
Tensor Network Basics II

Index and arrow conventions below, adopted throughout this course, are really useful, though not (yet) standard.

For exposition of covariant index notation, see chapters L2 & L10 of 

"Mathematics for Physicists", Altland & von Delft,  www.cambridge.org/altland-vondelft

TNB-II.1

Premise: in Linear Algebra, vectors and dual vectors are notationally distinguished by lower/upper 

placement of indices ('covariant notation'). In Quantum Mechanics, kets are vectors, bras are dual 

vectors, and in the physics literature, they are distinguished by shape of brackets            vs.         . 

Nevertheless, it may be useful to additionally distinguish them by lower/upper placement of indices. 

Reason: their coefficients then inherit distinguished upper/lower index placements too, which is useful 

for knowing which indices can be contracted -- in particular when converting algebraic notation to tensor 

network notation.      

In the introductory parts of this course, we will therefore use covariant notation and carefully 

distinguish lower/upper indices. This is not standard in QM or in the tensor network literature. But I 

believe that it is pedagogically useful to use notation that emphasizes vector space / dual vector space 

structure of QM not just for vectors / dual vectors, but also for coefficients.

Vector space, dual space (reminder)

Let       be a complex vector space, with elements 

Its dual space,         , is defined as the set of all linear maps          of        to the complex numbers:

with 

If         is equipped with a scalar product, 

there is a canonical identification,        ,  between the elements of       and           :  

such that 

Quantum mechanics has this vector space/ dual space  structure: = Hilbert space 

, dual vectors 

they map vectors to complex numbers via 

vectors are denoted 

dual vector vector complex number

For example, implies that 

All properties of the map             follow directly from those of the complex scalar product        . 

with , etc.

ovebar denotes complex conjugation

Covariant index notation1.

, scalar product:
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Indices labeling components of vectors (kets) sit upstairs:

Repeated indices (always up-down pairs) are summed over, summation        is implied. 

Indices labeling linear combinations of kets sit downstairs:

Note: for             the index        identifies components of kets, hence sits upstairs
                                        the index        identifies basis kets (vectors), hence sits downstairs          

Indices labeling vectors (kets) sit downstairs. E.g. basis kets: 

Indices labeling dual vectors (bras) sit upstairs. E.g. basis bras: 

Suppose                 form orthonormal basis:

Indices labeling components of dual vectors (bras) sit downstairs:

Complex conjugation [(14) is dual of (11)]:

Indices labeling linear combination of kets sit upstairs:

Complex conjugation  [(16) is dual of (12)]:

Note: for             ,  the index        identifies basis bras (dual vectors), hence sits upstairs

                             the index        identifies components of bras, hence sits downstairs

(Hermitian 
conjugation!)

Overlaps

Vectors (kets)

Dual vectors (bras)

vector space

dual space

Unitarity

they map vectors to complex numbers via 
dual vector vector complex number

with , etc.

Therefore, covariant index notation for vectors/dual vectors can also be used for kets/bras, as follows:

definition

definition

Linear algebra perspective

dual vector maps vector to number
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Suppose that                  form orthonormal basis, too:

Combined:

Hence A is unitary:

Operators

Therefore , index raising and lowering using metric does not change numerical value of object:

For orthonormal basis, the 'metric' is trivial:

In quantum mechanics, we can always choose an orthonormal basis, so that metric is trivial, and then it is 

not necessary to distinguish between upper/lower indices. Hence this is typically not done in QM literature.

Nevertheless, for tensor networks, the position (upstairs/downstairs) of a tensor index does carry useful 

information: it reminds us that the tensor carrying the index is a coefficient of a ket (a vector) or bra (a dual 

vector) respectively. In other words, index positions on tensors carry structure-revealing information that is 

not kept track of in bra-ket information. (There, structural information is carried in the notation for states,         

           vs.        , but not for their coefficients).  

When drawing tensor network diagrams for many-particle systems, this information is a useful 

guide for keeping track of allowed contractions: only upper with lower index! 

Unitarity

Two orthonormal bases are related by a unitary transformation.

