Consider translationally invariant MPS, e.g. infinite system, or length- \mathcal{L} chain with periodic boundary conditions. Then all tensors defining the MPS are identical: $A_{[\ell]}=A$ for all l. Goal: compute matrix elements and correlation functions for such a system.

MRS. 9 Transfer matrix

Consider length- \mathcal{L} chain with periodic boundary conditions (and A's not necessarily all equal):
$|\psi\rangle=\left|\vec{\sigma}_{\mathcal{L}}\right\rangle\left[A_{1}\right]^{\alpha \sigma_{1}}{ }_{\beta}\left[A_{2}\right]^{\beta \sigma_{2}}{ }_{\gamma} \ldots\left[A_{\alpha}\right]^{\nu} \sigma_{\alpha}{ }_{\alpha}$

$$
\begin{equation*}
\equiv\left(\vec{\sigma}_{d}\right) \operatorname{Tr}\left[A_{1}^{\sigma_{1}} A_{2}^{\sigma_{2}} \ldots A_{d}^{\sigma_{x}}\right] \tag{I}
\end{equation*}
$$

Normalization:

$D_{\alpha}=D_{\beta}=O_{\gamma}=D_{\nu}=: D$
This is assumed throughout below.)
(2)

We defined the 'transfer matrix' (with collective indices chosen to reflect arrows on effective vertex)

Then

$$
\begin{equation*}
\left[\overline{A_{1}} \overline{\alpha^{\prime} \sigma_{1}}{ }_{\beta^{\prime}} \overline{\left.\left(A_{2}\right]\right]^{\prime} \sigma_{2}} \gamma^{\gamma^{\prime} \cdots} \overline{\left[A_{\mathcal{L}}\right]^{\nu^{\prime} \sigma_{\mathcal{L}}} \alpha^{\prime}} \quad\left[A_{1}\right]^{\alpha \sigma_{1}}{ }_{\beta}\left[A_{2}\right]^{\beta \sigma_{2}} \gamma^{\ldots}\left[A_{\mathcal{L}}\right]^{\nu \sigma_{\mathcal{L}}}{ }_{\alpha}\right. \tag{3}
\end{equation*}
$$

regroup

$$
\begin{equation*}
\langle\psi \mid \psi\rangle=\left[T_{1}\right]_{b}^{a}\left[T_{2}\right]_{c}^{b} \ldots\left|T_{\mathcal{L}}\right|_{a}^{n}=T_{r}\left(T_{1} T_{2} \ldots T_{\mathcal{L}}\right) \tag{7}
\end{equation*}
$$

Assume all A-tensors are identical, then the same is true for all T^{\prime}-matrices. Hence

$$
\begin{equation*}
\langle\psi \mid \psi\rangle=T_{r}\left(T^{\mathcal{L}}\right)=\sum_{j}\left(t_{j}\right)^{\mathcal{L}} \xrightarrow{\mathcal{L} \rightarrow \infty}\left(t_{1}\right)^{\mathcal{L}} \tag{8}
\end{equation*}
$$

where t_{j} are the left eigenvalues of the transfer matrix, and t_{1} is the largest one of these.
where t_{j} are the left eigenvalues of the transfer matrix, and $\quad t_{1}$ is the largest one of these.

Assume now that A-tensor is left-normalized (analogous discussion holds if it is right-normalized).
Then we know that the MPS is normalized to unity:
$\stackrel{(\mathrm{MPS} .4 .3 \mathrm{~b})}{=}<\psi \mid \psi)$
$\left(t_{1}\right)^{\mathcal{L}}=1 \quad \Rightarrow \quad t_{1}=1$.
(10)
(MPS.9.8) implies for largest eigenvalue of transfer matrix:

(11)

