MPS. 6 Iterative diagonalization

Consider spin- $1 / 2$ chain:

$$
\begin{equation*}
\hat{H}^{\mathcal{L}}=\sum_{l=1}^{\mathcal{L}} \hat{\vec{S}}_{l} \cdot \vec{h}_{l}+\sum_{l=1}^{\ell-1} \hat{\vec{S}}_{l} \cdot \hat{\vec{S}}_{l+1} \tag{1}
\end{equation*}
$$

$\mathrm{SU}(2)$ spin algebra for each site $\ell \quad$ (suppressing site indices in Eqs. (2-4):

$$
\begin{align*}
& {\left[\hat{S}_{i}, \hat{S}_{j}\right]=\varepsilon_{i j k} \hat{S}_{R} \quad(2 a), \quad S_{i}^{\dagger}=S_{i}, \quad \hat{S}_{ \pm}=\frac{1}{\sqrt{2}}\left(\hat{S}_{x} \pm i \hat{S}_{y}\right)=\hat{S}_{\mp}^{\dagger}:=\hat{S}^{\mp \dagger}} \\
& \stackrel{(2 a, b)}{\Rightarrow}\left[\hat{S}_{-1}, \hat{S}_{+}\right]=\hat{S}_{z_{1}} \quad\left[\hat{S}_{z}, \hat{S}_{ \pm}\right]= \pm \hat{S}_{ \pm} \tag{cc}
\end{align*}
$$

$$
\hat{\vec{S}} \cdot \hat{\vec{S}}=\hat{S}_{x} \hat{S}_{x}+\hat{S}_{y} \hat{S}_{y}+\hat{S}_{z} \hat{S}_{z} \quad(2 b) \hat{S}^{\prime}+\hat{S}_{-}+\hat{S}_{-} \hat{S}_{+}+\hat{S}_{z} \hat{S}_{z}
$$

(ab)
$=\hat{S}_{+}+\hat{S}_{-}+\hat{S}-\hat{S}_{+}+\hat{S}_{z} \hat{S}_{z}$ sum on $a \in\{t, z,-\}$ implied!
write this covariant notation:

$$
\begin{equation*}
=\hat{S}+\hat{S}^{+t}+\hat{S}-\hat{S}^{-t}+\hat{S}_{z} \hat{S}^{z}=\hat{S}_{a} \hat{S}^{+a} \tag{3b}
\end{equation*}
$$

with operator triplets: $\quad \hat{S}_{a} \in\left\{\hat{S}_{+}, \hat{S}_{z}, \hat{S}_{-}\right\}, \quad \hat{S}^{\dagger} \dagger \in\left\{\hat{S}+t, \hat{S}_{z} \dagger, \hat{S}^{-t}\right\}$

In the basis $\left\{\left|\vec{\sigma}_{\mathcal{L}}\right\rangle\right\}=\left\{\left|\sigma_{1}\right\rangle\left|\sigma_{2}\right\rangle \ldots\left|\sigma_{\mathcal{L}}\right\rangle\right\}, \quad$ the Hamiltonian can be expressed as
$H_{\vec{\sigma}} \vec{\sigma}^{\prime} \quad$ is a linear map acting on a direct product space: $\mathbb{V} \otimes \mathcal{L}:=\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \ldots \otimes \mathbb{V}_{\mathscr{L}}$ where \mathbb{V}_{ℓ} is the 2-dimensional representation space of site l.
$\hat{H}^{\mathcal{L}}$ is a sum of single-site and two-site terms.
On-site terms:

$$
\begin{equation*}
\hat{S}_{a l}=\left|\sigma_{l}^{\prime}\right\rangle\left[S_{a}\right]^{\sigma_{l}} \sigma_{l}\left\langle\sigma_{l}\right| \tag{6}
\end{equation*}
$$

