & =\left|\tilde{v}_{n+1}\right\rangle-\sum_{j=0}^{n}\left|v_{j}\right\rangle\left\langle v_{j} \mid \tilde{v}_{n+1}\right\rangle \\
\left|v_{n+1}^{\perp \perp}\right\rangle & :=\left|v_{n+1}^{\perp}\right\rangle-\sum_{j=0}^{n}\left|v_{j}\right\rangle\left\langle v_{j} \mid v_{n+1}^{1}\right\rangle
\end{aligned}
$$

4. Compute norm and normalize: $\quad b_{n+1}:=\sqrt{\left\langle v_{n+1}^{\perp \perp} \mid v_{n+1}^{\perp \perp}\right\rangle}$

If $b_{n+1} \neq 0$, then $\quad\left|v_{n+1}\right\rangle:=\left|v_{n+1}^{11}\right\rangle / b_{n+1}$ else, pick $\left|v_{n+1}\right\rangle$ as arbitrary normalized vector orthogonal to all $\left|v_{0}\right\rangle, \ldots,\left|v_{n}\right\rangle$

There are other ways of organizing this iteration loop, but the one shown here is numerically the most stable. [Paige1972]

In the resulting Krylov space $K_{N}=\operatorname{span}\left\{\left|v_{0}\right\rangle,\left|v_{1}\right\rangle, \ldots,\left|v_{N}\right\rangle\right\}$
the Hamiltonian has the representation

$$
H_{N}=\left(\begin{array}{cccccc}
a_{0} & b_{1} & & & & \\
b_{1} & a_{1} & b_{2} & & & \\
& b_{2} & a_{2} & & & \\
& & & \ddots & & \\
& & & & a_{N-1} & b_{N} \\
& & & & b_{N} & a_{N}
\end{array}\right)
$$

Suppose we have an MPS representation for ground state, $\quad(g)=x \frac{A S}{A S} C^{G}$ found by DMRG. Excited states can be constructed repeating a DMRG sweep in space orthogonal to $|\mathrm{g}\rangle$.

Extremize: $\quad\langle\Psi| H|\Psi\rangle-\lambda_{1}\langle\Psi \mid \Psi\rangle-\lambda_{2}\langle\Psi \mid \xi\rangle$
Lagrange multipliers enforce $\langle\bar{\Psi} \mid \Psi\rangle=1$ and $\langle\Psi \mid g\rangle=0$.
Extremization w.r.t. C_{ℓ}^{\dagger} yields

Generic structure of this equation, in mixed-canonical representation of site ℓ [compare (DMRG-I.1.7)]:

$$
\begin{equation*}
H_{l}^{(1)} C_{l}=\lambda_{1} C_{l}+\lambda_{2} C_{l}^{g} \tag{s}
\end{equation*}
$$

with $C_{l}^{+} \cdot C_{l} \stackrel{(3)}{=}=1$,

$$
\begin{equation*}
c_{l}^{t} c_{l}^{G^{(3)}}=0 \tag{6}
\end{equation*}
$$

cf. (DMRG-I.1.7)
Displaying indices: $a^{\prime}=\left(\alpha^{\prime}, \sigma^{\prime}, \beta^{\prime}\right)$

$$
\begin{aligned}
& {\left[H_{l}^{(1)}\right]_{a}^{a^{\prime}}\left[C_{l}\right]^{a}=\lambda_{1}\left[C_{l}\right]^{a^{\prime}}+\lambda_{2}\left[C_{l}^{g}\right]^{a^{\prime}} \quad\left[C_{l}^{+}\right]_{a}\left[C_{l}\right]^{a}=1, \quad\left[c_{l}^{t_{g}}\right]_{a}\left[C_{l}^{g}\right]^{a}=1(7)}
\end{aligned}
$$

Index-free notation for (5): $\quad H|C\rangle=\lambda_{1}|C\rangle+\lambda_{2}|g\rangle, \quad\langle C \mid g\rangle=0$
Projector onto subspace orthogonal to $|\xi\rangle: \quad P_{G}=\mathbb{1}-|\xi\rangle\langle\xi|, \quad P_{g}|\xi\rangle=0$
[with indices: $\quad P_{G}^{a^{\prime}} a=\mathbb{1}_{a}^{a^{\prime}}-g^{a^{\prime}} g_{a}^{+}$, so that $P_{G}^{a^{\prime}} a g^{a}=0$]
[with indices: $P_{g}^{a^{\prime}}=\mathbb{1}_{a}^{a^{\prime}}-g^{a^{\prime}} g_{a}^{+}$, so that $\left.P_{g}^{a^{\prime}} a g^{a}=0\right]$
Project (10) onto this subspace: $\quad P_{g} H(\overbrace{P_{g}+|(1) \underbrace{\langle g|}_{\underbrace{1}_{(10)=0}}| C\rangle}^{1}=\lambda_{1} P_{g} \mid C)+0$

$$
\begin{equation*}
P_{g} H P_{g}|C\rangle=\lambda_{1} P_{g}|C\rangle \tag{14}
\end{equation*}
$$

