Computation of normalization and matrix elements of local operators is simpler if the MPS is built from tensors with special normalization properties, called 'left-normalized' or 'right-normalized' tensors.

Left-normalization

A 3-leg tensor $A^{\alpha \sigma}$ is called 'left-normalized' if it is a left isometry, i.e. if it satisfies

$$
\begin{equation*}
A^{\dagger} A=\mathbb{1} \text {. Explicitly: } \quad\left(A^{\dagger} A\right)_{\beta}^{\beta^{\prime}}=A^{\dagger} \beta_{\sigma \alpha}^{\prime} A^{\alpha \sigma}{ }_{\beta}=\mathbb{1}_{\beta}^{\beta^{\prime}} \tag{1}
\end{equation*}
$$

Such an A defines an 'isometry' from space labeled by its left indices to space labeled by its right indices. distance-preserving map (in index-free notation: if $y=A x$, then $y^{+} y=x^{+} A^{+} A x=x^{+} x$)

Graphical notation for left-normalization:

More compact notation: draw 'left-facing diagonals' at vertices

The right-angled triangle contains complete information about all arrows attached to it: for A, incoming arrows to sharp angles, outgoing arrow from right angle, for A^{\dagger}, outgoing arrows from sharp angles, incoming to from right angle: Hence, there is no need to draw arrows explicitly when using $\quad 4, \perp$!

Consider a 'left-normalized MPS', i.e. one constructed purely from left isometries:

Then, closing the zipper left-to-right is easy, since all $C_{\ell} \quad$ reduce to identity matrices:

We suppress arrows for C, too, since they can be reconstructed from arrows of constitutent As.
Hence:

\qquad

We suppress arrows for C , too, since they can be reconstructed from arrows of constituent As.
Hence:

Moreover, the matrices for site 1 to any site $\quad \ell=1, \ldots, N$ define an orthonormal state space:

close the zipper

Call this state space

$$
\begin{equation*}
V_{l}=\operatorname{span}\left\{\left|\Psi_{\lambda}\right\rangle_{l}\right\} \subseteq \mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \ldots \otimes \mathbb{V}_{l} \tag{7}
\end{equation*}
$$

where $\quad \mathbb{V}_{l}=\operatorname{span}\left\{\left|\sigma_{l}\right\rangle\right\}$ is local state space of site l

These state spaces are built up iteratively from left to right through left-isometric maps:
Each $\frac{A_{l}}{Y}$ defines an isometric map to a new (possibly smaller) basis:

$\quad A_{l}: \mathbb{V}_{l-1} \otimes \mathbb{V}_{l} \rightarrow \mathbb{V}_{\ell}, \quad \quad\left|\Psi_{\lambda^{\prime}}\right\rangle_{l-1}{\left|\sigma_{l}\right\rangle}_{\text {old basis }} \underset{\substack{\text { new basis }}}{\left|\Psi_{\lambda}\right\rangle_{\ell}}=\left|\Psi_{\lambda^{\prime}}\right\rangle_{l-1}\left|\sigma_{l}\right\rangle\left[A_{\ell}\right]^{\lambda^{\prime} \sigma_{l}}$
If A_{ℓ} is a unitary, then

$$
\begin{align*}
\operatorname{dim}\left(V_{l}\right) & =\operatorname{dim}\left(\mathbb{V}_{l-1}\right) \cdot \operatorname{dim}\left(\mathbb{V}_{\ell}\right) \Rightarrow \text { no truncation } \tag{9}\\
D_{l} & =D_{\ell-1} \cdot d
\end{align*}
$$

If A_{l} is a (non-unitary) isometry, then $D_{\ell}<D_{\ell-1} \cdot d \Rightarrow$ truncation was involved!

Hence $V_{\ell}=\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \ldots \otimes \mathbb{V}_{\ell} \quad$ only if all A's are not only isometries but unitaries.

$$
D_{l}=d^{l}
$$

Even if truncation is involved, the resulting MPS are useful, precisely because they are parametrized by a limited number of parameters (namely elements of A tensors). E.g., they can be optimized variationally by minimizing energy \Rightarrow DARG).

