MPS.6 Iterative diagonalization

MPS.6

Consider spin-
$$\frac{1}{2}$$
 chain:
$$\hat{H}^{\ell} = \sum_{\ell=1}^{\ell} \hat{\vec{S}}_{\ell} \cdot \vec{k}_{\ell} + \sum_{\ell=1}^{\ell-1} \hat{\vec{S}}_{\ell} \cdot \hat{\vec{S}}_{\ell+1}$$
 (1)

SU(2) spin algebra for each site (suppressing site indices in Eqs. (2-4):

$$[\hat{S}_i, \hat{S}_j] = \epsilon_{ijk} \hat{S}_k$$
 (2a), $\hat{S}_i^{\dagger} = \hat{S}_i$, $\hat{S}_{\pm} = \frac{1}{\sqrt{\epsilon}} (\hat{S}_{\star} \pm i \hat{S}_{\star}) = \hat{S}_{\pm}^{\dagger} = \hat{S}_{\pm}^{\dagger \dagger}$ (2b)

$$\stackrel{(za,b)}{\Rightarrow} \left[\hat{S}_{-},\hat{S}_{+}\right] = \hat{S}_{+}, \left[\hat{S}_{+},\hat{S}_{\pm}\right] = \pm \hat{S}_{\pm}$$

(zc)

$$\frac{\hat{S} \cdot \hat{S}}{\hat{S}} = \hat{S}_{x} \hat{S}_{x} + \hat{S}_{y} \hat{S}_{y} + \hat{S}_{z} \hat{S}_{z} = \hat{S}_{z} \hat{S}_{z} + \hat{S}_{z} \hat{S}_{z} + \hat{S}_{z} \hat{S}_{z}$$
sum on $\alpha \in \{1, 2, -\}$ implied!

write this covariant notation:

$$= \hat{S}_{+} \hat{S}^{+\dagger}_{+} + \hat{S}_{-} \hat{S}^{-\dagger}_{+} + \hat{S}_{\bar{z}} \hat{S}^{\bar{z}}_{-} = \hat{S}_{a} \hat{S}^{+\bar{a}}_{+}$$
 (34)

with operator triplets:

$$\hat{S}_{a} \in \{\hat{S}_{+}, \hat{S}_{+}, \hat{S}_{-}\}$$

$$\hat{S}_{a} \in \{\hat{S}_{+}, \hat{S}_{+}, \hat{S}_{-}\}, \qquad \hat{S}_{a}^{a} \in \{\hat{S}_{+}^{+}, \hat{S}_{-}^{+}, \hat{S}_{-}^{-}\}$$
 (4)

In the basis $\{ |\vec{e_2} \rangle \} = \{ |\vec{e_1} \rangle |\vec{e_2} \rangle \dots |\vec{e_k} \rangle \}$ the Hamiltonian can be expressed as

 $\mu \vec{s}'$ is a linear map acting on a direct product space: $u^{\otimes \cancel{\iota}} := V_1 \otimes V_2 \otimes ... \otimes V_{\cancel{\iota}}$

 \bigvee_{ℓ} is the 2-dimensional representation space of site ℓ . where

is a sum of single-site and two-site terms.

On-site terms:

$$\hat{S}_{\alpha \ell} = |\sigma_{\ell}| > [S_{\alpha}]^{\delta_{\ell}} \leq |\delta_{\ell}|$$

$$\begin{array}{ccc}
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

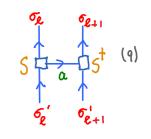
(5)

Matrix representation in V_{ℓ} : $(S_a)^{6_{\ell}} = \langle \sigma_{\ell}^i | \hat{S}_{a\ell} | \delta_{\ell} \rangle = \langle [S_a]^i | [S_a]^i \rangle$ (7)

$$S_{+} = -\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad S_{+} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad S_{-} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
 (8)