Hence, all eigenvalues of transfer matrix satisfy $\quad\left|t_{j}\right| \leq 1$
Claim: the left eigenvector with eigenvalue $t_{j=1}=1$, say $V j^{\prime}$, is $\left[V^{1} \int_{a}^{\text {eigenvector label: } j=1} \begin{array}{l}\text { components of eigenvector }\end{array}\right.$
Check: do we find $\quad V_{a} T_{b}^{a}=V_{b}$?
'vector in transfer space' = 'matrix in original space'
$\left[V^{1}\right]_{a}^{T_{b}^{a}}=A^{t} \beta^{\prime}{ }_{\sigma} \|_{\alpha}^{\alpha^{\prime}} A^{\alpha \sigma}$
$=A^{+\beta_{\sigma \alpha}^{\prime}} A_{\beta=\mathbb{L}^{\alpha \sigma} \beta=\left[V^{\prime}\right]_{\phi}^{\prime}, ~}^{\alpha}$
(13)
(14)

Correlation functions
Consider local operator: $\quad \hat{O}_{l}=\left|\sigma_{l}^{\prime}\right\rangle\left[O_{l}\right]^{\sigma_{l}^{\prime}} \sigma_{l}\left\langle\sigma_{l}\right|$

Define corresponding transfer matrix:

$$
\begin{equation*}
T_{O_{l}}=A_{\sigma_{l}^{\prime}}^{t}\left[O_{l}\right]^{\sigma_{l}^{\prime}}{\sigma_{l}}^{\sigma_{l}} \tag{s}
\end{equation*}
$$

Correlator:

$$
C_{l l^{\prime}}:=\langle\psi| \hat{O}_{l} \hat{O}_{l^{\prime}}|\psi\rangle=
$$

$$
\begin{equation*}
=T_{r}\left(T^{\ell-1} T_{O_{l}} T^{l^{\prime}-\ell-1} T_{O_{\ell^{\prime}}} T^{\mathcal{L}-\ell^{\prime}}\right)=T_{r y c i c}\left(T^{\mathcal{L}}-\left(\ell^{\prime}-\ell\right)-1 T_{O_{l}} T^{l^{\prime}-\ell-1} T_{O_{\ell^{\prime}}} \int_{(8)}\right. \tag{9}
\end{equation*}
$$

Let V^{j}, t_{j} be left eigenvectors, eigenvalues of transfer matrix: $\quad V j T=t_{j} V^{j}$ [or explicitly, with matrix indices: $\left.[V J]_{a} T^{a} b=t_{j}[V J]_{b}\right] \quad$ no sum on j here

Transform to eigenbasis of transfer matrix:

$$
\begin{equation*}
C_{\ell l^{\prime}}=\sum_{j j^{\prime}}\left(t_{j^{\prime}}\right)^{\mathcal{L}-\left(\ell^{\prime}-\ell\right)-1}\left[\tau_{0}\right]_{j}^{j^{\prime}}\left(t_{j}\right)^{\ell^{\prime}-\ell-1}\left[\tau_{o_{l^{\prime}}}\right]_{j}^{j} \tag{11}
\end{equation*}
$$

For $\mathcal{L} \rightarrow \infty$, only contribution of largest eigenvalue, $t_{j}^{\prime}=t_{1} \stackrel{\sqrt{2}}{=}$ assume $\langle\boldsymbol{y} \mid y\rangle=1$, survives from sum over j^{\prime} :

$$
\begin{equation*}
C_{l \ell^{\prime}} \xrightarrow{\mathcal{L} \rightarrow \infty} \sum_{j}\left[T_{0}\right]_{j}^{1} t_{j}^{\ell^{\prime}-\ell-1}\left[T_{0_{\ell^{\prime}}}\right]_{1}^{j} \tag{12}
\end{equation*}
$$

Assume $\hat{O}_{\ell^{\prime}}=\hat{O}_{\ell}^{+} \equiv \hat{O}$, and take their separation to be large, $\ell^{\prime}-\ell \rightarrow \infty$

$$
\begin{equation*}
\left.C_{l l^{\prime}} \xrightarrow{l_{-l \rightarrow \infty}^{\prime}} \quad\left|\left[T_{0}\right]_{1}^{\prime}\right|^{2}+| | T_{0}\right]\left._{2}^{1}\right|^{2}\left(\left.t_{2}\right|^{l^{\prime}-l-1}+\ldots\right. \tag{14}
\end{equation*}
$$

