V Tensor network methods
So far, we only considered exact representations of states in the many-body Hilbert space, facing us with an exponential increase in computational complexity with the number of dejues of freedom. Now we explore approximate represent tations of states $|4\rangle \in S H_{L}$ such that for a ser of parameters $\underline{t}=\left(t_{1}, t_{2}, \ldots, t_{p}\right)$ with $p \in \mathbb{N}$, the approximation $\mid \tilde{\psi}(\underline{t}))$ is optimal in the sense:

For a give approx. quality $\varepsilon>0$ there exist $p \in \mathbb{N}$ with $\rho \sim \theta\left(L^{\alpha}\right)$ for some $x \in \mathbb{N}$ such Rat

$$
\underline{t} \in V_{\mathbb{K}}^{p} \Rightarrow \operatorname{dist}(|\psi\rangle,|\tilde{\psi}(t)\rangle)<\varepsilon
$$

Questions:
(i) How do optimal paramethizations $\mid \hat{\psi}(t)$) wok like for which choices of dist (X, Y) ?
(ii) What do exponents a look like?
($1,1 i$) Classification of states with uspect to α ?
(iv) Can we construct algorithms to solve ligervalue problem in manifold of parametrizations $|\hat{\psi}(t)\rangle$?

Consider the state $|\psi\rangle \in H_{2}$ with $\alpha \in\left[0, \frac{\pi}{2}\right)$:

$$
\begin{aligned}
|\psi\rangle & =\cos (\alpha)|\uparrow \downarrow\rangle+\sin (\alpha)|\downarrow \uparrow\rangle \\
& \equiv \prod_{\sigma_{1} \sigma_{2}}^{\urcorner} \psi_{\sigma_{1} \sigma_{2}} \quad\left|\sigma_{1}, \sigma_{2}\right\rangle \quad \text { with } \sigma_{1 / 2} \in\{\uparrow, \downarrow\}
\end{aligned}
$$

Le f us interpret $\psi_{\sigma_{1}} \sigma_{2}$ as matrix:

$$
\begin{aligned}
& \sigma_{2} \quad \uparrow \quad \downarrow \\
& \left.\psi=\begin{array}{l}
\sigma_{1} \\
\jmath \\
\jmath
\end{array} \begin{array}{cc}
\sigma_{2} & \uparrow \\
0 & \cos (\alpha) \\
\sin (\alpha) & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=\underbrace{\substack{1 \\
1 \\
0}}_{\underline{i}} \begin{array}{l}
1
\end{array}) \\
\underbrace{\left(\begin{array}{cc}
\cos (\alpha) & 0 \\
0 & \sin (\alpha)
\end{array}\right)}_{\binom{-\underline{u}_{1}^{6}}{-\underline{u}_{2}^{6}}} \underbrace{\left(\begin{array}{ll}
1 & 1 \\
1 & 1 \\
v_{1} & \underline{v}_{2} \\
1 & 1
\end{array}\right)}_{\underline{S}=\left(\begin{array}{ll}
S_{1} & 0 \\
0 & S_{2}
\end{array}\right)}=\underline{\underline{V}}
\end{array}
\end{aligned}
$$

This suggests to write the matrix element $\psi_{\sigma_{1}} \sigma_{2}$:

$$
\psi_{\uparrow \uparrow}=\underline{u}_{1}^{t} \underline{S} \underline{v}_{1} ; \psi_{T \downarrow}=\underline{u}_{1}^{t} \underline{S} \underline{v}_{2} ; \psi_{d \uparrow}=\underline{u}_{2}^{t} \underline{S} \underline{v}_{1} ; \psi_{\downarrow 山}=\underline{u}_{2}^{t} \underline{S} \underline{v}_{2}
$$

or for the state $|\psi\rangle$:

$$
\left.|\psi\rangle=\sum_{\sigma_{1}=1}^{2} \sum_{\sigma_{2}=1}^{2} \underline{u}_{\sigma_{1}}^{t} \underline{S} \underline{v}_{\sigma_{2}} \mid \sigma_{1} \sigma_{2}\right)
$$

