MPS. 1 Reshaping generic tensor into MPS form

A generic tensor of arbitrary rank can be expressed as an MPS through repeated matrix factorizations, using $Q R$ decomposition, $M \stackrel{\text { TNB-III. } 2}{=} R_{R}$, or singular value decomposition (SVD): $M^{\text {TNB--III. } 2}=U \mathrm{~S}^{+}$

$$
M_{b}^{a}=Q^{a} c R_{b}^{c} \quad M_{b}^{a}=u_{c}^{a} S_{d}^{c} V_{d}^{\dagger_{d}}
$$

$$
\begin{align*}
& \text { reshape } \\
& C^{\sigma_{1} \ldots \sigma_{d}} \stackrel{(=\text { regroup indices) }}{\sim} \tilde{C}^{\sigma_{1}, \sigma_{2} \ldots \sigma_{d}}=Q_{1}^{\sigma_{1}} \propto R_{1}^{\alpha, \sigma_{2} \ldots \sigma_{2}}=Q_{1}^{\text {reshape }} \times \tilde{R}_{1}^{\alpha \sigma_{2}, \sigma_{3} \ldots \sigma_{2}} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& =Q_{1}^{\sigma_{1}} \alpha_{2}^{\alpha \sigma_{2}} \beta Q_{3}^{\beta \sigma_{3}} \gamma \cdots R_{\alpha-1}^{\mu \sigma_{y}} \\
& \text { Visualization: }
\end{aligned}
$$

etc.

If a maximal bond dimension of $D_{\alpha}<D$ is desired, this can be achieved using SVD instead of QR decompositions, and truncating by retaining only largest D singular values at each step:

truncated representation

Overlaps

We first consider general quantum states, then matrix product states (MPSs):

General vet: $|\psi\rangle=\left|\sigma_{1}\right\rangle\left|\sigma_{2}\right\rangle \ldots|\sigma\rangle C^{\sigma_{1}, \ldots, \sigma_{\alpha}}=:|\vec{\sigma}\rangle C^{\vec{\sigma}}$ (ϵ HA $^{\text {L }}$)

> summation over repeated indices implied

General bra: $\langle\psi|=\underbrace{\overline{C^{\sigma_{1}, \ldots, \sigma_{\mathcal{L}}}}\left\langle\sigma_{\alpha}\right| \ldots\left\langle\sigma_{2}\right|\left\langle\sigma_{1}\right|=: \underbrace{C_{\vec{\sigma}_{R}}^{+}}_{:=}\langle\vec{\sigma}|}_{=: c_{\sigma_{R}}^{+}} \overline{C^{\bar{\sigma}}}$

$\begin{aligned} & \text { These unit matrices lead to } \\ & \text { contractions, depicted graphically }\end{aligned} \leadsto \mathbb{1}_{\sigma_{\delta}}^{\sigma_{\alpha}} \quad \mathbb{1}_{\sigma_{2}}^{\sigma_{2}^{\prime}} \mathbb{1}^{\sigma_{i}} \sigma_{1}=\mathbb{1}^{\vec{\sigma}^{\prime}} \vec{\sigma}$ by connected legs!

$$
\begin{equation*}
=\tilde{C}_{\vec{\sigma}_{R}}^{\dagger} C^{\vec{\sigma}} \tag{Bb}
\end{equation*}
$$

Recipe for overlaps: contract all physical legs of bra and get.

General operator:

$$
\begin{equation*}
\hat{O}=\left|\vec{\sigma}^{\prime}\right\rangle O^{\vec{\sigma}^{\prime}} \vec{\sigma}\langle\vec{\sigma}| \tag{4}
\end{equation*}
$$

Matrix

Recipe for matrix elements: contract all physical legs of bra and ket with operator.

Now consider matrix product states:
Ket:
$|\psi\rangle=|\vec{\sigma}\rangle\left[M_{1}\right]^{\gamma^{\prime} \sigma_{1}} \underbrace{\text { dummy index }} \underbrace{}_{\text {dummy index }}\left[M_{2}\right]^{\alpha \sigma_{2}}\left[M_{3}\right]^{\beta \sigma_{3}} \gamma\left[M_{\mathcal{L}}\right]^{\gamma} \sigma_{2}$
Recipe for get formula: as chain grows, attach new matrices M_{l} on the right (in same order as vertices in diagram), resulting in a matrix product of M_{ℓ} matrices .