If $\left[T_{0}\right]^{1}, \neq 0: \quad$ 'long-range order'
If $\left[T_{0}\right]_{1}^{\prime}=0: \quad$ 'exponential decay', $\sim e^{-|\ell '-\ell| / \xi}$

$$
\begin{equation*}
\text { with correlation length } \xi=\left[\ln \left(t_{1} / t_{2}\right)\right]^{-1} \tag{16}
\end{equation*}
$$

General remarks

- AKLT model was proposed by Affleck, Kennedy, Lieb, Tasaki in 1988.
- Previously, Haldane had predicted that $\mathrm{S}=1$ Heisenberg spin chain has finite excitation gap above a unique ground state, i.e. only 'massive' excitations [Haldane1983a], [Haldane1983b].
- AKLT then constructed the first solvable, isotropic, $\mathrm{S}=1$ spin chain model that exhibits a 'Haldane gap'.
- Ground state of AKLT model is an MPS of lowest non-trivial bond dimension, $\mathrm{D}=2$.
- Correlation functions decay exponentially - the correlation length can be computed analytically.

Haldane phase for $\mathrm{S}=1$ spin chains

Consider bilinear-biquadratic (BB) Heisenberg model for 1D chain of spin $S=1$:

$$
\begin{equation*}
H_{B B}=\sum_{l=1}^{l-1} \vec{S}_{l} \cdot \vec{s}_{l+1}+\beta\left(\vec{s}_{l} \cdot \vec{s}_{l+1}\right)^{2} \tag{1}
\end{equation*}
$$

Phase diagram:

Main idea of AKLT model: $\quad H_{A K L T}=H_{B B}(\beta=1 / 3)$
is built from projectors mapping spins on neighboring sites to total spin $S_{\ell \ell+1}^{\text {tot }}=2$, Ground state satsifies $H_{\text {AKLT }}|\xi\rangle=0$. To achieve this, ground state is constructed in such a manner that spins on neighboring sites can only be coupled to $S_{\ell, \ell+1}^{\text {tot }}=0$ or 1 .

To this end, the spin-1 on each site is constructed from two auxiliary spin- $1 / 2$ degrees of freedom; One spin- $1 / 2$ each from neighboring sites is coupled to spin 0 ; this projects out the $S=2$ sector in the direct-product space of neighboring sites, ensuring that $H_{\text {AKLT }} \quad$ annihilates ground state.
traditional depiction:

MPS depiction: spin-1/2's live on bonds

Construction of AKLT Hamiltonian

Direct product space of spin 1 with spin 1 contains direct sum of spin $0,1,2$:

$$
\begin{equation*}
\mathbb{V}_{1} \otimes \mathbb{V}_{1}=\mathbb{V}_{0} \oplus \mathbb{V}_{1} \oplus \mathbb{V}_{2} \tag{4}
\end{equation*}
$$

here, subscripts label spin representations (site indices are suppressed)
Projector of $\quad V_{1} \otimes V_{1}$ onto \mathbb{V}_{S} (with $S=0,1,2$):

$$
\begin{array}{ll}
P_{1,2}^{(s)}
\end{array}=P_{1,2}^{(s)}\left(\vec{s}_{1} \cdot \vec{s}_{2}\right):=\quad \begin{aligned}
& c \tag{5}\\
& \prod_{\substack{ \\
s^{\prime} \neq s}}\left[\left(\vec{s}_{1}+\vec{s}_{2}\right)^{2}-s^{\prime}\left(s^{\prime}+1\right)\right] \\
& \text { sites } 1,2
\end{aligned}
$$

