MPS.3 Left- and right-normalized MPS

Computation of normalization and matrix elements of local operators is simpler if the MPS is built from
tensors with special normalization properties, called 'left-normalized' or 'right-normalized' tensors.

Left-normalization

A 3-leg tensor 4 M./s is called 'left-normalized' if it is a left isometry, i.e. if it satisfies

g{'g -1 ~ Explicitly: (F]*/q)pﬁ: A ﬁlcd\ ﬂ“sﬁ = ﬂ.ﬁ;s (I)

Such an A defines an 'Egmetry' from space labeled by its left indices to space labeled by its right indices.
distance-preserving map (in index-free notation: if y = Ax , then lfj = #AAx = xty)

Graphical notation for left-normalization: |
. ; 1 at f :
—‘:1 ) > oL 6 = 24G
% / o F ’ H+ ( )
6 (
¢ ¢
More compact notation: draw 'left-facing diagonals' at vertices
« A A: . k F (2b)
.y (- [
- o —4—1—@ P' f‘ ]‘e
at identity matrix

The right-angled triangle contains complete information about all arrows attached to it:
for ﬂ , incoming arrows to sharp angles, outgoing arrow from right angle,
for H'l' , outgoing arrows from sharp angles, incoming to from right angle:
. - . |
Hence, there is no need to draw arrows explicitly when using —— , _A_ !

Consider a 'left-normalized MPS', i.e. one constructed purely from left isometries:

12y = Y¥ v 7 739
‘ ) 4 @)
Pl = 4 A4 A 4

Then, closing the zipper left-to-right is easy, since all C L reduce to identity matrices:

' ' A
' | « “ o [ X A P A
COE =[ =1 C'ﬁ :Ca 6 = C E = C 2 =
\ ) / a X “l / [ A Q-1 ._;_\_,_ ]

o\
(4o

We suppress arrows for C, too, since they can be reconstructed from arrows of constitutent As.
Hence:

— K ——— ) —— Y - ~~
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We suppress arrows for C, too, since they can be reconstructed from arrows of constitutent As.
Hence:

<L | ) i: | ::-: G_xz [’z | @ (b

x x

Moreover, the matrices for site 1 to any site { =1 ..., N define an orthonormal state space:
H, ﬂ-,_ ﬂ" 6 ‘ G

* ‘W %!
Ty YT Y / ¥ = laYekde-ole) (A A A] 6 ©

(H ) ) 3 [ i, = [i 2(‘13}"\‘123)2 = 17, Q@

close the zipper

Call this state space

\ve = fpan ﬁﬂf—ﬂzl CV,oV,0-..©Vy ®

where \\/@ = £tam5 lo’ﬂji is local state space of site 4

These state spaces are built up iteratively from left to right through left-isometric maps:

/
Each —q-‘ defines an isometric map Ny 11'\ g{“\ A _)_g:.‘,_}
to a new (possibly smaller) basis: . { l-l) \—L l] Gy
T "4
: 26,
A oy — N, 216y = 18,), = 180 15)Af%,
old basis new basis
If A{ is a unitary, then A"""(\VI) = d;w(vh).,(,'m(\y!) =>  no truncation @)

D!_ = De_(' d

If A{ is a (non-unitary) isometry, then D, £ T),.,-d => truncation was involved!  (i¢)

Hence \VL = \V, ®V,.® - ..Q;)\/g only if all A's are not only isometries but unitaries.
-D e Ftruncation F
= d

possible no truncation!

Even if truncation is involved, the resulting MPS are useful, precisely because they are parametrized by a

limited number of parameters (namely elements of A tensors). E.g., they can be optimized variationally by
minimizing energy =>DMRG).
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Right-normalization

So far we have viewed an MPS as being built up from left to right, hence used right-pointing arrows

on ket diagram. Sometimes it is useful to build it up from right to left, using left-pointing arrows.