Right-normalization

So far we have viewed an MPS as being built up from left to right, hence used right-pointing arrows on ret diagram. Sometimes it is useful to build it up from right to left, using left-pointing arrows.

Building blocks:

$$
\begin{align*}
& |\alpha\rangle=\left|\sigma_{\mathcal{L}}\right\rangle\left[B_{\alpha}\right]_{\alpha}^{\sigma_{\mathcal{L}}} \mid \tag{II}\\
& \text { left-to-right index order as in diagram } \\
& \left.|\beta\rangle=\| \sigma_{R-1}\right)\left(\sigma_{\mathcal{L}}\right)\left[B_{\alpha-1}\right]_{\beta}^{\sigma_{\alpha-1} \alpha}\left[B_{\mathcal{L}}\right]_{\alpha} \sigma_{\mathcal{L}}{ }^{\prime} \tag{12}\\
& \langle\alpha|=\underbrace{\left[\begin{array}{c}
f \\
d_{1}
\end{array} \sigma_{x} \alpha\right.}_{:=\widetilde{\left.B_{d}\right]_{\alpha}^{6}{ }^{6} \mid}}\left\langle\sigma_{z}\right| \tag{13}\\
& \langle\beta|=\left[B_{\mathcal{L}}^{\dagger}\right]_{1 \sigma_{\mathcal{L}}}\left[B_{\mathcal{L - 1}}^{\dagger}\right]_{\alpha \sigma_{\mathcal{L}}-1}^{\beta<\sigma_{\mathcal{L}}\left|<\sigma_{\mathcal{L}}\right|} \tag{14}
\end{align*}
$$

Iterating this, we obtain kets and bras of the form

$$
\begin{aligned}
& \left.\left.|\psi\rangle=\left|\sigma_{1}\right\rangle \mid \sigma_{2}\right)\left.\ldots\right|_{\alpha}\right\rangle\left[B_{1}\right]_{1}^{\sigma_{1} \lambda} \ldots \underbrace{\left(B_{\alpha-1}\right)_{\beta} \sigma_{\mathcal{L}-1}^{\alpha}\left[B_{\alpha}\right] \alpha^{\sigma} \sigma^{\prime}} \\
& =|\vec{\sigma}\rangle\left[B_{1}^{\sigma_{1}} \ldots B_{R-1}^{6 R-1} B_{\alpha}^{\sigma}\right]_{1}{ }^{1} \\
& \langle\psi|=\left[B_{1}^{\dagger}\right]_{1 \sigma_{\mathcal{L}}}{ }^{\alpha}\left[\begin{array} { l }
{ \dagger } \\
{ B _ { L - 1 } }
\end{array} \alpha _ { \alpha \sigma _ { \chi - 1 } } ^ { \beta } \ldots [B _ { 1 }] _ { \lambda \sigma _ { 1 } } { } ^ { \prime } \langle \sigma _ { R } | \ldots \left(\sigma_{2} \mid\left\langle\sigma_{1}\right|\right.\right. \\
& =\left[\begin{array}{lll}
B_{\alpha}^{+\sigma_{\alpha}} & B_{\alpha-1}^{+\sigma_{R-1}} \ldots & B_{1}^{+\sigma_{1}}
\end{array}\right]_{1}{ }^{1}\langle\bar{\sigma}|
\end{aligned}
$$

A three-leg tensor $B_{\beta}{ }^{\sigma \alpha}$ is called right-normalized if it is a right isometry, ie. if it satisfies

$$
\begin{equation*}
B B^{\dagger}=\mathbb{1} \cdot \quad \text { Explicitly: } \quad\left(B B^{\dagger}\right)_{\beta}^{\beta^{\prime}}=B_{\beta}^{\sigma \alpha} B_{\alpha \sigma}^{\dagger} \beta^{\prime}=1_{\beta}^{\beta^{\prime}} \tag{17}
\end{equation*}
$$

Such a B^{\dagger} defines an 'isometry' from space labeled by its right indices to space labeled by its left indices.
Graphical notation for right-normalization:

