DMRG.1-4: Ground State Search [Schollwtck2011, Sec. 6.3] DMRG.1

* The Density Matrix Renormalization Group (DMRG) was invented by Steve White
(student of Ken Wilson) to solve general quantum chain models. [White1992], [White1993]

« First realization of connection between MPS and DMRG in limit L > e : Ostlund & Rommer
[Ostlund1995]

» Realization that finite-size DMRG leads to MPS: Dukelsky, Martin-Delgado, Nishino, Sierra
[Dukelski1998]

» Modern formulation: Vidal [Vidal2003], [Vidal2004], Cirac & Verstraete [Verstraete2004]

« Time evolution: Daley, Kollath, Schollwdck, Vidal [Daley2004], White, Feiguin [White2004]

» Connection to NRG: Weichselbaum, Verstraete, Schollwock, Cirac, von Delft [arXiv:0504305],
[Weichselbaum2009]

DMRG.1 Iterative ground state search

View space of all MPS of given bond dimension, D , as variational space.

Graphical representation, assuming site-canonical form with orthogonality center at site {
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Arrow convention: use same arrow directions on virtual bonds for MPO as in MPS. Then, orientation of
MPS triangles, Y , T, A s A , hence we henceforth drop most (soften all) arrows.

Minimize <1I| H (f7 in this space, subject to constraint of unit normalization, <IE [’f') =1,

)
Hence extremize {¢| ;H FyY - N<CEIEY (3
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Do this one tensor at a time: .)_)F [(1{] H I 1£> - A<l @‘)1 = 0 ()
CL
« () P

%y ' % C
1 T« [ | i “'—*g—’*f/

Page 1



% * "ClF . o C”P’
RS TT LT T-2"1T w

! = A ,
i ’ I * L— > ¥ ‘
¢! K f
' close zippers from

/
! é left and right
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Schrédinger equation! ”1 q'q = }4' with %(') = Cz @
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with normalization 1(, 1(/ = | ®
+
Cy
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Here, ( ¢ is viewed as vector, labeled by composite index @ = (" € [3 ), and Ty as a matrix:

U"g\]‘a N {(: L\« = }(C !\“' with normalization [CH 2 (C ¢ ]a = | ()

compare (MPS.15.11)

), < ‘* 1 i ﬁ % o

) F—)- L2| \A)y_ R'RH

(7) is an eigenvalue equation for ¢ R The lowest eigenvalue and eigenvector can be found W|th standard

linear algebra tools (e.g. Lanczos algorlthm next section), without having to construct H y  fully.
It suffices to know how to compute H,_ C .

More generally: if %) s not represented in S|te -canonical form, one obtains a generalized
eigenvalue equation of the form Hm(: 0= l C I with N( defined by r.h.s. of (6) .

Use the 'eigenvector' with the lowest eigenvalue (= current estimate of ground state energy), say C% ,
to 'update' MPS, then move to next site, use SVD on C [¢) to shift orthogonality center to site Lei

hegpls v 3] e s
Cﬁl Eh—« (M)(S v BIH) Cbn

_ Ay ,
D“’ng‘b *D’AH)DOD‘QD* 13;13 =DT’_T'J DD (v)

¢ d
optimize Czn , etc.. EQ'I-: Cpei
N v 1 ¥ v
= s =

'Sweep' back and forth until convergence of ground state energy has been achieved.
This works remarkably well for 1D chains with short-ranged interactions.

3 3
Cost of 1-site DMRG = cost of computing H!; 'q,Q : U(D o+ D O(IU'L) (13)

Note: the full H¢ of dimension D°d « D' d (expensive!) need not be constructed explicitly!
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DMRG.2 Lanczos method [Lanczos1950], [Ojalvo1970], [Paige1972], [Koch2011] DMRG.2
original idea stable version nice discussion

» Fast way of finding extremal eigenvalues of an Hermitian NxN matrix, H

» Prerequiste: an algorithm for computing I—I lqz) , for any vector l'LD

We seek the extremal value of E [\1(»& = L[ H (%D 0)

Ly L w)
Denote extremal value by (=S q = win E[\'u(ﬂ =:E Hl\'ﬁ\)l (@)
The direction of steepest ascent of the functional & [hﬂ] , evaluated at l—\|,7 , is given by
= (
'functional gradient' %C—M} = ﬁ - M hl’) ®
$ Ly <y \Y ) Ly \y)r
= H - EUW7] \'4'7 = | )
TAER ')

Moving in opposite direction will thus lower the energy:

E[ 4y - « \U((Q l < E Hlﬂl for small, positive ¢ (8)

