1. Reshaping generic tensor into MPS form

A generic tensor of arbitrary rank can be expressed as an MPS through repeated matrix factorizations, using $Q R$ decomposition, $M \stackrel{\text { TNB-III. } 2}{=} R_{R}$, or singular value decomposition (SVD): $M^{\text {TNB--III. } 2}=U S V^{+}$

$=$
 etc.

$$
\begin{align*}
C^{\sigma_{1} \ldots \sigma_{\mathcal{L}}} & =\tilde{C}^{\sigma_{1}, \sigma_{2} \ldots \sigma_{\mathcal{L}}}=Q_{1}^{\sigma_{1}} \alpha R_{1}^{\alpha, \sigma_{2} \ldots \sigma_{\mathcal{L}}}=Q_{1}^{\text {reshape }} \tilde{R}_{1}^{\alpha \sigma_{2}, \sigma_{3} \ldots \sigma_{\mathcal{L}}} \tag{4}\\
& =Q_{1}^{\sigma_{1}} \alpha Q_{2}^{\alpha \sigma_{2}} \beta R_{2}^{\beta, \sigma_{3} \ldots \mathcal{L}}=Q_{1}^{\text {reshape }} \alpha_{1}^{\sigma_{1}} Q_{2}^{\alpha \sigma_{2}} \tilde{R}_{2}^{\beta \sigma_{3}, \sigma_{4} \cdots z}=\ldots \tag{s}\\
& =Q_{1}^{\sigma_{1}} a Q_{2}^{\alpha \sigma_{2}} \beta Q_{3}^{\beta \sigma_{3}} \gamma \cdots R_{d-1}^{\mu \sigma_{\mathcal{L}}} \tag{6}
\end{align*}
$$

If a maximal bond dimension of $D_{\alpha}<D$ is desired, this can be achieved using SVD instead of QR decompositions, and truncating by retaining only largest D singular values at each step:

Unitaries
A square matrix $U \in \operatorname{mat}(D, D ; \mathbb{C})$ is called 'unitary' if it satisfies:

$$
\begin{equation*}
u^{\dagger} U=\mathbb{1}_{D} \quad(1 a) \Leftrightarrow u^{+}=U^{-1} \Leftrightarrow U U^{+}=\mathbb{1}_{D} \tag{b}
\end{equation*}
$$

$$
\xrightarrow{D} \square^{D} \square D=D
$$

$$
\stackrel{D}{\square} \square \square=D
$$

D

${ }_{D}^{D}$
${ }_{D}^{\square} \stackrel{D}{\square} \cdot D=D \square^{D}$

Its column vectors, $\quad U=\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{D}\right)$, form a basis for \mathbb{C}^{D}
Its D row vectors also form a basis for \mathbb{C}^{D}

$\stackrel{\sim}{\lambda}: \vec{e}_{i}=\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right)$ exposition i

Left isometry (isometry = distance-preserving map)
A rectangular matrix $A \in m_{u t}\left(D, D^{\prime} ; \mathbb{C}\right)$ with $D \geqslant D^{\prime}$ is called a 'left isometry' if (ba) holds:

Its D^{\prime} column vectors, $A=\left(\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{D^{\prime}}\right)$, are orthonormal, $\quad \vec{a}_{i}^{+} \cdot \vec{a}_{j}^{(b a)}=\delta_{i j}$.

$$
\begin{equation*}
\hat{h}_{\bar{a}_{i}}^{+}=\overline{\vec{a}}_{i} \cdot T \tag{7}
\end{equation*}
$$

They form a basis for a D^{\prime}-dimensional (subspace of $\mathbb{1}^{D}$, space of D-dimensional column vectors say $V_{A}=\operatorname{span}\left\{\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{D^{\prime}}\right\} \begin{cases} & \subset \mathbb{C}^{D} \\ =\mathbb{C}^{D} & \text { true subspace if } D^{\prime}<D \\ D^{\prime}=D\end{cases}$
[The D row vectors of A each are elements of $\mathbb{C}^{* D^{\prime}}$, not $\left.\mathbb{C}^{* \cdot D} \cdot\right]$