Building blocks: 8
Fa
_ 6‘1 X
(oD = [6'"t >[_BA°L o iqc’ @)
left-to-right |ndex orderassm diagram | ﬁ Bﬁli] B‘rmi order
6> = ladlen] o 8,1, ;‘W LS
62, S
(1§ « /6
ul =1(3y <A x A (13)
16 X —;—L—>—
e $+
Rt e
(8
4?' 45.{1@ {Ex..\w <by |<€ y f —>Tif>—i>;"x @)
Bﬁ-l Kf
Iterating this, we obtain kets and bras of the form
A 6 o
6 1 6, o Gl ! )
Y = 1) sy (R, o (B, )g %7 2 *ﬁ ‘—I—*
¥ 6 16[ ]6 . [:-\ys (B rx(ls,
= & (81 BZ, j} S - Ox
H oxrt 2 ( é b1 €y
<q|:[17>JM, [E c [B,“<6|,.(g (<6, |
! i "'l Lt e [l t ' z ! ‘x_»é__}_ .-
Yo top. fol o — AP
= [Bi‘sx,;. 3 ], &)
6 X
A three-leg tensor B {3 is called right-normalized if it is a right isometry, i.e. if it satisfies
\
f‘ . . 'i' ¢ 6 o¢ + ﬁl (sl
3 = 1 Explicitly: 2D ) = 3B = (13)
B : (287, NS
Such a 15+ defines an 'isometry' from space labeled by its right indices to space labeled by its left indices.
Graphical notation for right-normalization: &
L3 [5"1 3 r, F
F Ko‘ 6
= ('84)
r*@{ G
b 4

More compact notation: draw 'right-facing diagonals' at vertices

1 B B
,E, 8;5' f \ ._,Pﬁ (13‘))
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2 31' < +B

. _F (1)
DY P,Aﬂ ,5.;9“ F]
B

-‘-

Again, right-angled triangles complete information on arrows, so arrows can be suppressed.

For 'right-normalized MPS', constructed purely from right isometries, closing zipper right-to-left is easy:

o - TT7) - 10 -1 -0 w

—

Moreover, the matrices for site £ to any site { =1 ,f define an orthonormal state space:

I B /
A —{_T_J;_F—E_“ \&Az = '6z>®...@|&>[15;‘ B;‘:,'.. :B;“]A (eo)
)‘ 1 ' [

T \ L = ) (&M, - 17, © @
2l N AI

t{ close the zipper
Call this state space \\/\/ = Span {’ @ )>£1 cVYeVo..0V (z2)
¢ f T 17 n £

These state spaces are built up iteratively from right to left through right-isometric maps:

{
Each -—J;& defines an isometric map A ;B;}_r_r_r_r_x 1_%)!
to a new (possibly smaller) basis: 0 fn £ .y
.1/__/ h’
: , )
b oW, W DR, 180, - 1e)iE), [B)
old basis new basis
ML = \i ®\1) ® - "®\\;C only if all B's are not only isometries but unitaries. (za)
+1

Summary: MPS built purely from left-normalized A 'sor purely from right-normalized Brs

are automatically normalized to 1. Shorter MPSs built on subchains automatically define orthonormal

state spaces. @
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MPS.4 Various canonical MPS forms MPS.4

Any matrix product can be expressed in infinitely many different ways without changing the product:

- ~
MM =M M)[M MY = MA / 'gauge freedom’ )
Mmoo ae

Gauge freedom can be exploited to 'reshape' MPSs into particularly convenient, 'canonical' forms:

(i) Left-canonical (lc-) MPS: X A A A A "

[all tensors are left-normalized, denoted A ] : T j’ \, \‘ ? S
i

1T, 6 (A .. AR t T
°(£: ‘0',> I..> Hl C-l o ATA = .,.]L = [ (®

_ (MPS-1.2.6)

These states form an orthonormal set: t('yr“ll(g.)l = 17_" o )

Ingeneral, \/ < 'H'e

SN
true subset
P b 8 B & s
(i) Right-canonical (rc-) MPS: V17 Tt [ ()
[all tensors are right-normalized, denoted B ] L £

|§F% = le,. 35'{7( X qp E%+ = 1 _U = ] ()

(MPS -1.2.18)

These states form an orthonormal set: §[5 | & P>

1% ()

* G,
)
(iii) Site-canonical (sc-) MPS: A A M!l & 3 ) {Mi\

right-normalized to right of site § ] 6,

[left-normalized to left of site £ , o | l o i P l |)t - ' B X
%

_ £
l q‘nﬂ-( { i:;peu

90 16, (e s AT B G2\ < iz, 19 0

The states | ® v,‘s) i= |%)M|5},'7 @PM form an orthonormal set: £ &' o-",;'\o(,b‘,p = ]L“;.LGGIIF;

"\”‘F can be viewed as the wavefunction of H:D in this basis.

[
Aha S ssas 5™
(iv) Bond-canonical (bc-) (or mixed) MPS: "TTTD’;O*-T—FT—‘ = w—>o%¢ r>
[left-normalized from sites 1to £ , ‘ g
right-normalized from sites { 41 to N ] B S 524 ¢
|
1{«7 (&peu
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“.-ka? -t (aﬁzu

16, - Ges 2 o
=18, fa.a) ", S [Bun- L = = s TP W
can be chosen diagonal €

« |
The states (ot,‘S) = hfu)e |§‘s§w form an orthonormal set:  { &' F"‘*, pr = L« -ﬂ-FF (13)

How can we bring an arbitrary MPS into one of these forms?