To find optimal value for «f , minimize E {\'4—7 - o \’U(ODR w.r.t. the 'variational parameter' o/ ,

in the 'Krylov space' K‘ = s()a-«ihﬂ , (%avs = S(n-—\ ?“('71 H('tfﬂ (4

Starting from the random initial state "'4'7 , construct a normalized basis {IU'O), Iv,)} for this space:

{
First basis vector: v, = B @

[ <\y)

First Krylov step: explore the second direction in Krylov space by applying H to |, )

Define loy) &= H L) ®)
Orthogonalize w.r.t. [v,) : sty = = 13) ~ 1wd)v |5 @)
ensuring (ol = o (to)
Compute norm and normalize: L, := , CElGY eR ()
2nd basis vector: ls): = IU"L>/(>, )
Rewrite 9):  {uy by = (9F) = Hise) — 1weXwl H v, ) (39

\..s_.___’___—l . L~
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Rewrite (9): (uYh, = (o7) = Hlve) = 105l Hlve ) (13)

\~——r——-—‘ )
define = a. = 4valv,)
(13)
Rearrange (13): Hlvo) = 1) a, + ludb, (ta}

(Io)
o + bi = R d (o) Gis)

since by is real, (11)

Finally, define a: = (ulH ) @) v, | G:L7 (o)

]

<u,| (14) and (10) yield: 4"‘;( Hlv, )

Now we have orthonormal basis for ;
2-dimensional Krylov space: K, : = Aptn ¢ (o), luyy Y= Spee lve) \—“uh} 03

Inthe space KK, , the Hamiltonian has the matrix representation

H (vblH [4a) <N H/Uc> @, b, (X]
o {u, ik (Us) (o[ B (v - b Q,

The ground state of Hk‘ , say IS 7!( with energy Ei , Yields the optimal choice for
| ]

Now we could iterate: use lg 7!(, as starting point for another optimization step. Convergence is

rapid. Monitor quality of result by computing the residual energy variance,
R 1 z
i) = ((H-ellwll = <ld i) - Zelatw (1)
for Juo = \ﬁ)K, , &= E%‘ and stop when it drops below some threshold.

After N/ steps, starting from (U‘o7 , the resulting vector will live in

Ky (Lwo))

N

S()Gv\{ \Uo)/ H [Uo)) H’- [U',,) o HN ('UQ} (o

I

'Krylov space of H over {U.y" (dimension N +1 ).

Instead of repeatedly minimizing in 2x2 subspaces, we could first construct K N then compute its
ground state. (This is faster, since it amounts to using M simultaneous variational parameters

instead of /\V separate ones.) To do this, iteratively construct a 'Krylov basis' for KN , such that

KN(lvo)\ = spaw flu), (U)LY with  (Ua v, ) = Suw (1)

We now elaborate this iteration strategy, first for the 2nd Krylov step, then for the (n+1)-th step.

Second Krylov step: explore a new direction in Krylov space by applying Hto | Ui ):

Define \(3"7_) .= Hiv) (z2)
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Define \sz) = Hiud (z2)

Orthogonalize: \v,_J'7 = IU'r.7 Z. \Uﬁ(ﬁ \U,_) (22
{ o (H (0'\7
ensuring (Uj\uiﬁ =0 ! = 0 (z4)
Normalize: Q)Z e m P 4 (25)
3rd basis vector: ) = [~ zl Y/ b, @)
Rewrite (23): "‘517‘% (zL) > G Klv> = W)U lH|u) = (V% VlHIU) ()
gl —e
define :=G( = (U \ (7,7 () = b
(z9
Rearrange (27): Hlvw) = v b, + [oYa + lvz)Lz (23)
r("-#)
5| (28)and 24) yield:  Zu, IHlu,) = 0 #o +L = Lo)M[wv, )  nexttodiagonal (z)
elements
since bz is real, (25)
(13)
Note: <{wfHlve) = o ,since  Hlv,) € 5(%3, lve) BT Go)

and we orthogonalized 1Uz) w.rt. |uo) | [U)) [see (23,24)]

(n+1)-th Krylov step: explore a new direction in Krylov space by applying H to | v, %

Define "Em,.> = Hlva) (31)
Define: Qu = U ‘Guu) = <U“ | H |‘U'“) diagonal elements (32)
Orthogonalize: Io;":l) = \3'.44.) Z. \"'XU' |U'u+.) (32
J-.
. L .
ensuring (Uj lUas? = o for 6s) 24 (3%
Normalize: Q)m) = l<1"vt||"’ut> (3s)
) _ 1
(n+1)-th basis vector: "U.,.,,,,) 1= |‘Um.)/b N (3¢)