Nearest-neighbor interactions, acting on direct product space, (6) (8) (8) (8)

$$\hat{S}_{\alpha\ell} \otimes \hat{S}^{\alpha\dagger}_{\ell+1} = |\delta_{\ell}^{i}\rangle |\delta_{\ell+1}^{i}\rangle \underbrace{\left[S_{\alpha}^{\delta_{\ell}^{i}}\right]_{\delta_{\ell}}^{\delta_{\ell}^{i}}}_{\alpha \delta_{\ell}} \underbrace{\left[S_{\alpha}^{\delta_{\ell+1}^{i}}\right]_{\delta_{\ell+1}^{i}}^{\delta_{\ell+1}^{i}}}_{\beta \delta_{\ell+1}^{i}} |\delta_{\ell+1}^{i}| |\delta_{\ell}^{i}|$$
Matrix representation in $V_{\ell} \otimes V_{\ell+1}$: $S_{\alpha}^{\delta_{\ell}^{i}} = S_{\alpha}^{\delta_{\ell}^{i}} = S_{\alpha}^{\delta_{$



We define the 3-lea tensors (with index placements matching those of) tensors for wavefunctions

We define the 3-leg tensors $\frac{1}{2}$ with index placements matching those of $\frac{1}{2}$ tensors for wavefunctions: incoming upstairs, outgoing downstairs (fly in, roll out), with a (by convention) as middle index.

Diagonalize site 1

Matrix acting on $\mathbf{v}_{\mathbf{i}}$:

chain of length 1
$$S_{a_1}^{\dagger}$$
 $L_a^{\dagger} = U_1 D_1 U_1^{\dagger}$ site index: $\ell_{=1}$

(10)

 $D_i = \mathcal{U}_i^{\dagger} \mathcal{H}_i \mathcal{U}_i$ is diagonal, with matrix elements

$$[D_i]_{\alpha_i}^{\alpha_i} = [N_i]_{\alpha_i}^{\alpha_i}[H_i]_{\alpha_i}^{\alpha_i}[M_i]_{\alpha_i}^{\alpha_i}$$

Eigenvectors of the matrix \mathcal{L}_{ι} are given by column vectors of the matrix \mathcal{L}_{ι}

Eigenstates of operator \hat{H}_{i} are given by: $(\alpha) = (6)[(1/2)^{6}]_{\alpha}$

Add site 2

Diagonalize \mathcal{H}_2 in enlarged Hilbert space, $\mathcal{H}_{(1)} = \text{span}\{|6\rangle|6\rangle$ chain of length 2

$$\mathcal{H}_{(2)} = \text{span}\{|6\rangle\langle |6\rangle\rangle\}$$
 (14)

chain of length 2

Matrix acting on
$$V_1 \otimes V_2$$
:

$$H_2 = \underbrace{\vec{S_1 \cdot \vec{h_1}}}_{\text{loc}} \otimes \mathbf{1}_2 + \underbrace{\mathbf{1}}_{\text{loc}} \otimes \underbrace{\vec{S_2 \cdot \vec{h_2}}}_{\text{loc}} + \underbrace{\mathbf{7}}_{\text{Sa}_1} \otimes \underbrace{\vec{S_2 \cdot \vec{h_2}}}_{\text{loc}}$$

$$H_1^{\text{loc}} \otimes \mathbf{1}_2 + \underbrace{\mathbf{1}}_{\text{loc}} \otimes \underbrace{\vec{S_2 \cdot \vec{h_2}}}_{\text{loc}} + \underbrace{\mathbf{7}}_{\text{Sa}_1} \otimes \underbrace{\vec{S_2 \cdot \vec{h_2}}}_{\text{loc}}$$

Matrix representation in $\bigvee_{i} \bigotimes_{i} \bigvee_{i}$ corresponding to 'local' basis, $\{ | c_{i} \rangle | c_{i} \}$

$$H_{2} = H_{1} = H_{1} = H_{1} = H_{2} + H_{1} = H_{2} = H_{2} = H_{2} = H_{2}$$

$$H_{2} = H_{1} = H_{2} = H_{2} = H_{2} = H_{2}$$

$$H_{3} = H_{4} = H_{2} = H_{3} = H_{3} = H_{4} = H_{4$$

We seek matrix representation in $\sqrt[1]{6}\sqrt[4]{}$ corresponding to enlarged, 'site-1-diagonal' basis, defined as

To this end, attach U_i^{\dagger} , U_i to in/out legs of site 1, and 1, 1 to in/out legs of site 2:

$$H_{2} = H_{1} = H_{1} = H_{2} = H_{1} = H_{2} = H_{2} = H_{3} = H_{4} = H_{4$$

Now diagonalize H_{2} in this enlarged basis:

$$H_2 = U_2 D_2 U_2^{\dagger}$$
 (19)

(will often be done in later lectures).