Using $\left(\vec{S}_{1}+\vec{S}_{2}\right)^{2}=\underbrace{\vec{S}_{1}^{2}}_{1(1+1)}+2 \vec{S}_{1} \cdot \vec{S}_{2}+\underbrace{\vec{S}_{2}^{2}}_{((1+1)}=2 \vec{S}_{1} \cdot \vec{S}_{2}+4$, we find for spin-2 projector: (6)

$$
\begin{align*}
P_{1,2}^{(2)} & \stackrel{(5)}{=} C\left[2 \overrightarrow{S_{1}} \cdot \vec{S}_{2}+4-0(0+1)\right][2 \vec{S}_{1} \cdot \vec{S}_{2}+\underbrace{4-1(1+1)}_{2}) \tag{7}\\
& =C\left[4\left(\overrightarrow{S_{1}} \cdot \vec{S}_{2}\right)^{2}+12 \overrightarrow{S_{1}} \cdot \vec{S}_{2}+8\right] \tag{8}
\end{align*}
$$

Normalization is fixed by demanding that $P_{1,2}^{(2)}$ must yield 1 when acting on spin-2 subspace:

$$
\begin{array}{ll}
1=\left.P_{1,2}^{(2)}\right|_{\left(\overrightarrow{s_{1}}+\vec{s}_{2}\right)^{2}=2(2+1)} & \stackrel{(s)}{=}=c[2(2+1)-0][2(2+1)-1(1+1)] \\
\Rightarrow & =c 6 \cdot 4 \Rightarrow c=\frac{1}{24} \tag{10}
\end{array}
$$

$P_{1,2}^{(2)} \stackrel{(8)}{=} \frac{1}{6}\left(\vec{S}_{1} \cdot \vec{S}_{2}\right)^{2}+\frac{1}{2} \vec{S}_{1} \cdot \vec{S}_{2}+\frac{1}{3}=: P_{1,2}^{(2)}\left(\vec{S}_{1}, \vec{S}_{2}\right)=$ projector on spin-2 subspace

AKLT Hamiltonian is sum over spin-2 projectors for all neighboring pairs of spins.

$$
\begin{equation*}
H_{A K L T}=\sum_{\ell} P_{l, l+1}^{(2)}\left(\vec{S}_{l} \cdot \vec{S}_{l+1}\right) \tag{12}
\end{equation*}
$$

For a finite chain of \mathcal{L} sites, use periodic boundary conditions, i.e. identify $\vec{S}_{\ell+\mathcal{L}}=\vec{S}_{\ell}$.
Each term is a projector, hence has only non-negative eigenvalues. Hence same is true for $H_{A K L T}$. \Rightarrow A state satisfying $H_{\text {AKLT }}|\psi\rangle=O(\psi\rangle=0$ must be a ground state!

On every site, represent spin 1 as symmetric combination of two auxiliary spin- $1 / 2$ degrees of freedom:

$$
|s=1, \sigma\rangle \equiv|\sigma\rangle= \begin{cases}|+1\rangle= & |\uparrow\rangle|\uparrow\rangle \tag{2}\\ |0\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle|\downarrow\rangle+|\downarrow\rangle|\uparrow\rangle) \\ |-1\rangle= & |\downarrow\rangle|\downarrow\rangle\end{cases}
$$

On-site projector that maps $\quad V_{\frac{1}{2}} \otimes \mathbb{V}_{\frac{1}{2}}$ to \mathbb{V}_{1} :

$$
\begin{equation*}
\hat{C}=|+1\rangle\langle\uparrow|\langle\uparrow|+|0\rangle \frac{1}{\sqrt{2}}(\langle\uparrow|\langle\downarrow|+\langle\downarrow|\langle\uparrow|)+|-1\rangle\langle\downarrow|\langle\downarrow| \tag{3}
\end{equation*}
$$