Formally:

$$
A: \mathbb{C}^{D^{\prime}} \rightarrow \underset{\substack{\text { short } \tag{qb}\\
\text { column } \\
\text { vectors }}}{\mathbb{C}_{\substack{\text { long } \\
\text { column } \\
\text { vectors }}}, \quad \vec{f}_{j}^{l} \mapsto A \vec{f}_{j}:=\vec{e}_{i} A_{j}^{i}=\vec{a}_{j} \quad} \quad \underset{\text { standard basis vector in } \mathbb{C}^{D}}{j \in 1, \ldots, D^{\prime}} \quad \begin{align*}
& i \in i, \ldots, D
\end{align*}
$$

(9b): many (D) long columns are superposed to yield a smaller number (D^{\prime}) of orthonormal long columns.

These span $V_{A} \underset{\sim}{c} \mathbb{C}^{D}$, the 'image space of A ' or 'image of A^{\prime} ', with dimension $\operatorname{dim}(A)=D^{\prime}$ '.

Invariance of scalar product (hence the name: iso-metric = equal metric):
If $A: \mathbb{C}^{0^{\prime}} \rightarrow \mathbb{C}^{D}, \vec{x} \mapsto \vec{y}=A \vec{x}$, then

$$
\begin{equation*}
\|\vec{y}\|_{D}^{2}=\vec{y}^{+} \cdot \vec{y}=\vec{x}^{+} \underbrace{x}_{\mathbb{1}_{D^{\prime}}^{+} A}=\vec{x}^{+} \cdot \vec{x}=\|\vec{x}\|_{D^{\prime}}^{2} \tag{0}
\end{equation*}
$$

Left projector

is a projector, since $P^{2}=(A \underbrace{\left.A^{+}\right)\left(A A_{D^{\prime}}^{+}\right.}_{(6 a)})=A A^{+}=P$

Its action leaves \mathbb{V}_{A} invariant, because it leaves each its basis vectors invariant:

$$
\begin{equation*}
P_{\vec{a}_{j}} \stackrel{(11,9 b)}{=} \underbrace{A^{+} A}_{(6 a)=\mathbb{I}} \vec{f}_{j}=A \vec{f}_{j} \stackrel{(9 b)}{=} \vec{a}_{j} \tag{13}
\end{equation*}
$$

A rectangular matrix $B \in \operatorname{mut}^{\prime}\left(D, D^{\prime} ; \mathbb{C}\right)$ with $D \leqslant D^{\prime}$ is called a 'right isometry' if (14a) holds: $D \cap D^{\prime}$
$B B^{\dagger}=\mathbb{1}_{D}$ (14a) Note: if $D<D^{\prime}$ then $B^{+} B \neq \mathbb{1}_{D^{\prime}} \quad(14 b)$

Its D row vectors, $\quad B=\left(\begin{array}{l}\overrightarrow{b^{\prime}} \\ \vec{b}^{2} \\ \vdots \\ \vec{b}^{D}\end{array}\right)$, are orthonormal, $\quad \vec{b}^{i} \cdot \vec{b}^{+}{ }^{(6 a)}=i^{i j}$. (15)
$\begin{aligned} & \text { [row vectors (dual to column vectors) } \\ & \text { are labeled using upstairs index] }\end{aligned}$
They form a basis for a D-dimensional (sub)space of $\mathbb{1}^{D^{\prime} *}$,
say $\quad V_{B}^{*}=\operatorname{span}\left\{\vec{b}^{\prime}, \vec{b}^{2}, \ldots, \vec{b}^{D}\right\} \quad \begin{cases}\subset \mathbb{C}^{D^{\prime} *} & \text { true subspace if } D<D^{\prime} \\ =\mathbb{C}^{D^{\prime} *} & \text { if } D=D^{\prime}\end{cases}$
[The D^{\prime} column vectors of B each are elements of $\mathbb{C} D$, not $\mathbb{C}^{D^{\prime}}$]

$$
\begin{array}{cc}
B: \mathbb{C}^{D *} \tag{17b}
\end{array} \rightarrow \mathbb{C}^{D^{\prime} *}
$$

$$
\begin{aligned}
\vec{f}^{i} \longmapsto \vec{f}^{\prime} B:=B^{i} \vec{e}_{\hat{i}}^{j}=\vec{b}^{i} \quad & i \in 1, \ldots, D \\
& j \in 1, \ldots, D^{\prime}
\end{aligned}
$$

(17b) says: many (D^{\prime}) long rows are superposed to yield a smaller number (D) of orthonormal long rows.