 $D_2 = U_2^{\dagger} H_2 U_2$ is diagonal, with matrix elements

$$[D_{2}]^{\beta'}_{\beta} = [U_{2}]^{\beta'}_{\widetilde{\alpha}'} [H_{2}]^{\widetilde{\alpha}'}_{\widetilde{\alpha}} [U_{2}]^{\widetilde{\alpha}}_{\beta}$$

$$D_{2} \downarrow \beta'_{\beta'} = H_{2} \downarrow U_{2}^{\widetilde{\alpha}'}_{\beta'} [U_{2}]^{\widetilde{\alpha}'}_{\beta'} [U_{$$

Eigenvectors of matrix \mathcal{L}_{2} are given by column vectors of the matrix \mathcal{L}_{2} \mathcal{L}_{3} = \mathcal{L}_{2} :

Eigenstates of the operator H,:

$$|\beta\rangle = |\alpha\rangle [N_2]^{\alpha}_{\beta} = |\alpha\rangle |\sigma_2\rangle [N_2]^{\alpha 6_2}_{\beta} = |67|_{6_2} \rangle [N_1]^{6_1}_{\alpha} [N_2]^{\alpha 6_2}_{\beta}$$

$$\Rightarrow \beta = \alpha \frac{N_2}{N_6} \beta = x \frac{N_1}{N_2} \frac{N_2}{N_2} \beta$$
(22)

Add site 3

Transform each term involving new site into the 'enlarged, site-12-diagonal basis', defined as

$$|\tilde{\beta}\rangle \equiv |\beta 6_{3}\rangle \equiv |\beta\rangle |6_{3}\rangle$$

$$\beta \xrightarrow{\tilde{\beta}} \tilde{\beta} = *\frac{U_{1} U_{2} I_{3}}{6_{1} 6_{2} 6_{3}} \tilde{\beta} \qquad (23)$$

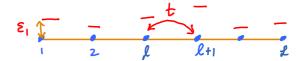
For example, spin-spin interaction, H_{23}^{int}

At each iteration, Hilbert space grows by a factor of 2. Eventually, truncations will be needed...!

MPS.7 Spinless fermions

MPS.7

Consider tight-binding chain of spinless fermions:



$$\hat{H} = \sum_{\ell=1}^{2} \epsilon_{\ell} \hat{c}_{\ell}^{\dagger} \hat{c}_{\ell} + \sum_{\ell=1}^{2-1} t_{\ell} (\hat{c}_{\ell}^{\dagger} \hat{c}_{\ell+1} + \hat{c}_{\ell+1}^{\dagger} \hat{c}_{\ell})$$
 (1)

Goal: find matrix representation for this Hamiltonian, acting in direct product space $\c v \otimes \c v \otimes$

$$\{\hat{c}_{\ell}, \hat{c}_{\ell'}\} = \mathbf{o} \quad \{\hat{c}_{\ell}^{\dagger}, \hat{c}_{\ell'}^{\dagger}\} = \mathbf{o} \quad \{\hat{c}_{\ell}^{\dagger}, \hat{c}_{\ell'}\} = \delta_{\ell \ell'} \quad (2)$$

First consider a single site (dropping the site index ℓ):

Hilbert space: $span \{ \{o\}, \{i\} \}$ local index: $v = e \in \{o, i\}$

Operator action: $\hat{c}^{\dagger} | o \rangle = | | | \rangle$ $\hat{c}^{\dagger} | | | \rangle = | o \rangle$ (3a)

$$\hat{c}(0) = 0$$
 $\hat{c}(1) = 0$ (36)