Matrix representation in $V_{l}: \quad\left(S_{a}\right)^{\sigma_{l}^{\prime}} \sigma_{l}=\left\langle\sigma_{l}^{\prime}\right| \hat{S}_{a l}\left|\sigma_{l}\right\rangle=\left(\begin{array}{l}{\left[S_{a}\right]^{\prime} \uparrow\left[\begin{array}{c}\left.S_{a}\right]^{\uparrow} \downarrow \\ {\left[S_{a}\right]_{\uparrow}^{\downarrow}}\end{array}\left[_{a} S_{\downarrow}^{\downarrow}\right)^{\downarrow}\right.}\end{array}\right)$

$$
S_{+}=-\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 1 \tag{8}\\
0 & 0
\end{array}\right), \quad S_{z}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad S_{-}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Nearest-neighbor interactions, acting on direct product space, $\left|\sigma_{l}\right\rangle \otimes\left|\sigma_{\ell+1}\right\rangle$:

$$
\begin{align*}
& \begin{array}{l}
\hat{S}_{a l} \otimes \hat{S}_{l+1}^{a t}
\end{array}=\left|\sigma_{l}^{\prime}\right\rangle\left|\sigma_{l+1}^{\prime}\right\rangle \underbrace{\left[S_{a}\right]^{\sigma_{l}^{\prime}} \sigma_{l}}_{!!}[\underbrace{\left.S^{\dagger a}\right]_{l+1}^{\sigma_{l+1}^{\prime}}\left\langle_{l+1}^{\prime} \sigma_{l+1}\right|<\sigma_{l} \mid}_{!!} \tag{9}\\
& \text {Matrix representation in } \mathbb{V}_{l} \otimes \mathbb{V}_{l+1} \text { : } \quad \ddot{S}_{l}^{\sigma_{l}^{\prime}} a_{a}^{\sigma}{ }_{l} \quad{ }^{\prime \prime} \sigma_{l+1}^{\prime} a{ }^{\sigma_{l+1}}
\end{align*}
$$

We define the 3-leg tensors S, S^{+}with index placements matching those of A tensors for wavefunctions: incoming upstairs, outgoing downstairs (fly in, roll out), with a (by convention) as middle index.

Diagonalize site 1

Matrix
acting on v_{1} :

chain of length 1 site index: $\ell=1$
$D_{1}=U_{1}^{\dagger} H_{1} U_{1}$ is diagonal, with matrix elements
$\left[D_{1}\right]_{\alpha^{\prime}}^{\alpha^{\prime}}=\left[U_{1}^{\dagger}\right]_{\sigma_{1}}^{\alpha^{\prime}}\left[H_{1}\right]^{\sigma_{1}^{\prime}}\left[U_{1} U_{1}\right]^{\sigma_{1}}$

Eigenvectors of the matrix H_{1} are given by column vectors of the matrix $\left[U_{1}\right]_{\alpha}^{\sigma_{1}}$: Eigenstates of operator \hat{H}_{1} are given by: $|\alpha\rangle=\left|\sigma_{1}\right\rangle\left[U_{1}\right]_{\alpha}^{\sigma_{1}} \quad x+\frac{U_{\sigma_{1}}}{U_{1}} \alpha$
Add site 2
Diagonalize $H_{2} \quad$ in enlarged Hilbert space, $\left.\quad \mathscr{l}_{(2]}=\operatorname{span}\left\{\mid \sigma_{1}\right)\left|\sigma_{2}\right\rangle\right\}$ chain of length 2
Matrix
acting on $\mathbb{V}_{1} \otimes V_{2}$:

$$
\begin{equation*}
H_{2}=\underbrace{\vec{S}_{1} \cdot \vec{h}_{1}}_{H_{1}^{\text {loo }}} \otimes \mathbb{1}_{2}+\mathbb{1}_{1} \otimes \underbrace{\vec{S}_{2} \vec{h}_{2}}_{H_{2}^{\text {bloc }}}+\underbrace{J S_{a_{1}} \otimes S_{2}^{\dagger_{a}}}_{H_{12}^{\text {oc }}} \tag{14}
\end{equation*}
$$

Matrix representation in $\mathbb{V} 1 \otimes \mathbb{V}_{2}$ corresponding to 'local' basis, $\left\{\left|\sigma_{1}\right\rangle\left|\sigma_{2}\right\rangle\right\}$:

We seek matrix representation in $v_{1} \otimes v_{2}$ corresponding to enlarged, 'site-1-diagonal' basis, defined as

$$
\begin{aligned}
& \left.\hat{H}_{2}=|\tilde{\alpha}\rangle\right\rangle H_{2}^{\tilde{\alpha}^{\prime}}\langle\tilde{\alpha}|, \quad H_{2}^{\tilde{\alpha}^{\prime}}=\left\langle\tilde{\alpha}^{\prime}\right| \hat{H}_{2}|\tilde{\alpha}\rangle=\left\langle\tilde{\alpha}^{\prime} \mid \sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right\rangle H_{2}^{\sigma \mid \sigma_{2}^{\prime}} \sigma_{1, \sigma_{2}}\left\langle\sigma_{1} \sigma_{2} \tilde{\sigma}_{2} \tilde{\alpha}^{\alpha}\right\rangle
\end{aligned}
$$

To this end, attach U_{1}^{\dagger}, U_{1} to in/out legs of site 1 , and $\mathbb{1}, \mathbb{1}$ to in/out legs of site 2 :

First term is already diagonal. But other terms are not.
Note: the 'triangles' on \bar{Y}, λ suffice to fully specify all arrow direction, hence arrows can be omitted (will often be done in later lectures).

Now diagonalize $\quad H_{2}$ in this enlarged basis: $\quad H_{2}=U_{2} D_{2} U_{2}^{\dagger}$
$D_{2}=U_{2}^{\dagger} H_{2} U_{2}$ is diagonal, with matrix elements
$\left[D_{2}\right]^{\beta^{\prime}}=\left[U_{2}^{\dagger}\right]_{\alpha^{\prime}}^{\beta^{\prime}}\left[H_{2}\right]_{\hat{\alpha}}^{\hat{\alpha}^{\prime}}\left[U_{2}\right]^{\hat{\alpha}}$

Eigenvectors of matrix H_{2} are given by column vectors of the matrix $\left[u_{2}\right]_{\beta}^{\tilde{\alpha}_{\beta}}=\left[u_{2}\right]_{\beta}^{\alpha_{\sigma}}$: Eigenstates of the operator \hat{H}_{2} :

$$
\begin{align*}
& |\beta\rangle=|\tilde{\alpha}\rangle\left[U_{2}\right]^{\tilde{\alpha}} \beta=|\alpha\rangle\left|\sigma_{2}\right\rangle\left[U_{2}\right]^{\alpha \sigma_{2}} \beta=\left|\sigma_{1}\right\rangle\left|\sigma_{2}\right\rangle\left[U_{1}\right]^{\sigma_{1}}\left[U_{2}\right]^{\alpha \sigma_{2}} \tag{21}
\end{align*}
$$

Add site 3

Transform each term involving new site into the 'enlarged, site-12-diagonal basis', defined as

$$
\begin{align*}
& |\tilde{\beta}\rangle \equiv\left|\beta \sigma_{3}\right\rangle \equiv|\beta\rangle\left|\sigma_{3}\right\rangle \tag{23}
\end{align*}
$$

For example, spin-spin interaction, $H_{23}^{\text {int }}$:

Local basis:

Then diagonalize in this basis: $\quad H_{3}=U_{3} D_{3} U_{3}^{\dagger}$, etc.

At each iteration, Hilbert space grows by a factor of 2. Eventually, truncations will be needed...!

Consider tight-binding chain of spinless fermions:

$$
\begin{equation*}
\hat{H}=\sum_{l=1}^{L} \varepsilon_{l} \hat{c}_{l}^{\dagger} \hat{c}_{l}+\sum_{l=1}^{\ell-1} t_{l}\left(\hat{c}_{l}^{t} \hat{c}_{l+1}+\hat{c}_{l+1}^{t} \hat{c}_{l}\right) \tag{I}
\end{equation*}
$$

Goal: find matrix representation for this Hamiltonian, acting in direct product space $\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \ldots \otimes \mathbb{V}_{\mathcal{L}}$, while respecting fermionic minus signs:

$$
\begin{equation*}
\left\{\hat{C}_{l}, \hat{C}_{l^{\prime}}\right\}=0, \quad\left\{\hat{C}_{l}^{+}, \hat{C}_{\ell^{\prime}}^{\dagger}\right\}=0, \quad\left\{\hat{C}_{l}^{+}, \hat{c}_{\ell^{\prime}}\right\}=\delta_{\ell \ell^{\prime}} \tag{2}
\end{equation*}
$$