These span $V_{B}^{*} \subseteq \mathbb{C}^{D^{\prime}+}$, the 'image space of B^{\prime} ' or 'image of B^{\prime} ', with dimension $\operatorname{dim}(B)=D$.

Invariance of scalar product (hence the name: iso-metric = equal metric):
If $B: C^{D *} \rightarrow C^{D^{\prime} *}, \vec{x} \mapsto \vec{y}=\vec{x} B$, then

$$
\begin{equation*}
\|\vec{y}_{D^{\prime *}}^{2}=\vec{y} \cdot \vec{y}^{\dagger}=\vec{x} \underbrace{B B^{+} \vec{x}^{\dagger}}_{\mathbb{1}_{-1}}=\vec{x} \cdot \vec{x}^{\dagger}=\| \vec{x} \|_{D *}^{2} \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\|\vec{y}_{D^{\prime} *}^{2}=\vec{y} \cdot \vec{y}^{\dagger}=\vec{x} \underbrace{}_{\mathbb{1}_{D^{\prime}}^{B B^{+}}} \vec{x}^{\dagger}=\vec{x} \cdot \vec{x}^{\dagger}=\| \vec{x}^{\dagger} \|_{D *}^{2} \tag{18}
\end{equation*}
$$

Right projector

is a projector, since $P^{2}=(B_{(1 / a)}^{+} \underbrace{}_{\mathbb{\mathbb { H }}_{D}})\left(B^{+} B\right)=B^{+} B=P$

Its action leaves \mathbb{V}_{B}^{*} invariant, since it leaves its basis vectors invariant:

$$
\begin{equation*}
\vec{b}^{i} P \stackrel{(14,17 b)}{=} \vec{f}^{i} \underbrace{B}_{(14 a)=\mathbb{I}} B^{+} B=\vec{f}^{i} B \stackrel{(17 b)}{=} \vec{b}^{i} \tag{2}
\end{equation*}
$$

Truncation of unitaries yield isometries

Consider a unitary, $D \times D$ matrix,

$$
\begin{equation*}
u^{+} u=1_{0} \tag{22}
\end{equation*}
$$

and partition its columns into two groups, containing D^{\prime} and $\bar{D}^{\prime}=D \cdot D^{\prime}$ columns: $u=\left(\bar{u}_{1}, \bar{u}_{2}, \ldots \vec{u}_{D^{\prime}}, \bar{u}_{D^{\prime}+1}, \ldots \bar{u}_{D}\right)=\left(\vec{u}_{1}, \ldots, \vec{u}_{D^{\prime}}\right) \oplus\left(\vec{u}_{D^{\prime}+1}, \ldots, \vec{u}_{D}\right)=: A \oplus \bar{A}$

Unitarity of U implies:

$$
\begin{align*}
& \left(\begin{array}{ll}
\mathbb{1}_{D^{\prime}} & \\
& \mathbb{I}_{\bar{D}^{\prime}}
\end{array}\right)=\mathbb{1}_{D}=U^{+} U=\binom{A^{+}}{\bar{A}^{+}}(A, \bar{A})=\left(\begin{array}{ll}
A^{+} A & A^{+} \bar{A} \\
\bar{A}^{+} A & \bar{A}^{+} \bar{A}
\end{array}\right) \tag{25}\\
& D^{\prime} \quad \bar{D}^{\prime}
\end{align*}
$$

Hence, A and \bar{A} are both isometries:
$D^{\prime} a^{D} D D^{\prime}=A^{+} A \quad \stackrel{(25)}{=} \mathbb{I}_{D^{\prime}}, \quad D^{-1}=\bar{A}^{-1} \bar{A} \quad \stackrel{(25)}{=} \quad \mathbb{I}_{D^{\prime}}$
$D^{\prime} \xlongequal[D]{D^{\prime}} \|^{\prime}=D^{\prime} D^{\prime}$,