Completeness

Covariant notation works nicely!  So why is it not commonly used in quantum mechanics?

raising: lowering:
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In kets, use subscript indices as ket names: 

It is customary to simplify notational conventions for kets and bras (don't write           so often):

In bras, use superscript indices as bra names: 

Simplified notation

Now up/down convention for indices is no longer displayed; but it is still implicit!

Kets: direct product basis: 

Linear combinations:

Bras: direct product space: 

Linear combinations:

Complex conjugation: 

(5) is dual of (2)

Note ket order: start with first space on very left, successively attach new spaces on the right. 

Note bra order: opposite to that of kets in (1), so expectation values yield nested bra-ket pairs:

convention: index order on tensor is reversed (R) from that on bra indices

For systems involving many tensors, e.g. many-particle systems, it is useful to visualized covariant 

notation via arrows on tensor legs. Consider lattice with         sites.

Definition of meaning of 
('generalized Hermitian conjugation'):

TNB-II.2

Overlap:

achieving this nested contraction pattern 

is motivation for definition of      in (6)

Easy to remember: 'contract each index with its dual partner' !

2. Arrow conventions
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Linear combination of kets:

Coefficient matrix = overlap:

Linear combination of bras:

Coefficient matrix = overlap:

In all these overlaps
(12,14,16,18): 

ket indices: written downstairs on       or        , depicted by outgoing arrows

If direct products are involved:

Coefficient matrix = overlap:

If direct products are involved:

Coefficient matrix = overlap:

bra indices: written upstairs on          or         , depicted by incoming arrows

Mnemonic for arrow directions:  'airplane landing':  

bra flying in (up in air), ket rolling out (down on ground).

Operators:

index-reading order

index-reading order

Proliferation of indices calls for graphical notation! 

Index positions (upstairs / downstairs) on tensors will be depicted by arrows (incoming / outgoing):

(TNB-II.1.12)

(TNB-II.2.2)

(TNB-II.1.16)

(TNB-II.2.7)

(TNB-II.1.26)
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Consider a spin-s chain, with Hamiltonian

local state space for site      :

We seek eigenstates of :

Diagonalize Hamiltonian iteratively, adding one site at a time:

  =2:  Add second site, diagonalize         in Hilbert space          :

  =3:  Add third site, diagonalize           in Hilbert space          :

Continue similarly until having added site N. Eigenstates of         in         have following structure:

  =1:  Start with first site, diagonalize         in Hilbert space         . Eigenstates have form 

combine 'incoming'          into 'outgoing' 

coefficient tensor

coefficient matrix

combine 'incoming'             into 'outgoing' 

(sum over       implied)

'matrix multiplication' for 'contracted' index

(sum over           implied)

contracted indices

TNB-II.3
[generates a 1d tensor network]3. Iterative diagonalization
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'matrix product state'  (MPS)

to highlight 'matrix product' structure in noncovariant notation:

Such states an called 'matrix  product states' (MPS)

Matrix size grows exponentially:

has dimension                    (vector)

has dimension                    (rectangular matrix)

has dimension                    (larger rectangular matrix)

for given        ,

for given        ,

for given        ,

Nomenclature: = physical indices, = (virtual) bond indices

Alternative, widely-used notation: 'reshape' the coefficient tensors, such that physical indices are all upstairs,
others all downstairs:

Comments

1. Iterative diagonalization of ID chain generates eigenstates  whose wave functions are tensors that 
are expressed as matrix products.
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'Hilbert space is a large place'

Numerical costs increase exponentially with increasing     , so truncation schemes will be needed...

Truncation can be done in controlled way using tensor network methods!

  for all virtual bondsStandard truncation scheme: use

Number of parameters available to encode state:2.

would be '=' if all virtual bonds have the same dimension, D

scales linearly with system size, 

If       is large: 

Why should this have any chance of working?  Remarkable fact: for 1d Hamiltonians with local 

interactions and a gapped spectrum, ground state can be accurately represented by MPS!

Why?   'Area laws'! (TNB-1.2)
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