Matrix product states (MPS)

MPS.1 Reshaping generic tensor into MPS form

A generic tensor of arbitrary rank can be expressed as an MPS through repeated matrix factorizations,
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If a maximal bond dimension of .'D,,, 2 D s desired, this can be achieved using SVD instead of QR
decompositions, and truncating by retaining only largest D singular values at each step:
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truncated representation
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MPS.2 Overlaps, matrix elements

Overlaps < {I; |7{/>

We first consider general quantum states, then matrix product states (MPSs):
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Recipe for overlaps: contract all physical legs of bra and ket.
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Recipe for matrix elements: contract all physical legs of bra and ket with operator.

Now consider matrix product states:

Ket: dummy index
\;/ dummy;{site dummy site >
= 1M\ % e s G W My M, s Me

143 = D[] Tl Oy (M e, TP TIAD e s oul
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Recipe for ket formula: as chain grows, attach new matrices ™M g on the right “—"T’Ts
(in same order as vertices in diagram), resulting in a matrix product of ™ 2 matrices . \y

index-reading order
The subscript £ on Mg indicates that the tensors differ from site to site. The tensor M! has

elements [MQY&F , indicated using square brackets.

Add dummy sites at left and right, so that first and last M's have two virtual indices, just like other M's .
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index-reading order

Bra:
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We expressed all matrices via their Hermitian conjugates by transposing indices and inverting arrows.

To recover a matrix product structure, we ordered the Hermitian conjugate matrices to appear in the

opposite order as the vertices in the diagram.

Recipe for bra formula: as chain grows, attach new matrices Mc on the left,

(in opposite order as vertices in diagram), resulting in a matrix product of M & Matrices.

Recipe: contract all

Overlap: < lyy =
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Recipe: contract all physical indices with each other, and all virtual indices of neighboring tensors.
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Exercise: derive this result algebraically from (7a), (8a)!

If we would perform the matrix multiplication first, for fixed T , and then sum over = ,

we would get 0(3( terms, each of which is a product of 2£ matrices. Exponentially costly! @
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But calculation becomes tractable if we rearrange summations, to keep number of 'open legs'

as small as possible (here = 2):
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Diagrammatic depiction: 'closing zipper' from left to right.
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The set of two-leg tensors C 1 can be computed iteratively:
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sum over Gy
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Final answer: Fly > = [C-A. [}

Cost estimate (if all A's are Dy D):
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Total cost: ~ D 1’,( L )

Remark: a similar iteration scheme can be used to 'close zipper from right to left':

= ... 3 D‘ (19)
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Initialization: 3 Di = } , Iteration step: 3 ‘Dx - % Du .
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(identity) yields Dz

(29
Normalization (| Y ) = ¢ Use above scheme, with M = M
'Closing the zipper' is also useful for computing expectation values of local operators,
i.e. operators acting non-trivially only on a few sites (e.g. only one, or two nearest neighbors).
One-site operator (acts non-trivially only on one site, { )
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Matrix element between two MPS:

(3)

Close zipper from left using CI. [see (15)] and from right using Dt ” [see (20)].
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Two-site operator (acts nontrivally only on two sites, { and €+ ) [e.g. for spin chain: S!l' S g0 ]
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Matrix elements:
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