Moreover, A are \bar{A} orthogonal to each other, since they are built from orthogonal column vectors:
$\bar{D}^{\prime} \square_{D} D D^{\prime}=\bar{A}^{+} A$
$\stackrel{(25)}{=} 0$,
$D^{\prime} O^{D^{\prime}}=A^{1} \bar{A}$
$\stackrel{(25)}{=} 0$

Complementary projectors

The projectors,

$$
\begin{equation*}
\bar{P}=\bar{A} \bar{A}^{+}=D \bar{D}^{\prime} \bar{D} \tag{31}
\end{equation*}
$$

 and satisfy orthonormality relations:

(32)

$$
\begin{equation*}
p \cdot p \stackrel{(27)}{=} p, \quad \bar{p} \cdot \bar{p} \stackrel{(27)}{=} \bar{p}, \quad p \cdot \bar{p} \stackrel{(29)}{=} 0, \quad \bar{p} \cdot p \stackrel{(29)}{=} 0 \tag{33}
\end{equation*}
$$

E.g.: $P \cdot \bar{P}=A \underbrace{A^{+} \bar{A} \bar{A}^{+}}_{(29)^{2}=0}=-0 \underbrace{1-1-1}_{0}-1=0$

They split $\mathbb{C}^{\mathbb{D}}$ into two orthogonal and hence complementary subspaces:

$$
\begin{align*}
& P: \mathbb{C}^{D} \rightarrow \mathbb{V}_{A}=\operatorname{span}\left\{\vec{u}_{1}, \ldots \vec{u}_{D^{\prime}}\right\} \quad=\operatorname{span}\left\{\vec{a}_{1}, \ldots, \vec{a}_{D^{\prime}}\right\} \subsetneq \mathbb{C}^{D} \\
& \bar{P}: \mathbb{C}^{D} \rightarrow \mathbb{V}_{\bar{A}}=\operatorname{span}\left\{\vec{u}_{D^{\prime}+1}, \ldots, \vec{u}_{D}\right\}=: \operatorname{span}\left\{\overrightarrow{\bar{a}}_{1}, \ldots, \overrightarrow{\bar{a}}_{\bar{D}^{\prime}}\right\} \subsetneq \mathbb{C}^{D} \\
& \quad \text { with } \quad \vec{x}^{\dagger} \cdot \vec{y}=0 \quad \forall \quad \vec{x} \in \mathbb{V}_{A}, \quad \vec{y}=\mathbb{V}_{\bar{A}}
\end{align*}
$$

In this sense, isometries (more precisely, their projectors) map large vector spaces into smaller ones.

Conversely: any left (or right) isometry can be extended to a unitary by adding orthonormal columns (or rows) orthogonal to those already present.

A discussion similar to the above holds for splitting a unitary matrix into two sets of rows, yielding two right isometries.
ttps://en.wikipedia.org/wiki/Singular_value_decomposition
Consider a $D \times D^{\prime}$ matrix, $M \in \operatorname{mat}\left(D, D^{\prime} ; \mathbb{C}\right)$ and let $\tilde{D}=\min \left(D, D^{\prime}\right)$
Theorem: Any such M has a singular value decomposition (SVD) of the form

$$
\begin{align*}
& M=U \cdot S \cdot V^{\dagger} \tag{2}\\
& D \times D^{\prime} \quad D \times \tilde{D} \tilde{D} \times \tilde{D} \tilde{D} \times D^{\prime}
\end{align*}
$$

where

$$
\begin{array}{ll}
U \in \operatorname{mat}(D, \tilde{D} ; \mathbb{C}) \text { satisfies } & U^{\dagger} U=\mathbb{1}_{\tilde{D}} \\
V^{\dagger} \in \operatorname{mat}\left(\tilde{D}, D^{\prime} ; \mathbb{C}\right) \text { satisfies } & V^{+} V=\mathbb{1}_{\tilde{D}}
\end{array}
$$

$S \in \operatorname{mat}(\tilde{D}, \tilde{D} ; \mathbb{C}) \quad$ is diagonal, with purely non-negative diagonal elements, called 'singular values'