Note:
(i) From $\underline{u}^{+} \underline{\underline{u}}=\mathbb{1}_{2 \times 2} \quad \& \underline{\underline{v}} \underline{v}^{+}=\mathbb{1}_{2 \times 2}$ we can connect S to the eipuvalues of the ulnae density matrices:

$$
\begin{align*}
& \hat{\rho}_{\langle 2}=T_{\sigma_{2}}|\psi\rangle\langle\psi| \\
& =\sum_{\sigma_{2}=1}^{2}\left\langle\sigma_{2}\right| \sum_{\substack{\sigma_{1}^{\prime} \\
\sigma_{\sigma_{1}^{\prime}}^{\prime \prime} \\
\sigma_{1}^{\prime} \\
\sigma_{2}^{\prime}}}^{\underline{u}_{\sigma_{1}^{\prime}}^{t}} \stackrel{S}{=} \underline{v}_{\sigma_{2}^{\prime}}\left|\sigma_{1}^{\prime} \sigma_{2}^{\prime}\right\rangle\left\langle\sigma_{1}^{\prime \prime} \sigma_{2}^{\prime \prime}\right| \underline{v}_{\sigma_{2}^{\prime \prime}}^{t} \underline{S} \underline{\underline{q}}_{\sigma_{1}^{\prime \prime}}\left|\sigma_{2}\right\rangle \\
& =\sum_{\sigma_{1}^{\prime} \sigma_{1}^{\prime \prime}}^{\urcorner} \underline{u}_{\sigma_{1}^{\prime}}^{t} \leqq \underbrace{\sum_{\sigma_{2}}^{\imath} \underline{v}_{\sigma_{2}} \underline{V}_{\sigma_{2}}^{t}}_{\underline{11} 2 \times 2} \underline{s} \underline{u}_{\sigma_{1}^{\prime \prime}}^{\prime} \quad \mid \sigma_{1}^{\prime})\left(\sigma_{1}^{\prime \prime} \mid\right. \\
& ={\underset{\sigma}{\sigma_{1}^{\prime} \sigma_{1}^{\prime \prime}}}_{2}^{u_{\sigma_{1}}^{t}} \underline{\underline{S}}^{2} \underline{u}_{\sigma_{1}^{\prime \prime}}\left|\sigma_{1}^{\prime}\right\rangle\left\langle\sigma_{1}^{\prime \prime}\right| \tag{*}\\
& \equiv \sum_{m=1}^{2}\left|u_{m}\right\rangle S_{m}\left\langle u_{m}\right| \\
& \text { with }\left|u_{m}\right\rangle={\underset{\sigma}{1}}^{2}, \underline{u}_{\sigma_{1}}^{t}\left|\sigma_{1}\right\rangle
\end{align*}
$$

analogue:

$$
\hat{\rho}_{1\rangle}=T_{\sigma_{\sigma}}|\psi\rangle\langle\psi|=\sum_{m=1}^{2}\left|V_{m}\right\rangle S_{m}\left\langle V_{m}\right|
$$

(*) is eigenvalue decomposition of $\hat{\delta}_{<2}\left(\hat{\delta}_{1)}\right)$
(ii) From $\underline{\underline{u}}^{\dagger} \underline{\underline{u}}=1_{2 \times 2} \quad \& \underline{\underline{v}} \underline{\underline{v}}^{\dagger}=1_{2 \times 2}$ it also follows that

$$
|\psi\rangle=\sum_{m=1}^{2} S_{m}\left|u_{m}\right\rangle\left|v_{m}\right\rangle
$$

is the schmidt decomposition of $|\psi\rangle$
(iii) If we sort S_{m} such that $S_{1}>S_{2}$ \& neglect S_{2}, then the approx. $|\tilde{\psi}\rangle=S_{1}\left|u_{1}\right\rangle\left|v_{1}\right\rangle$ is the best rank -1 approx. to 1ψ) w.r.t. $I \cdot \|_{2}$ norm of the distance of the reduced density matrices:

$$
\begin{aligned}
\left\|\hat{\rho}_{<2}-\hat{\hat{\rho}}_{<2}\right\|_{2} & =\operatorname{Tr}\left(\left(\hat{S}_{<2}-\hat{\hat{S}}_{<2}\right)^{2}\right) \\
& =\operatorname{Tr}\left(\left(\sum_{m=1}^{2} S_{m}\left|u_{m}\right\rangle\left\langle u_{m}\right|-S_{1}\left|u_{1}\right\rangle\left\langle u_{1}\right|\right)^{2}\right) \\
& =\operatorname{Tr}\left(S_{2}^{2}\left|u_{2}\right\rangle\left\langle u_{2}\right|\right)=S_{2}^{2}
\end{aligned}
$$