First consider a single site (dropping the site index ℓ):
Hilbert space: $\operatorname{span}\{|0\rangle,|1\rangle\}$, local index:

$$
\checkmark \text { local occupancy }
$$

Operator action:

$$
\begin{array}{ll}
\hat{c}^{\dagger}|0\rangle=|1\rangle, & \hat{c}^{\dagger}|1\rangle=0 \\
\hat{c}|0\rangle=0, & \hat{c}|1\rangle=|0\rangle \tag{3b}
\end{array}
$$

The operators $\quad \hat{c}^{\dagger}=\left|\sigma^{\prime}\right\rangle C^{\dagger \sigma^{\prime}}\langle\sigma| \quad$ and $\quad \hat{c}=\left|\sigma^{\prime}\right\rangle C_{\sigma}^{\sigma^{\prime}}\langle\sigma|$
have matrix representations in $V: \quad C^{t \sigma_{\sigma}^{\prime}}=\left\langle\sigma^{\prime}\right| \hat{c}|\sigma\rangle=\langle 0|\left(\begin{array}{cc}10\rangle \\ 0 & 0 \\ 1 & 0\end{array}\right) \quad c^{\dagger} \hat{\beta}_{\sigma^{\prime}}^{\sigma^{\sigma}} \quad$ (ha)

$$
C^{\sigma^{\prime}} \sigma=\left\langle\sigma^{\prime}\right| \hat{c}|\sigma\rangle=\left(\begin{array}{ll}
0 & 1 \tag{46}\\
0 & 0
\end{array}\right) \quad c \hat{i}_{\sigma}{ }^{\dagger}
$$

Check: $C^{t} C+C C^{t}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)+\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\mathbb{1} v$

$$
C^{+} C^{\dagger}=\left(\begin{array}{ll}
0 & 0 \tag{5}\\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \quad, \quad C=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \checkmark
$$

For the number operator, $\hat{n}:=\hat{C}^{\dagger} \hat{c} \quad$ the matrix representation in \mathbb{V} reads:

$$
n:=C^{+} C=\left(\begin{array}{ll}
0 & 0 \tag{7}\\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\frac{1}{2}(1-z)
$$

where $Z:=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad$ is representation of $\quad \hat{z}=1-2 \hat{n}=(-1)^{\hat{n}}$

Useful relations:

$$
\begin{equation*}
\hat{c} \hat{z}=-\hat{z} \hat{c}, \quad \hat{c}^{+\hat{z}}=-\hat{z} \hat{c}^{+} \tag{8}
\end{equation*}
$$

'commuting \hat{C} or \hat{C}^{\dagger} past \hat{Z} produces a sign' $\begin{gathered}\text { [exercise: check this } \\ \text { algebraically, using }\end{gathered}$ matrix representations!]
Intuitive reason: \hat{c} and \hat{c}^{+}both change \hat{n}-eigenvalue by one, hence change sign of $(-1)^{\hat{n}}$.

For example:

$$
\overbrace{\text { acting on }|0\rangle}^{\hat{C}^{t} \underbrace{(-1)^{\hat{n}}}_{=(-1)^{0}}=1} \hat{C}^{\hat{C}^{+}}=-\underbrace{(-1)^{\hat{n}}}_{=(-1)^{\prime}=-1} \hat{C}^{\hat{C}^{+}}
$$

(10a)
non-zero only when acting on $|0\rangle=(-1)^{0}=1 \quad=(-1)^{=}=-1$

Similarly:

$$
\begin{equation*}
\vec{\pi} \mid \underbrace{\hat{C}(-1)^{\hat{n}}=-\hat{C}=-\underbrace{(-1)^{\hat{n}}}_{=(-1)^{0}=1} \hat{C}{ }^{\hat{C}}=1}_{=(-1)^{\prime}=-1} \tag{10b}
\end{equation*}
$$

non-zero only when acting on $|1\rangle=(-1)^{1}=-1 \quad=(-1)^{0}=1$
Now consider a chain of spinless fermions:
Complication: fermionic operators on different sites anticommute: $\quad c_{\ell} c_{\ell^{\prime}}^{+}=-c_{l^{\prime}}^{+} c_{l}$ for $\ell \neq \ell^{\prime}$
Hilbert space: $\operatorname{span}\left\{|\vec{\sigma}\rangle_{2}=\left|n_{1}, n_{2}, \ldots, n_{2}\right\rangle\right\} \quad, \quad n_{\ell} \in\{0,1\}$

