
MPS.3

Graphical notation for left-normalization:  

Then, closing the zipper left-to-right is easy, since all reduce to identity matrices:

Hence:

identity matrix

Left-normalization

A 3-leg tensor                  is called 'left-normalized' if it is a left isometry, i.e. if it satisfies

Computation of normalization and matrix elements of local operators is simpler if the MPS is built from 

tensors with special normalization properties, called 'left-normalized' or 'right-normalized' tensors. 

Explicitly:

Such an      defines an 'isometry' from space labeled by its left indices to space labeled by its right indices.

distance-preserving map (in index-free notation: if                , then                                        )                   

Consider a 'left-normalized MPS', i.e. one constructed purely from left isometries:

The right-angled triangle contains complete information about all arrows attached to it: 

for        , incoming arrows to sharp angles, outgoing arrow from right angle,

for        , outgoing arrows from sharp angles, incoming to from right angle:

Hence, there is no need to draw arrows explicitly when using                       !

We suppress arrows for  C, too, since they can be reconstructed from arrows of constitutent As.

More compact notation: draw 'left-facing diagonals' at vertices

MPS.3 Left- and right-normalized MPS
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Hence:

Moreover, the matrices for site 1 to any site                define an orthonormal state space: 

close the zipper

Even if truncation is involved, the resulting MPS are useful, precisely because they are parametrized by a 

limited number of parameters (namely elements of      tensors). E.g., they can be optimized variationally by 

minimizing energy      DMRG). 

no truncation!
truncation 
possible

We suppress arrows for  C, too, since they can be reconstructed from arrows of constitutent As.

These state spaces are built up iteratively from left to right through left-isometric maps: 

Each            defines an isometric map

to a new (possibly smaller) basis:

Call this state space

where is local state space of site 

If is a unitary, then 

truncation was involved!

no truncation

If is a (non-unitary) isometry, then 

Hence only if all A's are not only isometries but unitaries.

old basis new basis
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left-to-right index order as in diagram

Iterating this, we obtain kets and bras of the form

A three-leg tensor is called right-normalized if it is a right isometry, i.e. if it satisfies

Graphical notation for right-normalization: 

Explicitly:

Right-normalization

So far we have viewed an MPS as being built up from left to right, hence used right-pointing arrows 

on ket diagram. Sometimes it is useful to build it up from right to left, using left-pointing arrows.

Building blocks:

index-reading order

Such a       defines an 'isometry' from space labeled by its right indices to space labeled by its left indices.

More compact notation: draw 'right-facing diagonals' at vertices
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For 'right-normalized MPS', constructed purely from right isometries, closing zipper right-to-left is easy:

Moreover, the matrices for site     to any site                define an orthonormal state space: 

close the zipper

Summary: MPS built purely from left-normalized        's or purely from right-normalized        's  

are automatically normalized to 1. Shorter MPSs built on subchains automatically define orthonormal

state spaces.

Again, right-angled triangles complete information on arrows, so arrows can be suppressed. 

These state spaces are built up iteratively from right to left through right-isometric maps:

Each              defines an isometric map

to a new (possibly smaller) basis:

Call this state space

only if all B's are not only isometries but unitaries.

old basis new basis
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MPS.4

(i) Left-canonical (lc-) MPS:

[all tensors are left-normalized, denoted       ]

(ii) Right-canonical (rc-) MPS:

[all tensors are right-normalized, denoted      ]

(iii) Site-canonical (sc-) MPS:
[left-normalized to left of site     ,

right-normalized  to right of site     ]

(iv) Bond-canonical (bc-) (or mixed) MPS:
[left-normalized from sites 1 to      ,

right-normalized from sites         to     ]

Any matrix product can be expressed in infinitely many different ways without changing the product:

'gauge freedom'

Gauge freedom can be exploited to 'reshape' MPSs into particularly convenient, 'canonical' forms: 

These states form an orthonormal set: 

In general,                                          .

These states form an orthonormal set:

The states form an orthonormal set: 

(MPS-I.2.6)

true subset

(MPS-I.2.18)

can be viewed as the wavefunction of            in this basis.

MPS.4 Various canonical MPS forms
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Strategy: take a pair of adjacent tensors,                 , and use SVD to yield left isometry on the left:

The property ensures left-normalization:

Truncation, if desired, can be performed by  discarding some of 

the smallest singular values, using 

(but (10) remains valid!)

Given:

[or with index: 

can be chosen diagonal

Goal : left-normalize                          to

The states form an orthonormal set: 

How can we bring an arbitrary MPS into one of these forms?

Transforming to left-normalized form

with
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cross indicates  
single number

Strategy: take a pair of adjacent tensors,            , and use SVD  to yield right isometry on the right:

(but (10) remains valid!)

Note: instead of SVD, we could also me QR (cheaper!)

By iterating, starting from                      , we left-normalize                   to

with

Goal : right-normalize                to

Transforming to right-normalized form

Given:

[or with index: 

lc-form:

The final singular value, determines normalization:

To left-normalize the entire MPS, choose

As last step, left-normalize last site using SVD on final         :
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Here,                                     ensures right-normalization:

Starting form

both indices upstairs!

both indices upstairs!

Examples  [self-study!]

(a) Right-normalize a state with right-pointing arrows!

Hint: start at

and note the up       down changes  in index placement.

Summary:  using SVD, products of two matrices can be converted into forms containing a left 

isometry on the left or right isometry on the right:                            

This can be used iteratively to convert any of the four canonical forms into any other one. 

,  move leftward up to

To right-normalize entire chain, choose / and at last site,

determines normalization.

(b) Left-normalize a state with left-pointing arrows!

Hint: start at
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(c) Transforming to site-canonical form

form an orthonormal set:The states

This is 'local site basis' for site        . Its dimension                   , is usually                 of full Hilbert space.

(d) Transforming to bond-canonical form

Start from (e.g.) sc-form, use SVD for                          , combine                   with neighboring         , 

or                 with neighboring           .

(Exercise: add indices!)

both indices upstairs!

(Exercise: verify this, using                             and                        .)

Left-normalize sites          to          , starting from site        .

Then right-normalize sites         to             , starting from site       .

Result:

involves 

sites    to 

involves 

sites        to 
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The states                                                                     form an orthonormal set.

This is called the 'local bond basis for bond        '  (from site       to        ). It has dimension 

(      = dimension of singular matrix         ).

form 'local bond basis'  for bond               (from site         to       ).

(Exercise: add indices!)

involves involves 

sites    to sites     to 
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MPS.5

Recall: a set of MPS 

specified by given left-normalized tensors

defines an orthonormal basis for a state space 

Projector onto       : 

(sum over    implied)

Indeed: 

since 

Operators defined on can be mapped to using these projectors:

During iterative diagonalization, the space         is constructed through a sequence of isometric maps:

(possibly involving truncation)

Simplest case: 1-site operator acting only on site    : 

close 
zipper

close 
zipper

MPS.5 Basis change, projectors
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Each            defines an isometric map

to a new (possibly smaller) basis:

old basis new basis

Each such map also induces a transformation of operators defined on its domain of definition. 

It is useful to have a graphical depiction for how operators transform under such maps.

(possibly involving truncation)

Consider an operator defined on                     , represented on           by 

What is its representation on           ?

Explicitly: 

Similarly, for operator with non-trivial action also on site    : 

Just replace        by              in (9):

Thus, the  isometry          maps the local operator into an effective basis associated with           and 

sum on         implied

   Page 12    