\%

Remarks:
(i) SVD ingredients can be found by diagonalization of the hermitian matrices $M M^{\dagger}$ and $M^{\dagger} M$. $D \times D: \quad M M^{\dagger} \stackrel{(2)}{=}\left(U S V^{\dagger}\right)\left(V S U^{\dagger}\right) \stackrel{(4)}{=} U S^{2} U^{\dagger} \stackrel{(3)}{\Rightarrow} \quad D \times \tilde{D}: \quad M M^{\dagger} U=U S^{2} \quad$ (6) $D^{\prime} \times D^{\prime}: M^{+} M \stackrel{(2)}{=}\left(V S U^{\dagger} Y U S V^{\dagger}\right) \stackrel{(3)}{=} V S^{2} V^{\dagger} \stackrel{(4)}{\Rightarrow} \quad D^{\prime} \times \tilde{D}: \quad M^{\dagger} M V=V S^{2}$

So, eigenvectors of $M M^{\dagger}$ yield columns of U, eigenvectors of $M^{\dagger} M$ yield columns of V. They have the same set of eigenvalues, yielding the squares of the singular values.

(ii) Properties of S

- diagonal matrix, of dimension $\tilde{D} \times \tilde{D}$, with $\tilde{D}=\min \left(D, D^{\prime}\right)$
- diagonal elements can be chosen non-negative, are called 'singular values' $S_{\alpha}:=S_{\alpha \alpha}=\tilde{D} \square$
- 'Schmidt rank' \uparrow : number of nonzero singular values
- arrange in descending order: $\quad S_{1} \geqslant S_{2} \geqslant \ldots \geqslant S_{5}>0$

$$
\begin{equation*}
\Rightarrow \quad S=\operatorname{diag}(s_{1}, s_{2}, \ldots, s_{r}, \underbrace{0, \ldots, 0)}_{\tilde{D}-r} \text { zeros } \tag{9}
\end{equation*}
$$

(iii) Properties of U and V^{+}:

$$
\tilde{D}=\min \left(D, D^{\prime}\right)
$$

- $\operatorname{dim}(u)=D \times \tilde{D}$,
- $\operatorname{dim}(U)=D \times \tilde{D}, \quad U^{+} U=\mathbb{1}_{\tilde{D}} \quad, \quad$ columns of U are orthonormal. (ii)
- If $D=\tilde{D}$, then U is unitary. If $\mathbb{D}>\tilde{D}$, then U is a left isometry.
- $\operatorname{dim}\left(V^{\dagger}\right)=\tilde{D} \times D^{\prime}, \quad V^{\dagger} V=\mathbb{1}_{\tilde{D}} \quad$, rows V^{\dagger} of are orthonormal.
- If $\tilde{D}=D^{\prime}$, then V^{\dagger} is unitary. If $\tilde{D}<D^{\prime}$, then V^{\dagger} is a right isometry.

(iv) Visualization

$$
\text { If } \tilde{D}=D \leqslant D^{\prime}:
$$

$$
\begin{equation*}
M=D \int^{D^{\prime}}=D \tilde{D}^{\tilde{D}} \cdot \tilde{D} D^{\tilde{D}} \cdot \tilde{D} D^{\prime}=U \cdot S \cdot V^{\dagger} \tag{15}
\end{equation*}
$$

U is unitary:

If $D \geqslant D^{\prime}=\tilde{D}$:

$$
\begin{equation*}
M=D \frac{D^{\prime}}{D^{\prime}}=D \|^{\tilde{D}} \cdot \tilde{D} \tilde{D}^{\tilde{D}} \cdot \tilde{D} \tilde{D}^{\prime}=U \cdot S \cdot V^{+} \tag{18}
\end{equation*}
$$

U is left isometry:
V^{\dagger} is unitary:

product is arranged such that the outer indices have the smallest dimension, \tilde{D}

$$
\begin{equation*}
V^{+} V=\tilde{D} \square^{D^{\prime}} \cdot \tilde{D} \cdot D^{\prime}\| \|=\tilde{D} \square^{\tilde{D}}=\mathbb{1}_{\tilde{D}} \tag{20}
\end{equation*}
$$