Use such a projector on every site ℓ :

$$
\begin{equation*}
\hat{C}_{l}=\left|\sigma_{l}\right\rangle_{l}[C]_{\alpha_{l} \beta_{l l}}^{\sigma_{l}}\left\langle\alpha_{\ell}\right|<\beta_{l} \mid \tag{b}
\end{equation*}
$$

Now construct nearest-neighbor 'valence bonds' built from auxiliary spin-1/2 states:

$$
\begin{aligned}
& \left.|V\rangle_{l}=\left.\left|\beta_{l}\right\rangle_{l}\right|_{l+1}\right\rangle_{l+1} V^{\beta_{l} \alpha_{l+1}} \equiv \frac{1}{\sqrt{2}}\left(|\uparrow\rangle_{l}|\downarrow\rangle_{l+1}-|\downarrow\rangle_{l}|\uparrow\rangle_{l+1}\right) \\
& V=\frac{1}{\sqrt{2}}{ }_{\downarrow}\left(\begin{array}{cc}
\uparrow & \downarrow \\
0 & 1 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

Haldane: 'each site hand-shakes with its neighbors'
AKLT ground state $=$ (direct product of spin-1 projectors) acting on (direct product of valence bonds):

$$
\begin{equation*}
|g\rangle \equiv \prod_{\otimes l} \hat{C}_{l} \prod_{\otimes l}|V\rangle_{l}=\cdots \quad \xrightarrow[\underbrace{}_{l-1}]{C_{\beta_{l-1}} V \alpha_{l} C \beta_{l} V_{\sigma_{l+1}} C_{\beta l+1} V} \underbrace{V_{\sigma_{l+1}}}_{\sigma_{l+1}} \tag{7}
\end{equation*}
$$

Why is this a ground state?

Coupling two auxiliary spin $-1 / 2$ to total spin 0 (valence bond) eliminates the spin-2 sector in direct product space of two spin-1, hence spin-2 projector in $H_{\text {AKLT }}$ yields zero when acting on this. (Will be checked explicitly below.)

AKLT ground state is an MPS!

Explicitly: $\quad \sigma_{l}=+1: \quad \tilde{B}^{+1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$

$$
\begin{array}{ll}
\sigma_{l}=0: & \tilde{B}^{0}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \tag{il}\\
\sigma_{l}=+1: & \tilde{B}^{-1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right)
\end{array}
$$

Not normalized: $\tilde{B}_{\sigma} \tilde{B}^{t_{\sigma}}=\frac{1}{2}\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)+\frac{1}{4}\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)+\frac{1}{2}\left(\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right)\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right)=\frac{3}{4} \quad \mathbb{1} \quad$ (14) Define right-normalized tensors, satisfying $\quad B_{\sigma} B^{+\sigma}=\mathbb{1}: \quad B^{\sigma}:=\sqrt{\frac{4}{3}} \hat{B}^{\sigma}$

$$
B^{+1}=\sqrt{\frac{2}{3}}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad B^{0}=\frac{1}{\sqrt{3}}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \quad B^{-1}=\sqrt{\frac{2}{3}}\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right)
$$

Remark: we could also have grouped B and C in opposite order, defining

$$
\begin{equation*}
\tilde{A}^{\beta_{l-1} \sigma_{l}} \beta_{l}=B^{\beta_{l-1} \alpha_{l}} C^{\sigma_{l}} \alpha_{l \beta_{l}}^{\beta-\beta_{\sigma_{l}}} \xrightarrow[\rightarrow]{\beta_{\sigma_{l}}} \stackrel{\beta_{l-1} \alpha_{l}}{\rightarrow \beta_{l}} \tag{N}
\end{equation*}
$$

This leads to left-normalized tensors, with $A^{ \pm 1}=B^{\mp 1}, A^{0}=B^{0}$

Exercise: verify that the projector $P_{\ell, \ell+1}^{(2)}\left(\bar{S}_{\ell}, \bar{S}_{\ell+1}\right)$
from (MPS.10.11) yields zero when acting on sites $\ell, l+1 \quad$ of $\langle g\rangle$