The operators $\hat{c}^{\dagger} = \{\sigma'\} c^{\dagger} \sigma' \leq \sigma \}$ and $\hat{c} = \{\sigma'\} c^{\sigma'} \leq \sigma \}$

have matrix representations in $V: C^{\dagger \sigma'} = \langle \sigma' \mid \hat{C}^{\dagger} \mid \sigma \rangle = \langle \sigma \mid \hat{C}^{\dagger} \mid \sigma \rangle$

$$C_{\alpha} = \langle \alpha_{\alpha} | \alpha_{\alpha} | \epsilon \rangle = \begin{pmatrix} \alpha_{\alpha} | \alpha_{\alpha} \rangle \\ \alpha_{\alpha} | \alpha_{\alpha} \rangle \\ \langle \alpha_{\alpha} | \alpha_{\alpha$$

Shorthand: we write $\hat{c}^{\dagger} = C^{\dagger}$ where $\dot{c}^{\dagger} = C^{\dagger}$ where

Check: $C^{\dagger}(+ CC^{\dagger} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1$

$$C^{\dagger}C^{\dagger} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \checkmark \qquad CC = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \checkmark \qquad (6)$$

For the number operator, $\hat{N} := \hat{C}^{\dagger}\hat{C}$ the matrix representation in V reads:

$$N := C^{\dagger} C = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 - \frac{1}{2} \end{pmatrix}$$
 (7)

where $Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ is representation of $\hat{z} = 1 - 2\hat{u} = (-1)^{\hat{u}}$ (8)

Useful relations: $\hat{c} \hat{z} = -\hat{z} \hat{c}$ $\hat{c}^{\dagger} \hat{z} = -\hat{z} \hat{c}^{\dagger}$ (4)

'commuting \hat{c} or \hat{c}^{\dagger} past \hat{z} produces a sign' [exercise: check this algebraically, using matrix representations!]

Intuitive reason: \hat{c} and \hat{c}^{\dagger} both change \hat{v} -eigenvalue by one, hence change sign of $(-i)^{N}$

Similarly:
$$\hat{C} (-1)^{\hat{N}} = -\hat{C} = -(-1)^{\hat{N}} \hat{C}$$
non-zero only when acting on $|1\rangle = (-1)^{\hat{N}} = -1$

$$= (-1)^{\hat{N}} = -1$$

Now consider a chain of spinless fermions:

Complication: fermionic operators on different sites <u>anticommute</u>: $C_{\ell} c_{\ell'}^{\dagger} = -c_{\ell'}^{\dagger} c_{\ell'}$ for $\ell \neq \ell'$

Hilbert space:
$$span \{ |\vec{6}\rangle = |n_1, n_2, ..., n_e \rangle \}$$
, $n_e \in \{0,1\}$

Define canonical ordering: fill states from right to left:

$$|n_1, \dots, n_\ell, \dots, n_\ell\rangle = \left(\hat{c}_{i}^{\dagger}\right)^{N_1} \dots \left(\hat{c}_{\ell}^{\dagger}\right)^{N_\ell} \dots \left(\hat{c}_{\ell}^{\dagger}\right)^{N_\ell} |V_{ac}\rangle$$
(12)

Now consider:

consider:
$$\begin{pmatrix} c_{\ell}^{\dagger} \mid N_{1}, \dots, o_{l}, \dots, n_{\ell} \rangle = (-1) \\
= (-1) \begin{pmatrix} c_{\ell}^{\dagger} \end{pmatrix}^{N_{1}} \dots \begin{pmatrix} c_{\ell}^{\dagger} \end{pmatrix}^{N_{1}} \dots \begin{pmatrix} c_{\ell}^{\dagger} \end{pmatrix}^{N_{\ell}} \dots \begin{pmatrix} c_{\ell}^{\dagger} \end{pmatrix}^{N_{\ell}} \\
= (-1) \begin{pmatrix} c_{\ell}^{\dagger} \end{pmatrix}^{N_{1}} \dots \begin{pmatrix} c_{\ell}^{\dagger} \end{pmatrix}^{N_{\ell}} \dots \begin{pmatrix} c_{\ell}^{\dagger} \end{pmatrix}^{N_{\ell}} \dots \begin{pmatrix} c_{\ell}^{\dagger} \end{pmatrix}^{N_{\ell}} \\
= (-1) \begin{pmatrix} c_{\ell}^{\dagger} \end{pmatrix}^{N_{1}} \dots \begin{pmatrix} c_{\ell}^{\dagger} \end{pmatrix}^{N_{\ell}} \dots \begin{pmatrix} c_{\ell}^{\dagger} \end{pmatrix}^{N_$$