[If it happens that i;n“ = o , pick an arbitrary | U}m) orthonormal to all ‘UP' J =0, 4 N

Rewrite (33) ae)
;h;

l'lfvu))\bml: Uh+|7 = H‘U«O ~ o Yo JH ) ~ 1) Crun v -2 (3

\—-——Y—-—’—‘
(32) = (w (35)=bu-| (s8)
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All other terms vanish: (v |H1vU, ) = ¢u [HIv ) = o for (& -2 (39
J J farther-than-next-to-diagonal

since by construction, H I‘UJ'? € Spe— “",;7 , 0£; ¢ ]H 1 and for l S u-2,
(3¢)

e 1€ kH < n-1 , |Vy) isorthogonal to them all: (uwlvi) =0 for {2 n-1 (34)
orthonormal Krylov basis: ':Q .oy |'-" 2, V0, ., ’szl , Waa 2, lva>
U cn -2 is one of t}ése states »
Hlv ‘g“--,) lies in span of these states, hence has no overlap with
Rearrange (37): Hlv = .,-‘> b, + (b)) a, + Wae)d IDW,( (6o
{15, 1(40) and (34) yield bus, = G, v,y < ldlo,y nexttodiagonal - (,

(38) holds if computations are done using exact arithmetic. In numerical practice, it does not hold
strictly (typical violations are O(w - '7') ), and errors accumulate. Hence it is advisable to orthogonalize
a second time, directly after (32), before proceeding. This will be made explicit see below.

lvo> s (Uu7 \
Hence, in KN , (g | 2e e,
HK s ‘ol [ Y (Q?.
H has tridiagonal form: N dud be a, b
T 3
(k2)
bs &« oy
aM"‘ Q’l«/
<'U'” (’-'A/ a, )

Ground state of I-\k satisfies the eigenvalue equation ( H K,,)l . (L[g’),\ = E‘f:' (qg )l. .
J

Thus EN and ) = o ) (yN J (ve)
J
are the best approximations, within the Krylov space l( of true ground state energy and ground state.

The Lanczos scheme converges exponentially fast, with a rate ~ [gap to first excited state]/ t

Summary Construct Krylov space of dimension N+ as follows:

1. Initialization: start with arbitrary (normalized) state  [Uw?

Then repeat steps 2to4for W = p, ... N-1

’

2. Explore new direction in Krylov space by applying H:
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|'6':\,.|> P= H hjv\? , U = <&A1-|l’fu7

3. Orthogonalize w.r.t. all previous Krylov vectors (twice, for safety!):

n
L Ay A
Vi) o= 1 - ,}?—:o ‘01)4('3.'0“*'7
L v L
J Ut o= Ilrm:) - J’Z=o lu_i)<u:ll°.“+|>
. L - JZU— L-'-l LL )

4. Compute norm and normalize: gt - = nii ‘LY,,,H
If by, # o, then fun) == V03 b,

else, pick ‘5“4,7 as arbitrary normalized vector orthogonal to all \U»>, {u,,\)

There are other ways of organizing this iteration loop, but the one shown here is numerically
the most stable. [Paige1972]

In the resulting Krylov space K“ = 59&%5 (ve?, lu\7, ... , l'U-,J)i

the Hamiltonian has the representation

(a, .
HN B b, o L'a.
b. (1.9

.
-

® gy B,J
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DMRG.3 Excited states - block Lanczos

Suppose we have an MPS representation for ground state, | 3)

DMRG.3

AT AS (& 8igl
O B T S A AL AN ()

found by DMRG. Excited states can be constructed repeating a DMRG sweep in space orthogonal to l%),

Extremize: eiH 1) - Q. &alg) - 7, 41}\%7 {2y
Lagrange multipliers enforce  <%l%) = |  and 4'@_%7 = o )
Extremization w.r.t. C’.Z yields
« Co b g
« C_?. r « Cp i .
T T
W /\/\// @

builtl}gk'ﬂ , B -tensors of 17

built from ni @ C -tensors of ‘6'7

Generic structure of this equation, in mixed-canonical representation of site 4 [compare (DMRG-1.1.7)]:

, + ) oW
('l)Ct = (o o+ ' C:f (5) with  CypCy o ) Clcﬁai o (¢
cf. (OMRG-1.1.7) ¢
Displaying indices: & '= (Ot', 6‘; P')
NG ' a + a + a
() 1 = et 1 (c}) [cel fce) = el (@) = 1@
[ ol
, " o Cgf-‘) .
G’ (L Sle'e's (G j\xcp ,
(cil'= (- TP Rl o Lﬁ_. ST
' _ AS
with [ and R computed iteratively, i —>-
4 - E e
x* <! S =1 x6G L 1
(81, = ) E; .
L2~
Index-free notation for (5): HiCY = 2 0ey + W 37 ’ { Ciﬁ) =0 (=)
Projector onto subspace orthogonal to IS) - {S)<3\ , Pﬁ ff> =0 ()
[with indices: ?«a’k = a‘a - Sa S-‘; so that Pﬁ“’a (3\“ = 0 ] (r2)