\& analogue: $\left.\| \hat{\beta}_{1}\right\rangle-\hat{\tilde{\rho}}_{31} \|_{2}=\operatorname{Tr}\left(\left(\sum_{m=1}^{2} \sin _{m}\left|V_{m}\right\rangle\left\langle v_{m}\right|-s_{1}\left|V_{1}\right\rangle\left\langle v_{1}\right|\right)^{2}\right)$

$$
=S_{2}^{2}
$$

This motivates us to introduce "local" representations of warefunction wefficreints, i.e., tensor network!
V. 1 Matrix-product states / Tensor trains

From the prions considerations, we define a matrix product state (MPS) by decomposing the coefficients $\psi_{\sigma_{1}, \sigma_{2} \ldots \sigma_{L}}$ of a state $|\psi\rangle \in \mathcal{F}_{L}$ in the mang-body H_{i} beet space $H_{L}=H_{d_{1}} \otimes \cdots \otimes H_{d_{L}}$ describing $L \in \mathbb{N}$ degrees of freedom with local dimensions $d_{j} \in \mathbb{N}$ as :

$$
\psi_{\sigma_{1} \ldots \sigma_{L}}=\underline{M}^{\sigma_{1}} \underline{\underline{M}}^{\sigma_{2}} \cdots \underline{\underline{M}}^{\sigma_{L-1}} \underline{M}^{\sigma_{L}} \in \mathbb{K}
$$

where $\underline{M}^{r_{j}} \in \mathbb{V}_{\mathbb{K}} m_{j-1} \times m_{j}$ are matrices for $j \in\{2, \ldots,-1\}$ \& $\underline{1}^{\sigma_{1}} \in \mathbb{V}_{\mathbb{K}}^{1 \times m_{1}}, \underline{M}^{\sigma_{L}} \in \mathbb{V}_{\mathbb{K}}^{m_{L} \times 1}$ are row/ column vectors. We call $m_{j} \in \mathbb{N}$ the bond dimension of the MPS, which specify the number of parameters
used to represent

$$
|\Psi\rangle=\sum_{\sigma_{1}=1}^{d_{1}} \cdots \sum_{\sigma_{L}=1}^{d_{L}} \underline{M}^{\sigma_{1}} \underline{M}^{\sigma_{2}} \cdots \underline{M}^{\sigma_{L-1}} \underline{M}^{\sigma_{L}}\left|\sigma_{1} \ldots \sigma_{L}\right\rangle .
$$

Tensor networks notation

Let $T_{i_{1} \ldots \text {; }}$ be a rank-p tensor with dimensions $d_{1}, \ldots, d_{p} \in \mathbb{N}$. We denote $T_{i_{1}} \ldots$ ip graphically:

Contractions over a set of q shared indices of two tensors $U_{i_{1} \ldots i_{p-q-1}} n_{1} \ldots n_{q}, V_{j} \ldots j_{r-q-1} n_{1} \ldots n_{q}$ are upesented graphically as:

$$
\omega_{j_{1} \ldots j r-q-1}^{i_{1} \ldots i_{p-q-1}}=\sum_{n_{1} \cdots n_{q}}^{i_{n}} U_{n_{1} \ldots n_{q}}^{i_{1} \ldots i_{p-q-1}} \quad V_{j_{1} \ldots j_{r-q-1}}^{n_{1} \ldots n_{q}}
$$

Fusions are defined as groupnig \& merjún of nidices:

$$
i_{i_{2}-(1)^{\prime}-i_{p-1}}^{i_{p}}=\left(i_{1} \ldots i_{p-1}\right) \Longrightarrow-i_{p}
$$

$$
\left.T_{i_{1} \ldots i_{p-1} i_{p}}=\overline{(i}_{1} \ldots i_{p-1}\right) i_{p}
$$