More compact notation: draw 'right-facing diagonals' at vertices
B
B_{1}^{+}
$\beta \underset{\square}{\beta}$
$={ }^{\beta} \longrightarrow$

Again, right-angled triangles complete information on arrows, so arrows can be suppressed.
For 'right-normalized MPS', constructed purely from right isometries, closing zipper right-to-left is easy:

Moreover, the matrices for site \mathcal{L} to any site $\ell=1, \ldots, \mathcal{L}$ define an orthonormal state space:

Call this state space

$$
\begin{equation*}
W_{l}=\operatorname{span}\left\{\left|\Phi_{\lambda}\right\rangle_{l}\right\} \subseteq \mathbb{V}_{l} \otimes \mathbb{V}_{l+1} \otimes \ldots \otimes \mathbb{V}_{l} \tag{22}
\end{equation*}
$$

These state spaces are built up iteratively from right to left through right-isometric maps:

Each $\frac{B_{\ell}}{r}$ defines an isometric map to a new (possibly smaller) basis:

$$
\left.B_{l}: \mathbb{V}_{l} \oplus W_{l+1} \rightarrow W_{l}, \quad\left|\begin{array}{c}
\left|\sigma_{l}\right\rangle \tag{23}\\
\text { old basis }
\end{array}\right| \Phi_{\lambda^{\prime}}\right\rangle_{l+1} \mapsto \underset{\text { new basis }}{\left|\Phi_{\lambda}\right\rangle_{l}}=\left|\sigma_{l}\right\rangle\left|\Phi_{\lambda^{\prime}}\right\rangle_{l+1}\left[B_{l}\right\}_{\lambda} \sigma_{l} \lambda^{\prime}
$$

$W_{l}=\mathbb{V}_{l} \otimes \mathbb{V}_{l+1} \otimes \ldots \otimes \mathbb{V}_{\mathcal{L}} \quad$ only if all B's are not only isometries but unitaries.

Summary: MPS built purely from left-normalized A 's or purely from right-normalized B 's are automatically normalized to 1 . Shorter MPSs built on subchains automatically define orthonormal state spaces.

Any matrix product can be expressed in infinitely many different ways without changing the product:

$$
M M^{\prime}=\underbrace{(M u)}_{\tilde{M}} \underbrace{\left.u^{-1} M^{\prime}\right)}_{\tilde{M}^{\prime}}=\tilde{M} \tilde{M}^{\prime} \quad \text { 'gauge freedom' }
$$

Gauge freedom can be exploited to 'reshape' MPSs into particularly convenient, 'canonical' forms:

(i) Left-canonical (Ic-) MPS:

[all tensors are left-normalized, denoted A]

$$
\begin{equation*}
\left|\Psi_{\alpha}\right\rangle_{l}=\left|\sigma_{1}\right\rangle \ldots\left|\sigma_{l}\right\rangle\left[A_{1}^{\sigma_{1}} \ldots A_{l}^{\sigma_{l}}\right]_{\alpha}^{\prime} \quad A^{+} A=\mathbb{1}=[\tag{3}
\end{equation*}
$$

These states form an orthonormal set:
In general, $\mathbb{V}_{l} \subset \mathbb{4}^{l}$
(ii) Right-canonical (rc-) MPS:
[all tensors are right-normalized, denoted B]

$$
\begin{equation*}
\left\langle\Psi^{\alpha^{\prime}} \mid \bar{\Psi}_{\alpha}\right\rangle_{l} \stackrel{(\text { MPS-I.2.6) }}{=} \mathbb{1}^{\alpha^{\prime}} \alpha \tag{4}
\end{equation*}
$$