Hint: use spin-1 representation for

$$
\begin{equation*}
\left(\vec{S}_{l} \cdot \vec{S}_{l+1}\right)^{\sigma \bar{\sigma}}{\sigma^{\prime} \bar{\sigma}^{\prime}}^{\vec{S}_{\sigma^{\prime}}^{\sigma}} \cdot \vec{S}_{\bar{\sigma}^{\prime}} \tag{20}
\end{equation*}
$$

Boundary conditions

For periodic boundary conditions, Hamiltonian includes projector connecting sites 1 and \mathcal{L}. Then all auxiliary spin $1 / 2$ are bound into pairs of singlets, and ground state is unique.

For open boundary conditions, there are 'left-over spin-1/2' degrees of freedom at both ends of chain. Ground state is four-fold degenerate.

(using right-normalized states, in contrast to left-normalized ones from MPS.9)

$$
\begin{equation*}
T_{b}^{a}=T_{\alpha \beta^{\prime}}^{\alpha^{\prime}}=B_{\beta^{\prime} \sigma}^{\dagger} B_{\alpha}^{\sigma \beta}=\overline{B_{\alpha^{\prime}}^{\sigma \beta^{\prime}}} B_{\alpha}^{\sigma \beta} \tag{1}
\end{equation*}
$$

$$
B^{+1}=\sqrt{\frac{2}{3}}\left(\begin{array}{cc}
0 & 1 \tag{2}\\
0 & 0
\end{array}\right), \quad B^{0}=\frac{1}{\sqrt{3}}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \quad B^{-1}=\sqrt{\frac{2}{3}}\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right)
$$

$$
\begin{equation*}
T=\overline{B^{\sigma}} \otimes B^{\sigma}=B^{+1} \otimes B^{+1}+B^{0} \otimes B^{D}+B^{-1} \otimes B^{-1} \tag{3}
\end{equation*}
$$

$$
=\frac{1}{3}\left(\begin{array}{cc|cc}
1 & 0 & 0 & 2 \tag{5}\\
0 & -1 & 0 & 0 \\
\hline 0 & 0 & -1 & 0 \\
2 & 0 & 0 & 1
\end{array}\right)
$$

To compute spin-spin correlator, $C_{l l^{\prime}}^{z z}=\frac{\langle g| S_{l}^{z} S_{l^{\prime}}^{z}|g\rangle}{\langle G \mid g\rangle}$, we need
$T_{S^{z}}=B_{\sigma^{\prime}}^{+}\left(S^{z}\right)_{\sigma}^{\sigma^{\prime}} B^{\sigma} \quad, \quad$ with $S^{z}=\left(\begin{array}{ll}1 & \\ 0 & \\ & \end{array}\right)$

$$
=1 \cdot \sqrt{\frac{2}{3}}\left(\begin{array}{c|c|c|c|c}
0 & 1 \cdot \sqrt{\frac{2}{3}}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
\hline 0 & 0
\end{array}\right)_{\sigma=\sigma^{\prime}=1}+0 \cdot \frac{1}{\sqrt{3}}\left(\begin{array}{cc}
-1 \frac{1}{\sqrt{3}}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) & 0 \\
\hline 0 & 1 \cdot \frac{1}{\sqrt{3}}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
\end{array}\right)_{\sigma=\sigma^{\prime}=0}+(-1) \cdot \sqrt{\frac{2}{3}}\binom{0}{\hline-1 \cdot \frac{2}{3}\left(\begin{array}{cc}
0 & 0 \\
-1
\end{array}\right)}_{\sigma=\sigma^{\prime}=-1}^{0}
$$

$$
=\frac{2}{3}\left(\begin{array}{cc|cc}
0 & 0 & 1 \tag{9}\\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right)
$$

Exercise

(a) Compute the eigenvalues and eigenvectors of T
(b) Show that $C_{\ell l^{\prime}}^{z z} \sim e^{-\left|l^{\prime}-l\right| / \xi}$, with $\xi=\frac{1}{\ln 3}$

Remark: since the correlation length is finite, the model is gaped!