This is simply an eigenvalue problem, for $\mathrm{P}_{g} H$, in subspace orthogonal to $|g\rangle$. It can be solved using straightforward generalization of Lanczos scheme, using Krylov subspace orthogonal to $\mid \mathcal{G}$: Given an arbitrary initial state $\left|v_{0}\right\rangle$, project it onto orthogonal subspace, $\left|v_{0}^{\prime}\right\rangle=P_{g}\left|v_{0}\right\rangle$ and construct new Krylov vectors using

$$
\begin{equation*}
\left|v_{n+1}^{1}\right\rangle=P_{g} H\left(v_{n+1}\right\rangle-\left|v_{n}\right\rangle a_{n}-\left|v_{n-1}\right\rangle b_{n} \tag{16}
\end{equation*}
$$

Why not simply use excited states in K_{L} ? Because numerical noise can cause the $\left|v_{n}\right\rangle$ to be not exactly orthogonal, hence for $j \leqslant n-2,\left\langle v_{n} \mid v_{j}\right\rangle \simeq 10^{-12}-10^{-16}$ rather than 0 .

This leads to spurious multiple copies of eigenstates ('ghost states'). For the ground state, the variational principle ensures that the loss of orthogonality does not become a severe problem. But for excited states, it does. To prevent this, explicit reorthogonalization is needed at every step, using P_{y}, as indicated in (15).

Block-Lanczos for excited states

Standard Lanczos: represent action of H as

$$
H\left|v_{0}\right\rangle=\left|v_{0}\right\rangle a_{0}+\left|v_{1}\right\rangle b_{1} \Rightarrow
$$

Block-Lanczos: start with set of M orthogonal vectors,

$$
\Rightarrow \quad\left(\begin{array}{ccc}
a_{0} & b_{1} & \tag{18}\\
b_{1} & a_{1} & b_{2} \\
& b_{2} & \ddots
\end{array}\right)
$$

$$
\begin{equation*}
H\left|v_{0, i}\right\rangle=\left|v_{0, j}\right\rangle \mathbb{1}_{i}^{j}\left(a_{1}\right)^{i}+\left|v_{1, j}\right\rangle\left(b_{1}\right)_{i}^{j} \tag{19}
\end{equation*}
$$

with

$$
\begin{equation*}
\left\langle v_{0, j} \mid v_{1, i}\right\rangle=0 \quad\left\langle v_{1}, j v_{1, i}\right\rangle=\mathbb{1}_{i} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(a_{1}\right)^{i}=\left\langle v_{0}, i\right| H\left|v_{0, i}\right\rangle, \quad(b,)_{i}^{j}=\left\langle v_{1, j}\right| H\left|v_{0, i}\right\rangle \tag{22}
\end{equation*}
$$

etc. Then the lowest M eigenstates of block-tridiagonal matrix give the Lanczos approximation for lowest M eigenstates of H

$$
\left(\begin{array}{c}
\left(\begin{array}{l}
\left.a_{0}\right)\left(b_{1}^{\dagger}\right) \\
\left(b_{1}\right)\left(a_{1}\right)\left[b_{2}^{\dagger}\right] \\
\left(b_{2}\right) \\
\ddots
\end{array}\right), ~ \tag{23}\\
\end{array}\right.
$$

If one encodes symmetries (see Sym-I to Sym-III), then 'one-site update' (discussed above) can get stuck: if one starts in the wrong symmetry sector, one stays there, because one-site update offers no way of enlarging the Hilbert space during the variational search to explore other symmetry sectors.
Cure: 'two-site' update, which variationally optimizes two A-tensors at a time.
Represent MPS in site-canonical two-site basis:

Then extremize simultaneously w.r.t.

Compact

$$
\begin{equation*}
\left.\left[H_{l}^{(2)}\right]_{a}^{a^{\prime}}\left[\psi_{l}^{(2))}\right]^{a}=\lambda\left[\psi_{l}^{(2)}\right]\right]^{a^{\prime}} \text { with composite index } a=(\alpha, \sigma, \bar{\sigma}, \beta) \tag{5}
\end{equation*}
$$ and

$$
\begin{equation*}
\left[H_{l}^{(2)}\right]_{a}^{a^{\prime}}= \tag{6}
\end{equation*}
$$

Use Lanczos to find lowest eigenvalue of eigenvalue equation (5), and reshape updated $\tilde{\psi}_{l}^{(2)}$:

Key point: S has $D d$ singular values, larger than the virtual bond dimension D of C_{ℓ} and $B_{\ell+1}$ Hence, it explores a larger state space, in general also including more symmetry sectors!

This concludes optimization of site ℓ. Now move one site to the right and repeat. Sweep ${ }^{\sigma}$ back and forth until convergence of full chain (i.e. ground state energy converges).
Cost of 1-site DMRG: $\mathcal{O}\left(D^{3} d w+D^{2} d^{2} w^{2}\right)$ Cost of 2-site DMRG: $O\left(D^{3} d^{3}+D^{3} d^{2} w\right)$