The subscript ℓ on M_{ℓ} indicates that the tensors differ from site to site. The tensor M_{ℓ} has elements $\left[M_{l}\right)^{\alpha \sigma_{l}}$, indicated using square brackets.

Add dummy sites at left and right, so that first and last M's have two virtual indices, just like other M's .

Bra:

$$
\begin{align*}
& \left.\left.\langle\psi|=\overline{\left[M_{1}\right]^{1 \sigma_{1}}} \bar{\alpha}_{\alpha} M_{2}\right]^{\alpha \sigma_{2}} \bar{\beta}_{\beta} \bar{M}_{3}\right]^{\beta} \sigma_{\gamma}{ }_{\gamma}\left[M_{\mathcal{L}}\right]^{\gamma} \sigma_{\mathscr{L}}\langle\vec{\sigma}| \tag{7a}\\
& \overline{M^{\alpha \sigma} \sigma_{\beta}}=: M^{\dagger}{ }_{\sigma \alpha}
\end{align*}
$$

We expressed all matrices via their Hermitian conjugates by transposing indices and inverting arrows. To recover a matrix product structure, we ordered the Hermitian conjugate matrices to appear in the opposite order as the vertices in the diagram.

Recipe for bra formula: as chain grows, attach new matrices M_{σ}^{\dagger} on the left, (in opposite order as vertices in diagram), resulting in a matrix product of $M_{\sigma}{ }^{+}$matrices.

Overlap:

$$
\begin{align*}
& \langle\tilde{\psi} \mid \psi\rangle \stackrel{(36)}{=} \tag{8a}
\end{align*}
$$

$$
\begin{align*}
& =\left[\tilde{M}_{\mathcal{L}}^{\dagger}\right]_{\sigma_{\mathcal{L}}}^{1} \mu^{\prime} \ldots\left[\tilde{M}_{2}^{\dagger}\right]^{\beta^{\prime}} \underbrace{\sigma_{2 \alpha^{\prime}}\left[\tilde{M}_{1}^{\dagger}\right]_{\sigma_{1},\left[M_{1}\right]^{\prime}}^{\mid \sigma_{1}}} \alpha\left[M_{2}\right]^{\alpha \sigma_{2}}, \beta \quad \ldots .[M]_{\mathcal{L}}^{\mu}]^{\mu \sigma_{\mathcal{L}}} \tag{8b}
\end{align*}
$$

Recipe: contract all physical indices!

Recipe: contract all physical indices with each other, and all virtual indices of neighboring tensors.

Matrix elements

$$
\begin{equation*}
\langle\hat{\psi}| \hat{O}|\psi\rangle \stackrel{(5 b)}{=} \tag{9}
\end{equation*}
$$

Exercise: derive this result algebraically from (7a), (Ba)!

If we would perform the matrix multiplication first, for fixed $\vec{\sigma}$, and then sum over $\vec{\sigma}$, we would get $d^{\mathcal{L}}$ terms, each of which is a product of $2 \mathcal{L}$ matrices. Exponentially costly!

But calculation becomes tractable if we rearrange summations, to keep number of 'open legs' as small as possible (here $=2$):

(II)

Diagrammatic depiction: 'closing zipper' from left to right.

The set of two-leg tensors C_{ℓ} can be computed iteratively:

Initialization:

$$
\begin{equation*}
C_{0} \dot{E}_{<x}^{x}={\underset{\text { (identity }}{ }} \quad C_{[0]}^{1}=1 \tag{14}
\end{equation*}
$$

Iteration step:

$$
c_{l} \sum_{k_{\lambda^{\prime}}}^{\lambda}=c_{l-1} \sum_{\eta^{\prime}}^{\substack{\eta \rightarrow \lambda^{\prime} \\ \mathrm{t}_{l}^{\prime} \sigma_{l}}}
$$

$$
\left.\left(C_{l}\right]_{\lambda}^{\lambda^{\prime}}=\left[\tilde{M}_{l} \tilde{F}_{\sigma_{l}} \eta^{\prime}\left[C_{l-1}\right]\right]_{\eta}^{\eta^{\prime}}\left(M_{l}\right]_{\lambda}\right]^{\sigma} \sigma_{\lambda}
$$

Final answer:

$$
\begin{equation*}
\langle\tilde{\psi} \mid \psi\rangle=\left[C_{2}\right]_{1}^{\prime} \tag{16}
\end{equation*}
$$

Cost estimate (if all A's are $D_{\gamma} D$):
One iteration:

Total cost:

$$
\begin{equation*}
\sim D^{3} d \cdot \mathscr{L} \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\text { Total cost: } \quad \sim D^{3} d \cdot \mathcal{L} \tag{18}
\end{equation*}
$$

Remark: a similar iteration scheme can be used to 'close zipper from right to left':

Normalization $\langle\psi \mid \psi\rangle=$? Use above scheme, with $\tilde{M}=M$
'Closing the zipper' is also useful for computing expectation values of local operators, i.e. operators acting non-trivially only on a few sites (e.g. only one, or two nearest neighbors).