Splits are the verse operations to fusions. Let us use that graphical notation to upusent the MPS decomposition:

$$
|\psi\rangle=\sum_{\sigma_{1}} \cdots \underline{\Sigma}_{2} \underline{M}^{\sigma_{1}} \underline{M}^{\sigma_{2}} \cdots \underline{M}^{\sigma_{L-1}} \underline{M}^{\sigma_{L}}\left|\sigma_{1} \ldots \sigma_{L}\right\rangle
$$

identify: $\underline{M}^{\sigma_{1}} \rightarrow \underset{\sigma_{1}}{M_{1}-m,}$ a man k -2 tensor

$$
\underline{M}^{\sigma_{j}}(1<j<L) \rightarrow m_{j-1}-\frac{\left(M_{j}\right)}{\sigma_{j}}-m_{j} \text { a rank }-3 \text { tabor }
$$

$\underline{M}^{\sigma_{L}} \rightarrow m_{L-1}-C_{H_{L}}^{\sigma_{L}}$ a varies -2 tensor
So that each coefficient $\psi_{\sigma_{1}} \ldots \sigma_{L}$ is given by the network of contracted tensors:

Can we always find an MPS uppesentation for any $|\psi\rangle \in I t_{L}$?
Yes, if we apply the decomposition scheme introduced at the example of $(\psi)=\cos (\alpha)(\uparrow l)+\sin (\alpha) \mid \downarrow \tau)$:
(i)

Fuse
(ii)

(iii)

$$
\begin{aligned}
& \downarrow S V D \\
& \left.\sigma_{1}-U_{1}-m_{1}-S_{1}-m_{1}-V_{1}=\left(\sigma_{2} \ldots \sigma_{L}\right)\right)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\text { set -(U) } \equiv M- \\
\text { contract -S)- V }=V_{1}=-4^{\prime} E
\end{array}\right.
$$

$(i v) \quad\left(M_{1}\right)-m_{1}$

\& upeat from (i) until all local degrees of freedom σ_{j} are factored out.

Observations:
(i) at j^{\prime} th iteration, the number m_{j} of nou-vanishing gnigular values $S_{j, n}, n \in\left\{1_{1} \ldots, m_{j}\right\}$ determines the boud-dimensious m_{j}
(ii) Led $m \equiv \max _{j \in\{1 \ldots, \ldots]} m_{j} \quad \& \quad d=\max _{j \in\{1, \ldots, L\}} d_{j}$, then the number of coefficients per site tensor is bounded by dm^{2}. Thus in total the number of wefficcents is bounded by:

$$
2 d m+\sum_{j=2}^{L-1} d_{j} m^{2} \sim O\left(L d m^{2}\right)
$$

(iii) In each bipartition, the approximation $\mid \tilde{\psi})$ with max. bond dimension $m_{0} \leqslant m$ yields the best approx. Of the reduced density matrix w.r.t. $\|\cdot\|_{2}$ - norm.

Mixed-canouical form \& gauge fixvig We consider a general. MPS upresentation of a state $|\psi\rangle \in H_{L}$ in the computational basis $\left\{\left|\sigma_{1} \ldots \sigma_{L}\right\rangle\right\}$ where σ_{j} 's are labeling the local bares states, i.e., $\sigma_{j} \in\left\{0, \ldots, d_{j}-1\right\}$ with local dimensions $d_{j} \in \mathbb{N}$ for $j \in\{1, \ldots, L\}$:

$$
|\psi\rangle=\sum_{\sigma_{1}}^{?} \cdots \sum_{\sigma_{L}}^{?} \underbrace{\underline{\underline{M}}^{\sigma_{1}} \underline{\underline{M}}^{\sigma_{2}} \cdots \underline{M}_{L}^{\sigma_{L-1}} \underline{\mu}^{\sigma_{L}}}_{\psi_{\sigma_{1}} \ldots \sigma_{L} \in \mathbb{K}}\left|\sigma_{1} \ldots \sigma_{L}\right\rangle
$$

with $\underline{M}^{\sigma_{j}} \in \mathbb{V}_{\mathbb{K}}^{m_{j-1} \times m_{j}}$ matrices (or vectors at the edges).