$$C_{\ell} | N_{1}, ..., N_{\ell} \rangle = (-1)^{N_{1} + ... + N_{\ell-1}} (\hat{c}_{1}^{\dagger})^{N_{1}} ... (\hat{c}_{\ell}^{\dagger})^{1} ... (\hat{c}_{\ell}^{\dagger})^{N_{\ell}} | V_{\alpha c} \rangle$$

$$= (-1)^{N_{\ell}^{\dagger}} | N_{1}, ..., o, ..., N_{\ell} \rangle^{(\hat{c}_{\ell}^{\dagger})^{0}}$$
(6)

V = V (& V 2 & ... & V) To keep track of such signs, matrix representations in need extra 'sign counters', tracking fermion numbers:

$$\hat{C}_{\ell}^{\dagger} \doteq \Xi_{1} \otimes \dots \xrightarrow{\xi_{\ell-1}} \otimes C_{\ell}^{\dagger} \otimes \mathbb{1}_{\ell+1} \otimes \dots \otimes \mathbb{1}_{\ell} =: \Xi_{\ell}^{c} C_{\ell}^{\dagger}$$

$$(2i)$$

$$\hat{C}_{\ell} \doteq Z_{1} \otimes \cdots \otimes Z_{\ell-1} \otimes C_{\ell} \otimes 1_{\ell+1} \otimes \cdots \otimes 1_{\ell} =: Z_{\ell} C_{\ell}$$
'Jordan-Wigner transformation' (22)

with
$$\mathbf{Z}_{\ell}' := \prod_{\mathbf{v} \in \ell' < \ell} \mathbf{Z}_{\ell'}$$
 'Z-string' (23)

Page 5

Exercise: verify graphically that
$$\hat{c}_{\ell}^{\dagger}$$
, $\hat{c}_{\ell} = -\hat{c}_{\ell}\hat{c}_{\ell}^{\dagger}$ for $\ell' > \ell$

Solution:

In bilinear combinations, all(!) of the \mathbb{Z} 's cancel. Example: hopping term, $\hat{\mathcal{C}}_{\ell}$

$$= 1 \uparrow \cdots 1 \uparrow c \Rightarrow c^{\dagger} \Leftrightarrow 1 \uparrow \cdots 1 \uparrow$$
 (27)

since at site
$$\ell$$
 we have $Z_{\ell}^{\dagger} = 1$, $C_{\ell}^{\dagger} Z_{\ell} = C_{\ell}^{\dagger}$, (28)

non-zero only when acting on $\langle \dots, n_{\ell} \rangle = 0$, ... \rangle , and in this subspace, $Z_{\ell} = \ell$

Conclusion:
$$\hat{c}_{\ell+1}^{\dagger} c_{\ell} \doteq \hat{c}_{\ell+1}^{\dagger} c_{\ell}$$
 and similarly, $\hat{c}_{\ell}^{\dagger} \hat{c}_{\ell+1} \doteq \hat{c}_{\ell}^{\dagger} \hat{c}_{\ell+1}$ (29)

Hence, the hopping terms end up looking as though fermions carry no signs at all.

For spinful fermions, this will be different.