(vi) Truncation via SVD

Def: Frobenius norm: $\|M\|_{F}^{2}:=\sum_{\alpha \beta}\left|M_{\alpha \beta}\right|^{2}=\sum_{\alpha \beta} \bar{M}_{\alpha \beta} M_{\alpha \beta}=\sum_{\alpha \beta} M_{\beta \alpha}^{\dagger} M_{\alpha \beta}=\operatorname{Tr} M^{\dagger} M$
evaluated via SVD:

$$
=T_{r}(V S \underbrace{u^{\dagger} U S V^{+}}_{=1})=T_{\text {trace is cyclic }}(\underbrace{\sqrt{r+} V S^{2}}_{=1})=\operatorname{Tr}_{\begin{array}{c}
\text { singular values } \tag{22}\\
\text { determine norm }
\end{array}}^{T_{r} S^{2}}
$$

Truncation

SVD can be used to approximate a rank τ matrix M by a rank $r^{\prime}(<r)$ matrix M^{\prime} :
Suppose $M=U, S V^{\dagger}$
with

$$
\begin{align*}
& S=\operatorname{diag}\left(s_{1}, s_{2},\right. \tag{23}\\
& M^{\prime}:=U S^{\prime} V^{\dagger}
\end{align*}
$$

Truncate: $M^{\prime}:=U S^{\prime} V^{\dagger}$
with

$$
\begin{equation*}
S^{\prime}:=\operatorname{diag}(s_{1}, s_{2}, \ldots, S_{51}, \underbrace{0, \ldots, 0, \ldots, 0)}_{\tilde{D}-r^{\prime} \text { zeros }} \tag{25}
\end{equation*}
$$

Retain only \uparrow^{\prime} largest singular values! Visualization, with $\tau=\tilde{D}$:

$$
\begin{align*}
& \tilde{D}=D \leq D^{\prime}: \quad D \quad \begin{array}{c}
D^{\prime} \\
M
\end{array}=D^{\tilde{D}} \stackrel{\tilde{D}}{D^{\prime}} \tag{2z}
\end{align*}
$$

$$
\begin{aligned}
& D \geq D^{\prime}=\tilde{D} \quad D M^{D^{\prime}} \quad=D
\end{aligned}
$$

SVD truncation yields 'optimal' approximation of a rank T matrix M by a rank $\tau^{\prime}(<\tau)$ matrix M^{\prime}, in the sense that it can be shown to minimize the Frobenius norm of the difference, $M-M^{\prime}$.

$$
\begin{equation*}
\left\|M-M^{\prime}\right\|_{F}^{2}=\operatorname{Tr}\left(M-M^{\prime}\right)^{t}\left(M-M^{\prime}\right)=\operatorname{Tr}_{r}\left(M^{\dagger} M+M^{\prime t} M^{\prime}-M^{\prime t} M-M^{\dagger} M^{\prime}\right) \tag{31}
\end{equation*}
$$

similar steps as for (8)

$$
\begin{gather*}
=T_{r}(S \cdot S+S^{\prime} \cdot S^{\prime}-\underbrace{S^{\prime} \cdot S}_{=S^{\prime} \cdot S^{\prime}}-\underbrace{S \cdot S^{\prime}}_{=S^{\prime} \cdot S^{\prime}}) \tag{32}\\
\nabla_{0} \nabla=\nabla_{0} \nabla_{0}
\end{gather*}
$$

$$
\begin{align*}
\nabla_{0} & =\nabla_{0} \nabla_{0} \\
= & \operatorname{Tr}\left(S^{\prime 2}-S^{\prime 2}\right)=\sum_{\alpha=1}^{r} S_{\alpha}^{2}-\sum_{\alpha=1}^{r^{\prime}} S_{\alpha}^{2}=\sum_{\alpha=r^{\prime}+1}^{r} s_{\alpha}^{2} \tag{33}
\end{align*}
$$

Note:

(vi) Polar decomposition of square matrix
$\sqrt{ }$ no negative eigenvalues
Any square matrix can be factored into a Hermitian, positive matrix and a unitary matrix:

$$
M=U S v^{+}= \begin{cases}\left(u s u^{+}\right)\left(u v^{+}\right)=p w & \text { 'left polar decomposition' } \tag{34}\\ \left(u v^{+}\right)\left(v S v^{+}\right)=\tilde{w} \tilde{p} & \text { 'right polar decomposition' }\end{cases}
$$