One-site operator (acts non-trivially only on one site, ℓ)
Action on site $l: \quad \hat{o}_{l}=\left|\sigma_{l}^{\prime}\right\rangle\left\{\left.O\right|_{\sigma_{l}} ^{\rho_{l}^{\prime}}\left\langle\sigma_{l}\right| \quad \hat{\sigma}_{l}^{\sigma_{l}}\right.$
E.g. for spin $1 / 2:\left[S^{z}\right]_{\sigma}^{\sigma^{\prime}}=\frac{1}{2}\left(\begin{array}{ll}1 & -1\end{array}\right),\left[S^{+}\right]_{\sigma}^{\sigma^{1}}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left[S^{-}\right]_{\sigma}^{\sigma^{6}}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$

Action on full chain:

$$
\begin{equation*}
\hat{0}_{l}=\left|\vec{\sigma}^{\prime}\right\rangle \underbrace{1_{1}^{\sigma_{1}^{\prime}} \ldots . .(O]_{\sigma_{l}}^{\sigma_{l}^{\prime}} \cdots 1_{d}^{\sigma_{2}^{\prime}}\langle\vec{\sigma}|}_{0^{\vec{\sigma}^{\prime}} \vec{\sigma}} \tag{zzz}
\end{equation*}
$$

Matrix element between two MPS:

Close zipper from left using $C_{\ell-1} \quad\left[\right.$ see (15)] and from right using $D_{\ell+1} \quad[$ see (20)].

$$
\left.=\int \tilde{M}^{\dagger}\right\rceil \text {, , , }\left[r \quad l^{\alpha^{\prime}}\{M]^{\alpha \sigma_{l} \beta} \int_{D}\right] \beta^{\prime}(n)^{\sigma_{l}^{\prime}}
$$

$$
\begin{equation*}
=\left[\tilde{M}_{l}^{\dagger}\right]_{\beta^{\prime} \sigma_{l}^{\prime} \alpha^{\prime}}\left[C_{\ell-1}\right]_{\alpha}^{\alpha^{\prime}}\left[M_{l}\right]^{\alpha \sigma_{l} \beta}\left[D_{l+1}\right]_{\beta}^{\beta^{\prime}}[O]_{l}^{\sigma_{l}^{\prime}} \tag{26}
\end{equation*}
$$

Two-site operator (acts nontrivally only on two sites, ℓ and $\ell+1$) [e.g. for spin chain: $\vec{S}_{\ell} \cdot \vec{S}_{\ell+1}$]
$\begin{aligned} & \text { Action on } \\ & \text { sites } \ell, \ell+1:\end{aligned} \quad \hat{O}_{\ell, \ell+1}=\left|\sigma_{l}^{\prime}\right\rangle\left|\sigma_{l+1}^{\prime}\right\rangle\{0\}^{\sigma_{l}^{\prime} \sigma_{l+1}^{\prime}} \quad{ }_{\sigma_{l}{ }_{l} \sigma_{l+1}}\left\langle\sigma_{l+1}\right|\left\langle_{\rho}\right|$

Matrix elements:

$$
\begin{equation*}
=\left[\tilde{M}_{l+1}^{\dagger}\right]_{\beta^{\prime} \sigma_{l+1}^{\prime}}^{\gamma^{\prime}}\left(\tilde{M}_{l}^{\dagger}\right]_{\gamma^{\prime} \sigma_{l}^{\prime} \alpha^{\prime}}\left[C_{l-1}\right]_{\alpha}^{\alpha^{\prime}}\left[M_{l}\right]^{\alpha \sigma_{l} \gamma}\left(M_{l+1}\right]^{\sigma_{l+1} \beta}\left[D_{l+2}\right]_{\beta}^{\beta^{\prime}}(0)^{\sigma_{l}^{\prime} \sigma_{l+1}^{\prime}} \sigma_{l \sigma_{l+1}} \tag{12}
\end{equation*}
$$