Define canonical ordering: fill states from right to left:

$$
\begin{equation*}
\left|n_{1}, \ldots, n_{l}, \ldots, n_{\mathcal{L}}\right\rangle=\left(\hat{c}_{c_{1}}\right)^{n_{1}} \ldots\left(\hat{c}_{l}^{t}\right)^{n_{l}} \ldots\left(\hat{c}_{\mathcal{L}}^{t}\right)^{n_{L}}\left|V_{a c}\right\rangle \tag{12}
\end{equation*}
$$

Now consider:

$$
\begin{align*}
& c_{l}^{\dagger}\left|n_{1}, \ldots, 0, \ldots, n_{l}\right\rangle=(-1)^{n_{1}+\ldots+n_{l-1}}\left(\hat{n}_{c_{1}^{t}}^{c_{1}}\right)^{n_{1}} \ldots \underbrace{c_{l}^{t}\left(\hat{c}_{l}^{t}\right)^{0}}_{\left(\hat{c}_{l}^{t}\right)^{1}} \ldots\left(\hat{c}_{\ell}^{t}\right)^{n_{\ell}}\left|V_{a c}\right\rangle \tag{13}\\
& =(-1)^{n_{l}^{l}}\left|n_{1}, \ldots, 1, \ldots, n_{l}\right\rangle^{\left(\hat{c}_{l}^{l}\right)^{1}} \quad, n_{l}^{c}=\sum_{\ell^{\prime}=1}^{\ell-1} n_{\ell^{\prime}} \tag{14}\\
& c_{l}\left|n_{1}, \ldots, 1, \ldots, n_{l}\right\rangle=(-1)^{n_{1}+\ldots+n_{l-1}}\left(\hat{n}_{l}^{t}\right)^{n_{1}} \ldots \underbrace{c_{l}\left(\hat{c}_{l}^{t}\right)^{2} \ldots\left(\hat{c}_{\ell}^{t}\right)^{n_{l}}}_{\left(\hat{C}_{l}^{+}\right)^{0}}\left|V_{a c}\right\rangle \tag{15}\\
& =(-1)^{n_{l}^{2}}\left|n_{1}, \ldots, 0, \ldots, n_{l}\right\rangle^{\left|\hat{C}_{l}^{+}\right|^{0}} \tag{16}
\end{align*}
$$

To keep track of such signs, matrix representations in $\mathbb{V}^{\otimes \mathcal{L}}=\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \ldots \otimes \mathbb{V}_{\mathcal{L}}$ need extra 'sign counters', tracking fermion numbers:

$$
\begin{align*}
& \hat{c}_{l}^{t} \doteq z_{1} \otimes \ldots z_{l-1} \otimes C_{l}^{+} \otimes \mathbb{1}_{l+1} \otimes \ldots \otimes \mathbb{1}_{\mathcal{L}}=: z_{l}^{c} C_{l}^{+} \\
& \hat{C}_{l} \doteq z_{1} \otimes \ldots z_{l-1} \otimes C_{l} \otimes \mathbb{1}_{l+1} \otimes \ldots \otimes \mathbb{1}_{\mathcal{L}}=: z_{l}^{<} C_{l} \tag{22}
\end{align*}
$$

'Jordan-Wigner transformation'
with $\quad Z_{\ell}^{<}:=\prod_{\otimes \ell^{\prime}<l} Z_{e^{\prime}} \quad$ 'Z-string'

Exercise: verify graphically that

$$
\hat{c}_{\ell^{\prime}}^{t} \hat{c}_{l}=-\hat{c}_{\ell} \hat{c}_{\ell^{\prime}}^{t} \quad \text { for } \quad l^{\prime}>l .
$$

Solution:

In bilinear combinations, all(!) of the Z 's cancel. Example: hopping term, $\hat{c}_{\ell}^{\dagger} \hat{C}_{\ell-1}$:

Conclusion:

$$
\begin{equation*}
\hat{C}_{l+1}^{t} c_{l} \doteq C_{l+1}^{\dagger} C_{l} \quad \underset{[\text { using (10b)] }}{\text { and similarly, }} \quad \hat{C}_{l}^{\dagger} \hat{C}_{l+1} \doteq C_{l}^{\dagger} C_{l+1} \tag{29}
\end{equation*}
$$

Hence, the hopping terms end up looking as though fermions carry no signs at all.
For spinful fermions, this will be different.