This generalizes the polar decomposition for complex numbers, $z=|z| e^{i \phi}$

QR-decomposition

If singular values are not needed,
$D \leq D^{\prime}:$

a $D \times D^{\prime}$ matrix M
has the 'full QR decomposition'

$$
\begin{equation*}
M=Q R \tag{35}
\end{equation*}
$$

$D \geq D^{\prime}:$

with Q a $D \times D$ unitary matrix,

$$
\begin{equation*}
Q Q^{+}=Q^{+} Q=1 \tag{36}
\end{equation*}
$$

and R a $D \times D^{\prime}$ upper triangular matrix, $\quad R_{\alpha \beta}=0$ if $\alpha>\beta$

If $D \geq D$ ', then M has the 'thin $Q R$ decomposition'

$$
\begin{equation*}
M=\left(Q_{1}, Q_{2}\right) \cdot\binom{R_{1}}{0}=Q_{1} \cdot R_{1} \tag{38}
\end{equation*}
$$

with $\operatorname{dim}(Q 1)=D \times D^{\prime}, \quad \operatorname{dim}(R 1)=D^{\prime} \times D^{\prime}, \quad Q_{1}^{t} Q_{1}=1 \quad$ but $\quad Q_{1} Q_{1}^{\dagger} \neq 1$ and R1 upper triangular.

QR-decomposition is numerically cheaper than SVD, but has less information (not 'rank-revealing').

Consider a quantum system composed of two subsystems, A and B, with orthonormal bases $\left\{|\alpha\rangle_{A}\right\}$ and $\left\{|\beta\rangle_{B}\right\}$.

Pure state on $A \cup B: \quad|\psi\rangle=|\alpha\rangle_{A}|\beta\rangle_{\beta} \psi^{\alpha \beta}$

Reduced density matrices of subsystems A and B :

$$
\begin{array}{ll}
\hat{\rho}_{A}=\operatorname{Tr}_{\mathcal{B}}|\psi\rangle\langle\psi|=|\alpha\rangle_{A}\left(\rho_{A}\right)_{\alpha^{\prime}}^{\alpha}\left\langle\alpha^{\prime}\right|, & \left(\rho_{A}\right)_{\alpha^{\prime}}^{\alpha}=\left(\psi \psi^{\prime}\right)_{\alpha^{\prime}}^{\alpha} \\
\hat{\alpha}_{\alpha}^{\alpha^{\prime}} \tag{3}\\
\hat{\rho}_{B}=T_{A}|\psi\rangle\langle\psi|=|\beta\rangle_{\mathcal{B}}\left(\rho_{\mathcal{B}}\right)_{\beta^{\prime}}^{\beta}\left\langle\beta^{\prime}\right|, & \left(\rho_{B}\right)_{\beta^{\prime}}^{\beta}=\left(\psi^{\dagger} \psi\right)_{\beta^{\prime}}^{\beta} \quad \hat{\beta}^{\beta^{\prime}}
\end{array}
$$

Singular value decomposition
Use SVD to find bases for A and B
which diagonalize density matrices: $\quad \psi \stackrel{\text { SD }}{=} U S V^{\dagger}$

Hence $\quad|\psi\rangle=\left|\lambda^{\prime}\right\rangle_{A}|\lambda\rangle_{\mathbb{B}} S^{\lambda \lambda^{\prime}}=\sum_{\lambda}|\lambda\rangle_{A}|\lambda\rangle_{\mathbb{B}} S_{\lambda}$

are orthonormal sets of states for A and \mathcal{B}, and can be extended to yield orthonormal bases for $\&$ and B if needed.