( ¢ 't
Iwith indices: ?Sa A = ,'ﬂ_a P 30‘3“ , 0 that ?ﬁa’“ S(A = 0 } (r2)

y L
Project (10) onto this subspace: PS ( f) e l"A)US[)lcv ()SlC\ + 0 (03)
(lo)“o
PS (‘l P (cH = ,'Lu ? \C) (¢)

This is simply an eigenvalue problem, for ? H in subspace orthogonal to 16) It can be solved
using straightforward generalization of Lanczos scheme, using Krylov subspace orthogonal to 16
Given an arbitrary initial state 1Uo?) , project it onto orthogonal subspace, |u;) = Pﬁ (vn) (1)

and construct new Krylov vectors using

ontu? = Pﬁ H h’wm) ~ fvay ta - (Ua=e? {3‘,\ (1e)

Why not simply use excited states in K ? Because numerical noise can cause the U, )

- -IL -/b
to be not exactly orthogonal, hence for J &n-2 <Uv\ Vi 7 &~ -t rather than 0. (i1

This leads to spurious multiple copies of eigenstates (‘ghost states'). For the ground state, the variational
principle ensures that the loss of orthogonality does not become a severe problem. But for excited states, it

does. To prevent this, explicit reorthogonalization is needed at every step, using ?ﬁ , as indicated in (15).

Block-Lanczos for excited states

ab E( }
Standard Lanczos: represent action of H as |
\ a | ‘Ol ('7)
Hluve) = (Vo) 2o + lub, =5
b .
Block-Lanczos: start with set of M orthogonal vectors, \ j
on,i> ) L=, -, M , and represent action of H as (19)

Hlve;) = \Voji> _1]}',’(6(.5': + \U‘/;3>Q)‘):X g )

with (00’:\\0‘(,-0 = 0 (v, \U‘ AT 7 1, 7

and (O&,\." = <Uo/'|,lH (Uo’;:)’ Q;, )“L- = <U':$ (H ‘Uo,',> 2)

etc. Then the lowest M eigenstates of block-tridiagonal matrix
b (|65

give the Lanczos approximation for lowest M eigenstates of H )
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DMRG.4. Two-site update [Schollwdck2011, Sec. 6.4] DMRG.4

If one encodes symmetries (see Sym-I to Sym-III), then 'one-site update' (discussed above) can get
stuck: if one starts in the wrong symmetry sector, one stays there, because one-site update offers no
way of enlarging the Hilbert space during the variational search to explore other symmetry sectors.
Cure: 'two-site' update, which variationally optimizes two A-tensors at a time.

Represent MPS in site-canonical two-site basis:

(oo p A R C [ B R
' [+~ e

O (()
Then extremize simultaneously w.r.t. 5 3 .
C’rz o g:“ 5 ek (Uflm 1) - 3<@|1§>X =
[qml“ L e o

i o(\l (_( , B(f/ ,6
= 1 Ie’\ £&" ( L Q)

x

b s 4
(42
v |
- A ' Ce P By ¢ )
close zippers from left and right g’ G'
‘I
ﬁggggﬁt, ’1 with composite index @ = (ol , 6,0, é) s)
< A
and : T
[Ht R

a 3
Le_l w! whl R€+z

Va4
Use Lanczos to find lowest eigenvalue of eigenvalue equation (5), and reshape updated 1(¢(" :

~)] a reshape 5 5 sud X,
updated { 0 S = > O—— ﬁ LD—»()——«(]—«- @)

DA™ DA

Key point: S has Dd singular values, larger than the virtual bond dimension D of Q!. and Btu
Hence, it explores a larger state space, in general also including more symmetry sectors!

A~

. AQ XN 4:Cg_+{
Truncate down to 1) and reshape: o (w) ( S Ui)

This get rid of 'bad' symmetry sectors. = '__>_|>_>_Q_<_q_<_°' F i= _>1_>_?<_ d

VY4 D D T DA _
o o
This concludes optimization of site 46 . Now move one site to the right and repeat. Sweep back and
forth until convergence of full chain (i.e. ground state energy converges).

3
Cost of 1-site DMRG: U(D3 dw+ Dldlul) Cost of 2-site DMRG: U(D 0(3 + DS ot ) {4)

Page 10