The coefficient tensor $\psi_{\sigma_{1}} \ldots \sigma_{L}$ is invariant under gauge transformations of the form: For $\underline{\underline{X}} \in \mathbb{V}_{\mathbb{K}}^{m_{j} \times m_{j}}$ an invertible matrix, the MPS is invariant molder the joust trafo:

Chis means that MPS upusentations are not unique! We can fix the gauge degrees of freedom by fixing the gangs transformations:
(i) left canonical gauge:

$$
\begin{aligned}
& m_{j-1} \underbrace{\sigma_{j}^{-}}_{-\left(\sigma_{j}\right)} m_{j} m_{j}^{\prime}=\sum_{m_{j-1}} \sum_{\sigma_{j}}\left(M_{m_{j-1}, m_{j}^{\prime}}^{\sigma_{j}}\right)^{+} M_{m_{j-1}}^{\sigma_{j}} m_{j} \stackrel{!}{=} \delta_{m_{j}, m_{j}!} \\
& \equiv\left[m_{j}\right. \\
& m_{j}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \left.\equiv \begin{array}{l}
m_{j-1} \\
m_{j-1}
\end{array}\right]
\end{aligned}
$$

Define:
(a) Left fusion: $M_{m_{j-1}}^{\sigma_{j}} m_{j} \mapsto M_{\left(\sigma_{j} m_{j-1}\right)} m_{j}$

$$
\begin{aligned}
& m_{j-1}-O_{1}^{-} m_{j} \longmapsto\left(\sigma_{j} m_{j-1}\right)=0-m_{j} \\
& \sigma_{j}
\end{aligned}
$$

(b) Right fusion: $M_{m_{j-1} m_{j}}^{\sigma_{j}} \mapsto M_{m_{j-1}}\left(\sigma_{j} m_{j}\right)$

$$
\begin{gathered}
m_{j-1}-0-m_{j} \\
\sigma_{j}
\end{gathered}
$$

The gage conditions (i)/(ii) can be satisfied by choosing \underline{X} as:

$\Rightarrow \underline{X}=\underline{\underline{R}}^{-1}$ which always exists because $\underline{\underline{R}}$ is upper triangular
(ii) $m_{j-1}-O=\left(\sigma_{j} m_{j}\right) \stackrel{L Q}{=} m_{j-1}-\langle \rangle-m_{j-1}^{\prime}-<\mathcal{Q}=\left(\sigma_{j} m_{j}\right)$
$\Rightarrow \underline{\underline{X}}=\underline{L}^{-1}$ which always exists because $\underline{\underline{R}}$ is upper triangular

Consequences:

1) The gangs transformations taking M_{j} to the left-/right-cananical form are unique, because $Q R(L Q)$ - decomposition is unique
2) For each M_{j} there is a unique gange-trafo X so that all gauge degrees of freedom of the ITPS- representation can be fixed demonding all site-tensors to be either leff-or ripht-canomical!
3) Replacing QRILQ)-decomporition with the $S V D$, we immediately can read of $\mathbb{R}^{-1} / 上^{-1}$.

Notational agreement:
(i) Left-canomical site-teroors are upreseented by triangles posting to the right:
\& duoted by $A_{m_{j-1}}^{r_{j}} m_{j}$
(ii) Right-canowical site-tensors are xpresented by triangles pounting to the $\mathrm{b}_{\mathrm{f}} \mathrm{t}^{\prime}: m_{j-1}-\frac{\Gamma_{j}}{\Gamma_{j}} m_{j}$ \& duoted by $B_{u_{j-1}}^{\sigma_{j}} m_{j}$
\& MPS of the form:

$$
\begin{array}{cc}
V_{-} m_{1}-D_{1}-m_{2} & \cdot m_{L-2}-Y_{-}^{-m_{L-1}}-\frac{1}{0} \\
\sigma_{1} \quad \sigma_{2} & \sigma_{L-1} \quad \sigma_{L}
\end{array}
$$

is culled lelt-canomical
A MPS of the form:

$$
\begin{array}{llll}
0 & -m_{1} & - \text { - } & m_{2} \\
1 & \cdots & m_{L-1} & -1 \\
\sigma_{1} & \sigma_{2} & & \sigma_{l}
\end{array}
$$

is called right-canonical
A MPS of the form:
is called unixed-canomical with orthogonality center at site j.