String order parameter

AKLT ground state: $\quad|g\rangle=\left|\vec{\sigma}_{\alpha}\right\rangle \operatorname{Tr}\left[B^{\sigma_{1}} B^{\sigma_{2}} \ldots B^{\sigma_{2}}\right]$ with $\sigma_{b} \in\{+1,0,-1\} \quad$ (12)
$B^{+1}=\frac{2}{\sqrt{3}} \tau^{+}, \quad B^{0}=-\frac{2}{\sqrt{3}} \tau^{z}, \quad B^{-1}=-\frac{2}{\sqrt{3}} \tau^{-}$
with Pauli matrices $\quad \tau^{+}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), \quad \tau^{-}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), \quad \tau^{z}=\frac{1}{2}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad$ ((4)
Now, note that $B^{ \pm 1} B^{0} \ldots B^{0} B^{ \pm 1}=0 \quad \begin{aligned} & \text { for the Pauli matrices, the operation }\end{aligned}$

Thus, all 'allowed configurations' (having non-zero coefficients) in AKLT ground state have the property that every $\pm($ is followed by string of 0 , then ∓ 1.

Allowed: $\quad\left|\vec{\sigma}_{\mathcal{L}}\right|=\ldots 1000-1010000-1100-1$
Not allowed: $\left|\vec{\sigma}_{\mathcal{L}}\right\rangle=\ldots 1000101$ or $00-10-110$
'String order parameter' detects this property:

Eigenvalues of phase factor: $\quad\left\langle\sigma_{l}\right| e^{i \pi \hat{S}_{e}^{z}}\left|\sigma_{e}\right\rangle=\left\{\begin{array}{lll}-1 & \text { if } & \sigma_{l}= \pm 1 \\ +1 & \text { if } & \sigma_{l}=0\end{array}\right.$

Exercise:

Show that the ground state expectation value of string order parameter is non-zero:

$$
\begin{equation*}
\lim _{\ell^{\prime}-\ell \rightarrow \infty} \lim _{\mathcal{L} \rightarrow \infty}\langle g| \hat{O}_{\ell \ell^{\prime}}^{\text {string }}(g)=-\frac{4}{q} \tag{20}
\end{equation*}
$$

Hint: first compute

$$
\begin{equation*}
T_{e} i \pi S_{z} \tag{au}
\end{equation*}
$$

Intuitive explanation why string order parameter is nonzero:

$$
\begin{equation*}
|g\rangle=\sum_{\sigma_{d}}\left|\vec{\sigma}_{2}\right\rangle \psi^{\vec{\sigma}} \tag{zzz}
\end{equation*}
$$

$$
\ell^{\prime}-1 \quad 7
$$

$$
\begin{align*}
& |g\rangle={\underset{\sigma_{l}}{l}}^{\sigma_{d}} \psi^{0} \\
& C_{l e^{\prime}}^{\text {snug }}=\sum_{\vec{\sigma}}|4 \vec{\sigma}|^{2}\langle\vec{\sigma}| \hat{S}_{l}^{z} e^{i \pi \sum_{\bar{e}=l \pi 1}^{\ell^{\prime}-1} \hat{S}_{\bar{l}}^{z}} \hat{S}_{l^{\prime}}^{z}|\vec{\sigma}\rangle \tag{23}
\end{align*}
$$

For the AKLT ground state, there are six types of configurations; four of them give -1 , the other two give 0 :

$$
\begin{equation*}
C_{l l^{\prime}}^{\operatorname{sting}}=(-1) \cdot\left(\frac{2}{3}\right) \cdot\left(\frac{2}{3}\right)=-\frac{4}{9} \tag{25}
\end{equation*}
$$ probability to get 1 or -1 but not 0 at site l probability to get 1 or -1 but not 0 at site ℓ^{\prime}