Transforming to left-normalized form

. - & ¥ X ¢)
Given: () = |5'>;Q [M, MGA l i :}: I I i

[or with index: |(_T£“> = Prrpree ]

¥ X [
Goal : left-normalize M. to Mz_l 1 i I j I ()

|
Strategy: take a pair of adjacent tensors, MM , and use SVD to yield left isometry on the left:

MMI = usvff’f( =’A/'\4”’ with F}'-:M , V’ZI ::S\J+ﬂ’ ('ﬂ
A /j"-—’—’_\
LM "L svp, U S vtom y (T o
¢ — | = & o
IR R RERE PSS KR
- 6" ¢ '

M' ﬁg;*) = ndea ﬁ"“-‘t ()

oL

M'N(s P’\'M‘“‘ _ ((AW;\\(SA . vh‘c[s

The property (/(‘.L( = {  ensures left-normalization: A f‘ﬂ = 1 (o)
S)
Truncation, if desired, can be performed by discarding some of v L
the smallest singular values, using (/( S \/+ = US ot 10~2 |
T o okl
— but (10) remains valid! .
4=\ A=t l e




Z — /. (but (10) remains valid!) _
A -\ q i 10—6 K\_/ MSM
. 10-8 | &
Note: instead of SVD, we could also me QR (cheaper!) =
T i
By iterating, starting from M, /47_ , we left-normalize Ml to Me—: ,
O A A M ¥ x
TTTTT YV
y4
To left-normalize the entire MPS, choose L=2.
s
As last step, left-normalize last site using SVD on final il
~ t 961
S
A,)J 1‘; 1 fi M _ mw s v . = ‘
M = u IS:\/r ')‘;ll ‘1):{):0((]. 30 D¢ )

cross indicates
o, 6&1( single number
s

lc-form: (’Lé> = (&&[ﬂ\ ﬂde

T
The final singular value, s, determines normalization: <L(,(ZD= lS.‘ . 03

Transforming to right-normalized form

. - &\ (74 X x
Given: (4D = '6_2((“) . Mp) ;T I 'I ’I ;]‘
[or with index: [S,) =Sn<‘r<'1—4'1-<'r‘* ]

Goal : right-normalize Mi to My, * 1 ; j ] ;F -

{
Strategy: take a pair of adjacent tensors, /1 /1 , and use SVD to yield right isometry on the right:

.'L

M = MUSU = MB  with M= MUs g=v' .
+

o A “e o YD« 1 43 o o=w H Bu‘()
DR F e a ,\ii, RNV

& 6" 3 ¢ '

Page 7



T oyl olxt 6 g A 3\ el VIR G
Here, \/f\( = 1 ensures right-normalization: E BT = 1 ) (16)
Starting form ] .. Ma: , move leftward up to M 2 My,

To right-normalize entire chain, choose / and at last site, [ =

4% | +
Mlo-")‘ = Ml 5" \/ \6")‘ . S¢ determines normalization. ()
s v — ——
«

Summary: using SVD, products of two matrices can be converted into forms containing a left
isometry on the left or right isometry on the right:

MU =am - fg (s

This can be used iteratively to convert any of the four canonical forms into any other one.

Examples [self-study!]

(a) Right-normalize a state with right-pointing arrows! * _Xa T\' ? x 2 f *

Hint: start at o L

int: start a My Maﬂ

and note the up = down changes in index placement.

1 ~
u-a-M M svp,, M U S s M B P
x = —*H—Dﬁ'%(h_ =

L e 7 boe oA A I 2|
o 6' 3 s o

[ both indices upstairs!

Mour(S M(Aotl i (Mptfrs M{SASM}(\/R’GI) ) rqow;\ E;l (WS)

(b) Left-normalize a state with left-pointing arrows! x—?-(—f-e)v‘:\-(—?— x

Hint: start at M’ Mz '

M M VL A

erTe T A A

6« (of

)
>
|
R
-~
>
0
>
/1
=
=
o

both indices upstairs!
r — \/ aar 1 ~ a2\ ~1 A - -
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A e ' ) )
G¢ 6L G ¢ 6, G\ 62

\[\ both indices upstairs!

R U e e R

(c) Transforming to site-canonical form

> —

M m A1 Ay 4 & M M M AA M B R Mo
X = = = X=

TTTT P TR 21
“-'_\’_) ———)

G, o,
“'\’uh_‘ ¢ @folu .

Left-normalize sites | to Z-1 , starting fromsite 1 . (@2)

Then right-normalize sites £ to Lt , starting from site ,( .