$\left.\left.\left|\Phi_{\beta_{l}}\right\rangle_{l}=\left|\sigma_{R}\right\rangle_{2}, \sigma_{R}\right\rangle\left[B_{l}^{\sigma_{l}} \ldots B_{\mathcal{L}}^{\sigma_{l}}\right]_{\beta}^{\prime} \quad B B^{\dagger}=1 \quad \square\right]$
These states form an orthonormal set: $\quad\left\langle\Phi^{\beta^{\prime}} \mid \Phi_{\beta}\right\rangle_{l}^{(\text {MPS-I.2.18 }}=\mathbb{1}^{\beta^{\prime}} \beta$

$$
\begin{align*}
& \left|\Psi_{\alpha}\right\rangle_{\ell-1} \\
& \left|\Phi_{\beta}\right\rangle_{\ell+1} \\
& |\psi\rangle=|\vec{\sigma}\rangle_{\mathcal{L}}\left[A_{1} \ldots A_{l}\right]^{\mid \sigma_{1} \cdots \sigma_{l}}{ }_{\alpha}^{S^{\alpha \beta}\left[\begin{array}{lll}
\sigma_{l+1} & B_{l+1} \ldots B_{\alpha} \sigma_{k}
\end{array}\right]_{\beta}{ }^{\prime}=\sum_{\alpha \beta}\left|\psi_{\alpha}\right\rangle_{l-1}\left|\Phi_{\beta}\right\rangle_{l+1}} S^{\alpha \beta} \tag{12}
\end{align*}
$$

The states $|\alpha, \beta\rangle:=\left|\Psi_{\alpha}\right\rangle_{\ell}\left|\Phi_{\beta}\right\rangle_{\ell+1}$ form an orthonormal set: $\left\langle\alpha^{\prime}, \beta^{\prime} \mid \alpha, \beta\right\rangle=\mathbb{1}_{\alpha}^{\alpha^{\prime}} \mathbb{1}_{\beta}^{\beta^{\prime}}$

How can we bring an arbitrary MPS into one of these forms?

Transforming to left-normalized form

Given:

$$
|\psi\rangle=1 \vec{\sigma}\rangle_{\mathcal{L}}\left[\begin{array}{lll}
M_{1} & \ldots & M_{\mathcal{L}} \tag{5}
\end{array}\right]^{1 \vec{\sigma}}
$$

[or with index: $\quad\left|\Psi_{\alpha}\right\rangle=$

Goal : left-normalize M_{1} to $M_{\ell-1}$

Strategy: take a pair of adjacent tensors, $M M^{\prime}$, and use SVD to yield left isometry on the left:

$$
\begin{equation*}
M M^{\prime}=U S V^{\dagger} M^{\prime}=: A \tilde{M}^{\prime}, \quad \text { with } \quad A:=U, \tilde{M}^{\prime}:=S U^{\dagger} M^{\prime} \tag{y}
\end{equation*}
$$

$$
\begin{equation*}
M_{\beta}^{\alpha \sigma} M_{\alpha^{\prime} \beta \sigma^{\prime}}=\left(U_{\lambda}^{\alpha \sigma}\right)\left(S_{\lambda^{\prime}}^{\lambda} V^{\dagger}{ }_{\beta}^{\prime} M_{\alpha^{\prime} \beta \sigma^{\prime}}^{)}=A_{\lambda}^{\alpha \sigma} \hat{M}_{\alpha^{\prime}}^{\lambda \sigma^{\prime}}\right. \tag{9}
\end{equation*}
$$

The property $\quad u^{\dagger} u=\mathbb{1}$ ensures left-normalization: $\quad A^{+} A=\mathbb{1}$

Truncation, if desired, can be performed by discarding some of the smallest singular values, using $U S V^{\dagger} \approx u s v^{\dagger}$

$$
\sum_{\lambda=1}^{T} \rightarrow \sum_{\lambda=1}^{r^{\prime}} \quad \text { (but (10) remains valid!) }
$$

$$
\sum_{\lambda=1} \longrightarrow \sum_{\lambda=1} \quad \text { (but (10) remains valid!) }
$$

Note: instead of SVD, we could also me QR (cheaper!)