Consider chain of spinful fermions. Site index: $\ell=1, \ldots, \mathcal{L}$, spin index: $S \in\{\uparrow, \downarrow\}:=\{+,-\}$

$$
\begin{align*}
& \left\{\hat{C}_{l s}, \hat{C}_{\ell^{\prime} s^{\prime}}\right\}=0, \quad\left\{\hat{C}_{l s}^{\dagger} \hat{C}_{\ell^{\prime} s^{\prime}}^{\dagger}\right\}=0, \quad\left\{\hat{C}_{\ell s}^{\dagger}, \hat{C}_{\ell^{\prime} s^{\prime}}\right\}=\delta_{\ell \ell^{\prime}} \delta_{s s^{\prime}} \tag{I}\\
& \text { Define canonical order for fully filled state: } \left.\quad \hat{C}_{1 \uparrow}^{\dagger} \hat{C}_{1 \downarrow}^{\dagger} \hat{C}_{2 \uparrow}^{\dagger} \hat{C}_{2 \downarrow}^{\dagger} \ldots \hat{C}_{\mathcal{L} \uparrow}^{\dagger} \hat{C}_{\mathcal{L} \downarrow}^{\dagger} \mid \text { Vac }\right\rangle
\end{align*}
$$

First consider a single site (dropping the index ℓ):

Hilbert space: $\quad=\operatorname{span}\{|0\rangle,|\downarrow\rangle,|\uparrow\rangle,|\uparrow \downarrow\rangle\}$, local index: $\sigma \in\{0, \downarrow, \uparrow, \uparrow \downarrow\}$
constructed via: $|0\rangle \equiv\left|V_{a c}\right\rangle, \quad|\downarrow\rangle \equiv \hat{C}_{\downarrow}^{\dagger}|0\rangle$,

$$
\begin{equation*}
|\uparrow\rangle \equiv \hat{C}_{\uparrow}^{\dagger}|0\rangle, \quad|\uparrow \downarrow\rangle \equiv \hat{C}_{\uparrow}^{\dagger}\left({ }_{\downarrow}^{\dagger}|0\rangle=\hat{C}_{\uparrow}^{\dagger}|\downarrow\rangle=-\hat{C}_{\downarrow}^{t}|\uparrow\rangle\right. \tag{4}
\end{equation*}
$$

To deal with minus signs, introduce $\hat{Z}_{S}:=(-1)^{\hat{n}_{S}}=\frac{1}{2}\left(1-\hat{n}_{S}\right) \quad S \in\{\uparrow, \downarrow\}$

$$
\begin{equation*}
\hat{\tau} \hat{c}_{s} \hat{c}_{s} \tag{6}
\end{equation*}
$$

We seek a matrix representation of $\hat{C}_{s}^{\dagger}, \hat{C}_{S} \hat{Z}_{S}$ in direct product space $\tilde{V}^{\prime}=\mathbb{V}_{\uparrow} \otimes \mathbb{V}_{\downarrow}$. (Matrices acting in this space will carry tildes.)

$$
\begin{align*}
& \hat{z}_{\downarrow} \doteq \mathbb{I}_{r} \otimes Z_{\downarrow}=\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & \\
& -1
\end{array}\right)=\left(\begin{array}{lll}
1 & -1 \\
& & \\
& 1 & -1
\end{array}\right)=\hat{z}_{\downarrow} \tag{9}\\
& \hat{Z}_{\uparrow} \hat{Z}_{\downarrow} \doteq Z_{\uparrow} \otimes Z_{\downarrow}=\left(\begin{array}{ll}
1 & \\
& -1
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & - \\
& -1
\end{array}\right)=\left(\begin{array}{ll}
1 & -1 \\
& -1
\end{array}\right)=: \tilde{z} \tag{10}\\
& \hat{C}_{\uparrow}^{\dagger} \equiv C_{\uparrow}^{\dagger} \otimes 1=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right)=\binom{1}{1}=\tilde{C}_{\uparrow}^{\dagger} \\
& \hat{C}_{\uparrow} \doteq C_{\uparrow} \otimes 1=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right)=\tilde{C}_{\uparrow} \tag{II}\\
& \hat{C}_{\downarrow}^{\dagger} \doteq Z_{\uparrow} \otimes C_{\downarrow}^{\dagger}=\left(\begin{array}{ll}
1 & -1
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc|c}
0 & 0 & \\
1 & 0 & \\
\hline & 0 & 0 \\
& -1 & 0
\end{array}\right)=: \tilde{C}_{\downarrow}^{\dagger} \tag{12}\\
& \hat{C}_{\downarrow} \doteq z_{\uparrow} \otimes C_{\downarrow}=\left(\begin{array}{cc}
1 & -1 \\
& -1
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & \\
0 & 0 & \\
\hline & 0 & -1
\end{array}\right) \quad=\hat{C}_{\downarrow} \tag{12}
\end{align*}
$$