Result:

61 cl’t 1
142 = le).. 16 [ﬂ,...ﬁe_,] x \6‘2 \ x>[3¢+..—5‘ | "016‘
-

%2y T (29
= WO OB, M*%F ()

The states Vo ., [57 = \\y“)“\ Q7\§p>m form an orthonormal set:
Lo b ke SMLSQ;QF‘(S 20

(Exercise: verify this, using A FA =1 and B 6+= T 9

o
This is 'local site basis' for site £ . Its dimension Da' d- D{g is usually <£<< A of full Hilbert space.

(d) Transforming to bond-canonical form

= T +
Start from (e.g.) sc-form, use SVD for M = U S \/ , combine (© V with neighboring &
or(D 1A with neighboring A

AA#A B & O AAASET R

1
KTW)‘ = KWW X = ‘w'l@ﬁs ng,\

involves involves
sites | to E sites e«H to &

I'Z = ASY A=U 23R = V+B (Exercise: add indices!)  (¢#



The states l ’)‘/ ')\‘ 3 = “P ;\>£' l@xz“ form an orthonormal set.

— - t
! "N = 1 A 29)
LA ATaa = 54§y ¢
This is called the 'local bond basis for bond £ ' (from site L to [+ ). It has dimension .4

( 7+ = dimension of singular matrix 5 ).

X x = ‘@;\X-{@l}z 5)1 @a)
1 I FeXl —

o * (; ;\ A’ ‘5 . [ )
. involves involves
L sites [ to 2-: sites € to £
V = S 1 ﬁ - AU , B = \)1. (Exercise: add indices!) (30)

[ 9(, ')\‘ 3 = \‘I{ 3\>£-: l@;z form 'local bond basis' for bond £ -1 (from site /(4 tod ).
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MPS.5 Basis change, projectors

MPS.5

v 8 a
Recall: a set of MPS lﬂf_i>a =679...0l6> Ep‘\‘l "-ACT; = N T YT G}
- S, o,

specified by given left-normalized tensors L

defines an orthonormal basis for a state space \VC = srm\ “?))A C Vv, oV,0. ..(_y;\\./g J \V®€ (

close

] zipper ;\ '
= by (O, 5 f-6

a
R 6, (7]
Projector onto Vg . | o= hPAZL l(‘@ﬂ‘ = ’%#:#3 @
(sum overﬂ implied) 6 62'
Indeed:
N A / _ -
7R \‘PAZ_S‘PQ’\'\@A)@SWQ\ = f - )

11’2

Operators defined on ngoe can be mapped to V¢_

using these projectors:

’ A - S s
0= o > O=Ro% = 1g 00, L) @

\ [} \ L u)
Simplest case: 1-site operator acting only on site {:
. 3\ b close ﬂ" ﬂ,
A A Zipper  _ 6,
6, = HH? o), = 0o = ng S B
{ o)\’

Q\I

| ) [{" ¥

During iterative diagonalization, the space Vl is constructed through a sequence of isometric maps:

fnAccihhs inviAhrinAa friinAatian)
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(possibly involving truncation)

l
Each —Q— defines an isometric map N T Y A f}"’ A 1 A& A
to a new (possibly smaller) basis: A 6, fg;" ‘__2 5/ G
: . 4 )
ﬁx-\/x-,Q v — Vt , Iq/ﬂm"‘» HP))/Z = lq’a’%ql"} ? [HA %) (o)
old basis new basis

Each such map also induces a transformation of operators defined on its domain of definition.
It is useful to have a graphical depiction for how operators transform under such maps.

1) A AT
Consider an operator defined on \V , represented on V_, by O@ . < 0. @) 'Pl_( (u)
. . _ A
What is its representation on WL . r:_—:f;‘J ,‘ (1)
\ 0y L
o y _ Az 1
b - oy - SO
L - r‘t - [0 v = 0= 6‘ 3
| by AN
A’ A+ s
N .
sum on ﬂ,’;\l implied . 0 _

— ! A l‘. -~ 1 A6,
Bpicty: O = 1§y, KOQ\')‘A. éﬂ{*\ ’ [Oc\ ) = A of (0] 3 A 4 W

A A
Similarly, for operator with non-trivial action also on site : Ot = ., ® 62 = #é\ (15)
-1
] J A
Just replace'{ by [;I]
A A ’ Gl e
[OA y = r%o@ = =: Q;EE o, &, = %% (1e)
A T < 4 Hé
ﬂ 7 @ ) l() \ _ 3 (1)
[_OQ ] 1 [OA 6 - lOA 'x' % k

Thus, the isometry 41 maps the local operator into an effective basis associated with \V_, and \Vl
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