By iterating, starting from $M_{1} M_{2}$, we left-normalize M_{1} to $M_{\ell-1}$,

To left-normalize the entire MPS, choose $\ell=\mathscr{L}$.
As last step, left-normalize last site using SVD on final \widetilde{M} :

Ic-form: $\quad|\psi\rangle=\mid \vec{\sigma})_{\mathscr{L}}\left[A_{1}^{\sigma_{1}} \ldots A_{\mathcal{L}}^{\sigma_{d}}\right]_{s_{1}}$ single number

The final singular value, s, determines normalization: $\langle\psi \mid \psi\rangle=\left|s_{1}\right|^{2}$.

Transforming to right-normalized form
Given: $\quad|\psi\rangle=|\vec{\sigma}\rangle_{g}\left(M_{1}^{\sigma_{1}} \ldots M_{d}^{\sigma_{d}}\right\rangle$

[or with index: $\quad\left|S_{1}\right\rangle=S_{1} \uparrow T \leqslant$]

Goal : right-normalize $M_{\mathcal{L}}$ to $M_{\ell+1}$

Strategy: take a pair of adjacent tensors, $M M^{\prime}$, and use SVD to yield right isometry on the right:

$$
\begin{equation*}
M_{\alpha}^{\sigma \beta} M_{\beta}^{\prime} \sigma^{\prime} \alpha^{\prime}=\left(M_{\alpha}{ }^{\sigma \beta} U_{\beta}^{\lambda} S_{\lambda}^{\lambda^{\prime}}\right)\left(V_{\lambda^{\prime}}^{\dagger} \sigma^{\prime} \alpha^{\prime}\right)=\tilde{M}_{\alpha}^{\sigma \lambda^{\prime}} B_{\lambda^{\prime}}^{\sigma^{\prime} \alpha^{\prime}} \tag{15}
\end{equation*}
$$

Here, $V^{\dagger} V=\mathbb{1}$ ensures right-normalization: $\quad B B^{\dagger}=\mathbb{1}$.

Starting form $M_{\mathcal{L}-1} M_{\mathcal{L}}$, move leftward up to $M_{\ell} M_{l+1}$.
To right-normalize entire chain, choose / and at last site, $\quad l=1$

$$
\begin{equation*}
\tilde{M}_{1}^{\sigma_{1} \lambda}=\underbrace{U_{1}^{\prime}}_{=1} \underbrace{S_{1}^{\prime}}_{S_{1}^{\prime}} \underbrace{V_{1}^{+} \sigma_{1} \lambda}_{B_{1}, \lambda} . \quad \text { s, determines normalization. } \tag{17}
\end{equation*}
$$

Summary: using SVD, products of two matrices can be converted into forms containing a left isometry on the left or right isometry on the right:

$$
\begin{equation*}
M M^{\prime}=A \tilde{M}^{\prime}=\tilde{M} B \tag{18}
\end{equation*}
$$

This can be used iteratively to convert any of the four canonical forms into any other one.

Examples [self-study!]

(a) Right-normalize a state with right-pointing arrows!

Hint: start at

$$
m_{\mathcal{L}-1} m_{\mathcal{L}}
$$ and note the up \longleftrightarrow down changes in index placement.

$$
\begin{equation*}
M^{\alpha \sigma} M^{\beta \sigma^{\prime}}=\left(M^{\alpha \sigma}{ }_{\beta} U_{\lambda}^{\beta} S^{\lambda \lambda^{\prime}}\right)\left(V_{\lambda^{\prime}}^{\dagger}\right)=\tilde{M}^{\alpha \sigma \lambda} B_{\lambda}^{\sigma^{\prime}} \tag{1qb}
\end{equation*}
$$

(b) Left-normalize a state with left-pointing arrows!

