
TNB-III.1

A generic tensor of arbitrary rank can be expressed as an MPS through repeated matrix factorizations, 

using QR decomposition,                      , or singular value decomposition (SVD): 

reshape

QR

In formulas ('reshape' means regroup indices):

reshape reshape

reshape

QR

QR etc.

If a maximal bond dimension of                        is desired, this can be achieved using SVD instead of QR 

decompositions, and truncating by retaining only largest        singular values at each step:

as above

truncated representation 

reshapeQR

etc.

where contains only largest       singular values of  
truncate

SVD

reshape

reshape

bond dimensions grow as 

  SVD
truncate

etc.

(        and          are isometries,        is diagonal, with non-negative elements) 

1. Reshaping generic tensor into MPS form

TNB-III.2 TNB-III.2

Tensor network basics III
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TNB-III.2

Unitaries

Its column vectors, , form a basis for 

A rectangular matrix                                 with               is called a 'left isometry' if (6a) holds:

Its         column vectors, , are orthonormal,  

     Note: if               then  

defines an invertible map: 

Its          row vectors also form a basis for 

They form a basis for a       -dimensional (sub)space of 

standard basis vector in 

Its inverse is given by 

Indeed, then 

consistent with (3b)

Left isometry

position

standard basis vector in 

position column

A square matrix                                        is called 'unitary' if it satisfies:

space of     -dimensional column vectors

(isometry = distance-preserving map)

2. Unitaries and isometries (reminder)
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true subspace if 

defines an isometric map: 

is a projector, since 

They form a basis for a       -dimensional (sub)space of 

say 

standard basis vector in 

These span                 , the 'image space of      '  or  'image of      ', with dimension

The       row vectors of        each are elements of           , not  

standard basis vector in 

short 
column
vectors

long 
column
vectors

(9b): many (   ) long columns are superposed to yield a smaller number (    ) of orthonormal long columns. 

dual space of      -dimensional row vectors

position column

Formally:

space of     -dimensional column vectors

Invariance of scalar product (hence the name: iso-metric = equal metric):

Left projector

If , then 

because      has fewer columns than rows

Its action leaves          invariant, because it leaves each its basis vectors invariant:

if 
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Its         row vectors, , are orthonormal,  

defines an isometric map: 

They form a basis for a       -dimensional (sub)space of 

say 

standard basis vector in 

These span                ,   the 'image space of      '  or  'image of      ', with dimension

The       column vectors of        each are elements of         , not 

Right isometry

standard basis vector in 

short 
  row 
vectors

long 
  row
vectors

(17b) says: many (    ) long rows are superposed to yield a smaller number (    ) of orthonormal long rows. 

position

[row vectors (dual to column vectors) 
are labeled using upstairs index]

row

A rectangular matrix                                 with                 is called a 'right isometry' if  (14a) holds:

space of     -dimensional row vectors

Invariance of scalar product (hence the name: iso-metric = equal metric):

         if       has fewer rows than columns

     Note: if              then 

true subspace if 

if 

If , then 
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is a projector, since 

Its action leaves           invariant, since it leaves its basis vectors invariant:  

Right projector

Truncation of unitaries yield isometries

Consider a unitary, matrix,

and partition its columns into two groups, containing            and                           columns:

Unitarity of         implies: 

Hence,            and           are both isometries:
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Moreover,      are      orthogonal to each other, since they are built from orthogonal column vectors:

The projectors, 

and satisfy orthonormality relations:

E.g.: 

are both           matrices, 

Conversely: any left (or right) isometry can be extended 

to a unitary by adding orthonormal columns (or rows) 

orthogonal to those already present.

They split                 into two orthogonal and hence complementary subspaces: 

with 

In this sense, isometries (more precisely, their projectors) map large vector spaces into smaller ones. 