Consider chain of spinful fermions. Site index: $\ell = 1, \dots, \ell$, spin index: $\ell \in \{1, 1, 1, 1, \dots, \ell\}$:= $\{1, 1, 1, \dots, \ell\}$

$$\{\hat{c}_{\ell s}, \hat{c}_{\ell' s'}\} = 0 \qquad \{\hat{c}_{\ell s}^{\dagger}, \hat{c}_{\ell' s'}^{\dagger}\} = 0 \qquad \{\hat{c}_{\ell s}^{\dagger}, \hat{c}_{\ell' s'}^{\dagger}\} = \delta_{\ell \ell'} \delta_{ss'} \qquad (1)$$

Define canonical order for fully filled state:

First consider a single site (dropping the index ℓ):

Hilbert space: =
$$span \{ |o\rangle, |\downarrow\rangle, |\uparrow\rangle, |\uparrow\downarrow\rangle \}$$
 local index: $\sigma \in \{o, \downarrow, \uparrow, \uparrow\downarrow\}$ (3)

constructed via:
$$| \circ \rangle \equiv | \lor a_c \rangle$$
, $| \downarrow \rangle \equiv \hat{c}_1^{\dagger} | \circ \rangle$, (4)

$$|\uparrow \rangle = \hat{c}_{\uparrow}^{\dagger} |\circ\rangle, \quad |\uparrow \downarrow \rangle = \hat{c}_{\uparrow}^{\dagger} \langle\downarrow \downarrow \circ\rangle = \hat{c}_{\uparrow}^{\dagger} |\downarrow\rangle = -\hat{c}_{\downarrow}^{\dagger} |\uparrow\rangle \quad (5)$$

To deal with minus signs, introduce
$$\hat{Z}_s := (-1)^{\hat{N}_s} = \frac{1}{2}(1 - \hat{N}_s)$$
 $s \in \{1, 1\}$ (6)

We seek a matrix representation of \hat{c}_{s}^{\dagger} , \hat{c}_{s}^{\dagger} in direct product space $\hat{V}:=V_{\uparrow}\otimes V_{\downarrow}$. (7)

(Matrices acting in this space will carry tildes.)

$$\hat{Z}_{\uparrow} \stackrel{\cdot}{=} Z_{\uparrow} \otimes 1_{\downarrow} = \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \hat{Z}_{\uparrow} \otimes 1_{\downarrow} \otimes 1_{$$

$$\hat{\mathcal{Z}}_{\downarrow} \doteq \mathbf{1}_{\Gamma} \otimes \mathcal{Z}_{\downarrow} = (',) \otimes (',) = (\overline{'}_{-1}) = (\hat{\mathcal{Z}}_{\downarrow}) \qquad (9)$$

$$\hat{C}_{\uparrow}^{\dagger} \doteq C_{\uparrow}^{\dagger} \otimes 1 = \begin{pmatrix} \circ \circ \\ \circ \circ \end{pmatrix} \otimes \begin{pmatrix} \circ \\ \circ \end{pmatrix} = \begin{pmatrix} \circ \circ \\ \circ \\ \bullet \end{pmatrix}$$

$$\hat{c}_{\uparrow} \doteq C_{\uparrow} \otimes 1 = \begin{pmatrix} \circ & 1 \\ \circ & \circ \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} \ddots \\ \ddots \\ 1 \end{pmatrix}$$

$$\hat{C}_{\downarrow}^{\dagger} \doteq Z_{\uparrow} \otimes C_{\downarrow}^{\dagger} = ('_{-1}) \otimes ('_{1} \circ) = ('_{-1} \circ) \otimes ('_{1} \circ) = ('_{-1} \circ) \otimes ('_{1} \circ) = ('_{-1} \circ) \otimes ('_{1} \circ) \otimes ('_{1} \circ) = ('_{-1} \circ) \otimes ('_{1} \circ) \otimes ('_{1$$

$$\hat{C}_{\downarrow} \doteq Z_{\uparrow} \otimes C_{\downarrow} = \begin{pmatrix} 1 & 1 \\ & -1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ & 0 & -1 \end{pmatrix} =: \hat{C}_{\downarrow}$$
 (12)

$$\hat{C}_{\downarrow} \doteq Z_{\uparrow} \otimes C_{\downarrow} = \begin{pmatrix} 1 & -1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \vdots C_{\downarrow}$$
(12)