Hint: start at $M_{1} M_{2}$:

$$
M_{1}^{\sigma_{1} \alpha} M_{\alpha}^{\sigma_{2} \beta}=\left(U^{1 \sigma_{1}}\right)\left(S^{\lambda} \lambda^{\left.\frac{\sqrt{\prime}}{\text { both indices upstairs! }} V_{\lambda^{\prime}}^{+} \alpha M_{\alpha}^{\sigma_{2} \beta}\right)=A_{1}^{\sigma_{1} \lambda} \tilde{M}_{\lambda}^{\sigma_{2} \beta} \sigma^{\sigma_{1}} \sigma^{\prime}}\right.
$$

(c) Transforming to site-canonical form

Left-normalize sites | to $\ell-1$, starting from site 1 .
Then right-normalize sites \mathcal{L} to $\ell+1$, starting from site \mathcal{L}.
Result:

$$
\begin{align*}
|\psi\rangle & =\underbrace{\left|\sigma_{1}\right\rangle \ldots\left|\sigma_{l-1}\right\rangle\left[A_{1}^{6} \ldots A_{l-1}^{\sigma_{l \uparrow}}\right]_{\alpha}^{\prime}}_{\left|\psi_{\alpha}\right\rangle_{l-1}}\left|\sigma_{l}\right\rangle \underbrace{\left|\sigma_{l+1}\right\rangle \ldots\left|\sigma_{l}\right\rangle\left[B_{l+1}^{6} \ldots B_{\mathcal{L}}\right]_{\beta}^{\sigma_{l}}}_{\left|\Phi_{\beta}\right\rangle_{l+1}} 1 \tag{23}
\end{align*} \bar{M}^{\alpha} \sigma_{l} \beta
$$

The states $\quad\left|\alpha, \sigma_{l, \beta}\right\rangle:=\left|\Psi_{\alpha}\right\rangle_{l-1}\left|\sigma_{l}\right\rangle\left|\Phi_{\beta}\right\rangle_{l+1} \quad$ form an orthonormal set:

$$
\begin{equation*}
\left\langle\alpha^{\prime}, \sigma_{l}^{\prime}, \beta^{\prime}\left(\alpha, \sigma_{l}, \beta\right\rangle=\delta_{a}^{\alpha^{\prime}} \delta_{\sigma_{l}}^{\sigma_{l}^{\prime}} \delta_{\beta}^{\beta^{\prime}}\right. \tag{25}
\end{equation*}
$$

(Exercise: verify this, using $A^{\dagger} A=\mathbb{1}$ and $B B^{\dagger}=\mathbb{1}$.)
This is 'local site basis' for site $\quad \ell$. Its dimension $D_{\alpha} \cdot d \cdot D_{\beta}$ is usually $\lll d^{\mathcal{Z}}$ of full Hilbert space.
(d) Transforming to bond-canonical form

Start from (e.g.) sc-form, use SVD for $\bar{M}=U S V^{\dagger}$, combine (1) V^{\dagger} with neighboring B, or (2) U with neighboring A.

The states $\quad\left|\lambda, \lambda^{\prime}\right\rangle:=\left|\Psi_{\lambda}\right\rangle_{\ell}{ }^{\prime}\left|\Phi_{\lambda}\right\rangle_{\ell+1} \quad$ form an orthonormal set.

$$
\begin{equation*}
\left\langle\bar{\lambda}, \bar{\lambda}^{\prime} \mid \lambda, \lambda^{\prime}\right\rangle=\delta_{\lambda}^{\bar{\lambda}} \delta_{\lambda^{\prime}}^{\bar{\lambda}^{\prime}} \tag{28}
\end{equation*}
$$

This is called the 'local bond basis for bond $\quad \ell$ ' (from site ℓ to $\ell+1$). It has dimension re ($\tau=$ dimension of singular matrix S).

$$
\bar{M}=u s V^{\dagger} \quad \tilde{A}=A U, \quad B=V^{\dagger} \quad \text { (Exercise: add indices!) (30) }
$$

$\left.\mid \lambda, \lambda^{\prime}\right):=\left|\Psi_{\lambda}\right\rangle_{\ell-1}\left|\Phi_{\lambda_{l}}\right\rangle_{l} \quad$ form 'local bond basis' for bond $l-1 \quad$ (from site l_{-1} to l).