Orthonormality is guaranteed by $\quad U^{\dagger} U=\mathbb{1}$ and $U^{\dagger} V=\mathbb{1}$!

$$
\begin{align*}
& { }_{\alpha}\left\langle\lambda^{\prime} \mid \lambda\right\rangle_{A}={ }_{u^{+}}^{\alpha} \hat{\lambda}^{\prime} \rightarrow \lambda \rightarrow \lambda^{\prime}=u_{\alpha}^{+\lambda^{\prime}} u_{\lambda}^{\alpha}=1^{\lambda^{\prime}} \lambda=\left\{\begin{array}{l}
\lambda \\
\lambda^{\prime}
\end{array}\right. \tag{8}
\end{align*}
$$

Restrict Σ_{λ} to the τ non-zero singular values:

$$
\begin{equation*}
|\psi\rangle=\sum_{\lambda=1}^{r}|\lambda\rangle_{A}|\lambda\rangle_{B} S_{\lambda} \quad \text { 'Schmidt decomposition' } \tag{11}
\end{equation*}
$$

If $r=1$, 'classical' state: $|\psi\rangle=|1\rangle_{B}|1\rangle_{A}$. If $r \geqslant 1$: 'entangled state' In this representation, reduced density matrices are diagonal:

$$
\begin{align*}
\hat{\rho}_{A}=T_{\mathbb{B}}|\psi\rangle\langle\psi|= & \left.\sum_{\lambda} \mid \lambda\right)_{A}\left(S_{\lambda}\right)^{2}\langle\lambda| \tag{2}\\
& \left(\psi \psi^{\dagger}\right),\left(\psi^{\dagger} \psi\right) \text { with } \psi^{\lambda \lambda^{\prime}}=S_{\lambda} \mathbb{R}^{\lambda \lambda^{\prime}} \tag{13}\\
\hat{\rho}_{Q}=T_{A}|\psi\rangle\langle\psi|= & \sum_{\lambda}|\lambda\rangle_{B}\left(S_{\lambda}\right)^{2}\langle\lambda| \tag{14}\\
\text { Entanglement entropy: } & S_{A / B}=-\sum_{\lambda=1}^{T}\left(S_{\lambda}\right)^{2} \ln _{2}\left(S_{\lambda}\right)^{2} \tag{15}
\end{align*}
$$

Note: for given \uparrow, entanglement is maximal if all singular values are equal, $\quad S_{\lambda}=r^{-1 / 2}$

How can one approximate $|\psi\rangle=\sum_{\alpha \beta \beta}|\alpha\rangle_{\phi}|\beta\rangle_{\mathcal{Z}} \psi \alpha \beta$ by cheaper $|\tilde{\psi}\rangle$?

$$
\begin{equation*}
\||\psi\rangle\left\|_{2}^{2} \equiv|\langle\psi \mid \psi\rangle|^{2}=\sum_{\alpha \beta}|\psi \alpha \beta|^{2}=\right\| \psi \|_{F}^{2} \tag{17}
\end{equation*}
$$

Define truncated state using $r^{\prime}(<\boldsymbol{r})$ singular values:

$$
\begin{equation*}
|\tilde{\psi}\rangle \equiv \sum_{\lambda=1}^{r^{\prime}}|\lambda\rangle_{A}|\lambda\rangle_{B} s_{\lambda} \tag{18}
\end{equation*}
$$

If $|\tilde{\psi}\rangle$ should be normalized, rescale, i.e. replace S_{λ} by $S_{\lambda}\left[\sum_{\lambda^{\prime}=1}^{r^{\prime}}\left(S_{\lambda}\right)^{2}\right]^{-1 / 2}$
Truncation error:

$$
\begin{aligned}
& \||\psi\rangle-|\tilde{\psi}\rangle \|_{2}^{2}=\langle\psi \mid \psi\rangle+\langle\tilde{\psi} \mid \hat{\psi}\rangle-2 \operatorname{Re}\langle\tilde{\psi} \mid \psi\rangle \\
&=\sum_{\lambda=1}^{r}\left(S_{\lambda}\right)^{2}+\sum_{\lambda=1}^{r^{\prime}}\left(S_{\lambda}\right)^{2}-2 \sum_{\lambda=1}^{r^{\prime}}\left(S_{\lambda}\right)^{2}=\sum_{\lambda=r^{\prime}+1}^{r}\left(s_{\lambda}\right)^{2} \\
&=\text { sum of squares of discarded singular values }
\end{aligned}
$$

Useful to obtain 'cheap' representation of $|\psi\rangle$ if singular values decay rapidly.

The truncation strategy (18) minimizes the truncation error.
It is used over and over again in tensor network numerics.