Complementary projectors

A discussion similar to the above holds for splitting a unitary 

matrix into two sets of rows, yielding two right isometries. 
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diagonal matrix, of dimension                  , with •

diagonal elements can be chosen non-negative, are called 'singular values'•

'Schmidt rank'       : number of non-zero singular values•

arrange in descending order:•

zeros

TNB-III.3[Schollwoeck2011, Sec. 4]

ttps://en.wikipedia.org/wiki/Singular_value_decomposition

Consider a               matrix,     and let 

Theorem:             Any such         has a singular value decomposition (SVD) of the form 

where 

satisfies 

satisfies 

called 'singular values'

is diagonal, with purely non-negative diagonal elements,

(i) SVD ingredients      can be found by diagonalization of  the hermitian matrices            and           .           

So,  eigenvectors of             yield columns of           , eigenvectors of              yield columns of       . 

They have the same set of eigenvalues, yielding the squares of the singular values. 

Remarks:

(ii) Properties of S

(iii) Properties of       and        :              

              • ,    columns of       are orthonormal.

or

3. Singular value decomposition (SVD)
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Def: Frobenius norm:   

(vi) Truncation via SVD

              • ,    columns of       are orthonormal.

              •

          •

, rows        of are orthonormal.

(iv) Visualization

If                          :

  is left isometry:

      is unitary: 

If                       :

  is unitary:

      is right isometry: 

If                , then         is unitary.         If              , then       is a left isometry.              •

If                , then         is unitary.         If              , then       is a right isometry.

product is arranged such that the outer indices have the smallest dimension, 

product is arranged such that the outer indices have the smallest dimension, 
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Truncation

SVD can be used to approximate a rank       matrix         by a rank                    matrix         : 

Suppose

with

zeros

Truncate: 

with

zeros

Visualization, with                     :Retain only      largest singular values!

SVD truncation yields 'optimal' approximation of a rank       matrix         by a rank                 matrix  

evaluated via SVD: 

trace is cyclic

similar steps as for (8)

in the sense that it can be shown to minimize the Frobenius norm of the difference,                  . 

'discarded weight'

singular values
determine norm
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QR-decomposition

If singular values are not needed, 

a                 matrix          

has the 'full QR decomposition'

If D ≥ D', then M has the 'thin QR decomposition'

and           a                  upper triangular matrix, if

with          a                  unitary matrix,      

                                   but                     

QR-decomposition is numerically cheaper than SVD, but has less information (not 'rank-revealing').

with dim(Q1) =               ,     dim(R1) =               ,   

and R1 upper triangular.

'discarded weight'

(vi) Polar decomposition of square matrix

'left polar decomposition'

'right polar decomposition'

Any square matrix can be factored into a Hermitian, positive matrix and a unitary matrix: 

no negative eigenvalues

This generalizes the polar decomposition for complex numbers, 

Note: 
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Consider a quantum system composed of two subsystems,       and      ,

with orthonormal bases                    and                   .                    

Pure state on                  :

Reduced density matrices of subsystems          and          :

With indices:

Hence

where

and !

Restrict               to the              non-zero singular values:

MPS-III.4

Singular value decomposition

Use SVD to find bases for      and        

which diagonalize density matrices:

are orthonormal sets of states for           and           , and can be extended to yield orthonormal

SVD

Orthonormality is guaranteed by

[most efficient way of representing entanglement]

bases for              and               if needed.

'Schmidt decomposition'

4. Schmidt decomposition
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In this representation, reduced density matrices are diagonal:

Entanglement entropy:

How can one approximate                                                       by cheaper               ?

Define truncated state using                             singular values:

If               should be normalized, rescale, i.e. replace           by                                             

Truncation error:

sum of squares of discarded singular values

Useful to obtain 'cheap' representation of                if singular values decay rapidly.

The truncation strategy (18) minimizes the truncation error. 

It is used over and over again in tensor network numerics. 

Note: for given     , entanglement is maximal if all singular values are equal, 

If            , 'classical' state:                                           If                   : 'entangled state'
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