defines an orthonormal basis for a state space $\mathbb{V}_{l}=\operatorname{span}\left\{\left|\Psi_{\lambda}\right\rangle_{l}\right\} \subseteq \mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \ldots \otimes \mathbb{V}_{l}=: \mathbb{V}^{\otimes l}$ (2)
since

$$
\begin{equation*}
\left.\left.\left\langle\Psi^{\lambda} \mid \Psi_{\lambda}\right\rangle_{l}=\sum_{x}^{x} \mid\right\}\right]_{\lambda^{\prime}}^{\lambda} \stackrel{\substack{\text { close } \\ \text { zipper } \\=}}{=}\left\{_{\lambda^{\prime}}^{\lambda}=\mathbb{1}_{\lambda}^{\lambda^{\prime}}\right. \tag{3}
\end{equation*}
$$

Projector onto $V_{l}: \hat{P}_{l}=\left|\Psi^{\lambda}\right\rangle_{l \ell}\left\langle\Psi_{\lambda}\right|=$ (sum over λ implied)

Indeed:

Operators defined on $\quad V_{\ell}$ can be mapped to V_{l} using these projectors:

$$
\begin{equation*}
\hat{O}=\frac{+\uparrow+1+1}{\vdots \lambda \lambda t h} \stackrel{\hat{P}_{l}}{\longleftrightarrow} \quad \hat{O}_{l}=: \hat{P}_{l} \hat{O}_{l} \hat{P}_{l} \quad\left|\Psi_{\lambda^{\prime}}\right\rangle_{l}\left[O_{l}\right]_{\lambda l}^{\lambda^{\prime}}\left\langle\Psi^{\lambda}\right| \tag{7}
\end{equation*}
$$

(8)

Simplest case: 1 -site operator acting only on site ℓ :

$$
\begin{align*}
& {\left[O_{l}\right]_{\lambda}^{\lambda^{\prime}}=\prod_{\lambda^{\prime}}^{k \lambda} O_{l}=} \tag{4}\\
& =\{ \\
& \stackrel{\substack{\text { close } \\
\text { zipper } \\
=}}{=} \begin{array}{l}
A_{l} \lambda^{\prime} \\
\frac{A_{l}}{A_{l}^{+}} \lambda^{\prime}
\end{array}
\end{align*}
$$

During iterative diagonalization, the space \mathbb{V}_{l} is constructed through a sequence of isometric maps: (nnccihly inıonlvinn trıınratinn)

Each $\frac{A}{y}$ defines an isometric map to a new (possibly smaller) basis:

Each such map also induces a transformation of operators defined on its domain of definition.
It is useful to have a graphical depiction for how operators transform under such maps.
Consider an operator defined on $V^{(r)(l-1)}$, represented on V_{l-1} by $\hat{O}_{l-1}=\hat{P}_{l-1} \hat{O}_{l-1}$

Explicitly: $\quad \hat{O}_{l}=\left|\bar{\Psi}_{\lambda}\right\rangle_{l}\left[O_{l}\right]_{\lambda} \lambda\left\langle\Psi^{\lambda^{\prime}}\right|, \quad\left[O_{l}\right]_{\lambda}^{\lambda^{\prime}}=A^{\dagger \lambda^{\prime}} \sigma_{l} \bar{\lambda}^{\prime} \quad\left[O_{l-1}\right]^{j^{\prime}} \bar{\lambda} \quad A^{\bar{\lambda} \sigma_{l}} \lambda$

Just replace \uparrow by \square_{1}^{\hbar} in (9):

$$
\begin{equation*}
\left.=A^{\dagger \lambda^{\prime}}{ }_{l}^{\prime}{ }^{\prime}{ }^{\prime}\left(O_{l-1}\right) \lambda\left[O_{l}\right]^{\sigma_{l}^{\prime}}{ }_{\sigma_{l}} A^{\bar{\lambda} \sigma_{l}} \lambda=\mid O_{l-1}\right]^{\lambda^{\prime}} \bar{\lambda}\left[\hat{O}_{l}\right] \bar{\lambda}^{\prime^{\prime}} \lambda \tag{17}
\end{equation*}
$$

Thus, the isometry A_{l} maps the local operator into an effective basis associated with \mathbb{V}_{l-1}, and \mathbb{V}_{l}