$$
\hat{c}_{b} \equiv z_{1} \otimes c_{b}=(1-1) \otimes(10.0)=\left(\begin{array}{l}
0.0 \tag{12}\\
0.0 \\
000
\end{array}\right)=\hat{c}_{b}
$$

The factors Z_{s} guarantee correct signs. For example $\tilde{C}_{\uparrow}^{\dagger} \tilde{C}_{\downarrow}=-\tilde{C}_{\downarrow} \tilde{C}_{\uparrow}^{f}$: (fully analogous to MPS-II.1.17)

Algebraic check:

Remark: for spinful fermions (in constrast to spinless fermions, compare MPS-II.28), we have

$$
\begin{equation*}
\tilde{C}_{S}^{\dagger} \tilde{Z} \neq \tilde{C}_{S}^{\dagger} \quad \text { and } \quad \tilde{Z} \tilde{C}_{s} \neq \tilde{C}_{s} \tag{15}
\end{equation*}
$$

For example, consider $S=\uparrow$; action in $\widetilde{V}=\mathbb{V}_{\uparrow} \otimes \mathbb{V}_{\downarrow}$:

Now consider a chain of spinful fermions (analogous to spinless case, with $\widetilde{\mathbb{V}}_{\ell}$ instead of \mathbb{V}_{ℓ}).
Each $\hat{c}_{l S}$ or $\hat{C}_{l S}^{\prime}$ must produce sign change when moved past any $\hat{c}_{\ell^{\prime} S}$ or $\hat{C}_{\ell^{\prime} s \prime}^{+}$with $\ell^{\prime}>\ell$.
So, define the following matrix representations in $\tilde{V}^{\otimes \mathcal{L}}=\tilde{V}_{1} \otimes \widetilde{V}_{2} \otimes \ldots$
$\hat{C}_{l}^{\dagger} \doteq \tilde{z}_{1} \otimes \ldots\left(\tilde{z}_{l-1} \otimes \tilde{C}_{l}^{\dagger} \otimes \mathbb{1}_{l+1} \otimes \ldots \quad \mathbb{1}_{l} \equiv z_{l}^{<} \tilde{C}_{l}^{\dagger}\right.$

$$
\begin{equation*}
\hat{c}_{l} \doteq \tilde{z}_{1} \otimes \ldots \otimes \hat{z}_{l-1} \otimes \tilde{C}_{l} \otimes \mathbb{1}_{l+1} \otimes \ldots \mathbb{1}_{l} \equiv z_{l}^{<} \tilde{C}_{l} \tag{18}
\end{equation*}
$$

'Jordan-Wigner transformation'
with $\quad \tilde{Z}_{\ell}^{<} \equiv \prod_{\otimes \ell^{\prime}<\ell} \tilde{Z}_{\ell^{\prime}}=\prod_{\otimes \ell^{\prime}<\ell} Z_{\uparrow \ell^{\prime} \otimes} \otimes Z_{\downarrow \ell^{\prime}} \quad \quad$ 'Z-string'

In bilinear combinations, most (but not all!) of the Z 's cancel.
Example: hopping term $\hat{C}_{l s}^{\dagger} \hat{C}_{l-1 s}$: (sum over s implied)

$$
\begin{array}{rrrrrrr}
1 & 2 & l-2 & l-1 & l & l+1 & \mathcal{L}
\end{array}
$$

Arrow convention for virtual bonds of creation/annihilation operators:
'charge conservation' holds for each operator, ie. total charge in = total charge out.
Annihilation operator: outgoing -1 or incoming +1
Creation operator: incoming -1 or outgoing +1