The factors \mathcal{Z}_s guarantee correct signs. For example $\widetilde{C}_1^{\dagger} \widetilde{C}_{\downarrow} = -\widetilde{C}_{\downarrow} \widetilde{C}_1^{\dagger}$: (fully analogous to MPS-II.1.17)

Algebraic check:

Remark: for spinful fermions (in constrast to spinless fermions, compare MPS-II.28), we have

$$\tilde{C}_{s}^{\dagger} \tilde{Z} \neq \tilde{C}_{s}^{\dagger}$$
 and $\tilde{Z} \tilde{C}_{s} \neq \tilde{C}_{s}$ (15)

For example, consider S = 1; action in $\widetilde{V} = V_{\uparrow} \otimes V_{\downarrow}$:

$$\widetilde{C}_{\uparrow} \widetilde{Z} = C_{\uparrow} \widetilde{Z}_{\downarrow} \widetilde{Z}_{\downarrow} = C_{\uparrow} \widetilde{Z}_{\downarrow} \widetilde{Z}_{\downarrow} = C_{\uparrow} = C$$

Now consider a <u>chain</u> of spinful fermions (analogous to spinless case, with $\stackrel{\sim}{\mathbb{V}_{\ell}}$ instead of $\stackrel{\sim}{\mathbb{V}_{\ell}}$).

Each $\hat{c}_{\ell S}$ or $\hat{c}_{\ell S}^{\dagger}$ must produce sign change when moved past any $\hat{c}_{\ell S}^{\dagger}$ or $\hat{c}_{\ell S}^{\dagger}$ with $\ell > \ell$. So, define the following matrix representations in $\hat{V} \otimes \ell = \hat{V}_{\ell} \otimes \hat{V}_{\ell} \otimes ... \otimes \hat{V}_{\ell}$:

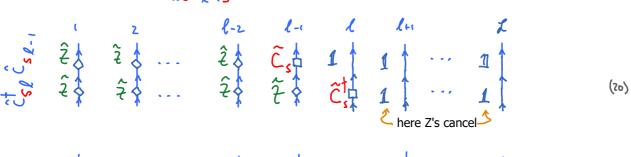
$$\hat{C}_{\ell}^{\dagger} \doteq \hat{Z}_{\ell} \otimes ... \otimes \hat{Z}_{\ell-1} \otimes \hat{C}_{\ell}^{\dagger} \otimes \mathbf{1}_{\ell+1} \otimes ... \qquad \mathbf{1}_{\ell} = \hat{Z}_{\ell}^{\prime} \hat{C}_{\ell}^{\dagger}$$
'Jordan-Wigner

$$\hat{C}_{\ell} \doteq \hat{\mathcal{E}}_{1} \otimes ... \otimes \hat{\mathcal{E}}_{\ell-1} \otimes \hat{C}_{\ell} \otimes 1_{\ell+1} \otimes ... \qquad 1_{\ell} = 2^{\ell} \hat{C}_{\ell}$$
 transformation' (8)

with
$$\widehat{Z}_{\ell}^{\zeta} \equiv \prod_{\mathfrak{O}_{\ell}' < \ell} \widetilde{Z}_{\ell'} = \prod_{\mathfrak{O}_{\ell}' < \ell} Z_{\uparrow_{\ell'}} \otimes Z_{\downarrow_{\ell'}}$$
 'Z-string' (49)

In bilinear combinations, most (but not all!) of the 2 's cancel.

Example: hopping term $\hat{c}_{ls}^{\dagger}\hat{c}_{l-ls}$: (sum over s implied)



$$= 1 \uparrow 1 \uparrow \cdots 1 \uparrow \tilde{c}_{s} \uparrow 1 \uparrow 1 \uparrow \cdots 1 \uparrow \tilde{c}_{s} \uparrow \tilde$$

initial charge:
$$C_s$$
 Similarly: C_{l-1} C_s final charge: C_s final charge: C_s bond C_s indicates spin sum C_s

Arrow convention for virtual bonds of creation/annihilation operators:

'charge conservation' holds for each operator, i.e. total charge in = total charge out.

Annihilation operator: outgoing - or incoming + or

Creation operator: incoming ~1 or outgoing +1