She gauge fixing projector
To formulate MPS - algorithms, it is whrenuent, to introduce the gorge sixmig projector $\hat{\Pi}_{j}$.
$\hat{\Pi}_{j}$ can be defined by:

If $\hat{\Pi}_{j}$ acts on 14), then we can use the gange-trato to show:
which yields:

It is also easy to see that $\frac{1}{1 j}^{2}=\prod_{j}$. Thus, $\hat{T l}_{j}$ is the unique operator, which transforms the MPS upresentation of $|\psi\rangle$ ito the mixed-canonical upresentation with orthogonality center at site "j".

Variational compression
Assume 14 | is given as MPS with bound dimensions $m_{1} \ldots m_{L-1}$. We want to approximate 14) by a state $|\hat{\psi}\rangle$ with max. bond dimension \tilde{i} by minimizing the distance:

$$
\begin{aligned}
\operatorname{dist}(|\psi\rangle,|\hat{\psi}\rangle) & =\||\psi\rangle-|\tilde{\psi}\rangle \|^{2} \\
& =\langle\psi \mid \psi\rangle+\langle\tilde{\psi} \mid \tilde{\psi}\rangle-\langle\psi \mid \tilde{\psi}\rangle-\langle\tilde{\psi} \mid \psi\rangle
\end{aligned}
$$

We minimize dist $(14),|\tilde{4}\rangle)$ by searching the stationnary point w.r.t. to all coefficients $\tilde{M}_{\tilde{a}_{j-1} \sigma_{j}}^{a_{j}}$ of the guess state $\langle\tilde{\psi}|$:

$$
\left.\begin{array}{rl}
& \langle\tilde{\psi}| \equiv\left\langle\tilde { \psi } \left(\tilde{M}_{\tilde{m}_{1}}^{\sigma_{1}}, \tilde{M}_{\tilde{m}_{1} \tilde{m}_{2}}^{\sigma}, \ldots, \tilde{M}_{\tilde{m}_{2-1}}^{\sigma_{2}}{ }^{*}\right.\right.
\end{array}\right) \mid
$$

The scalar products are evaluated by contracting a tensor -network:

$$
\begin{aligned}
& \langle\dot{\psi} \mid \psi\rangle=\sum_{\sigma_{1}}^{\tau} \cdots \sum_{\sigma_{L}}^{\urcorner}\left(\underline{\tilde{M}}^{\sigma_{L}}\right)^{\dagger}\left(\underline{M}^{\sigma_{L-1}}\right)^{\top} \cdots\left(\underline{\underline{H}}^{\sigma^{\prime}}\right)^{\dagger} \underline{M}^{\sigma_{1}} \cdots \underline{M}^{\sigma_{L-1}} \underline{M}^{\sigma_{L}} \\
& = \\
& |\psi\rangle
\end{aligned}
$$

Now each denvative "erases" the coefficients $\tilde{M}_{\tilde{m}_{j-1}}^{\sigma_{j}} \hat{m}_{j}$ if acts on:
 from derivative!

However, solving the optimization problem for all derivatives is still hopeless. But we can use the fact $|\tilde{\psi}\rangle=\hat{\Pi}_{j}|\tilde{\psi}\rangle$ where now $\hat{\Pi}_{j}$ is created from the gange-fixed tensors of $|\tilde{\psi}\rangle$. We then solve for each $j \in\{1, \ldots, L\}$:

$$
\frac{\partial}{\partial \tilde{H}_{\tilde{m}_{k-1} \tilde{w}_{k}}^{\sigma_{k}}}\left(\langle\tilde{\psi}| \hat{\pi}_{j}|\tilde{\psi}\rangle-\langle\hat{\psi}| \hat{\pi}_{j}|\psi\rangle\right)=0
$$

Therefore, we can use the mixed-canomical representation \& only solve for one sod of coefficient $\tilde{M}_{\tilde{m}_{j-1}}^{\sigma_{j}} \tilde{m}_{j}$:

The left-hand side is an optimized site-fusor of the approx. $|\tilde{\psi}\rangle$ \& the right-hand side the contractions we have to perform to obtain this optimized tensor. Note that if we sweep from left to right \& rice rosa, we can obtain optimixed tensors, reusing pervious contractions of the night side.

Variational ground-state search
We apply the variational primajple to fid optimal approx. to the solution of the minimization problem:

$$
\left|\tilde{\psi}_{0}\right\rangle=\underset{|\varphi\rangle \in M(m)}{\operatorname{argmin}} \frac{\langle\varphi| \hat{H}|\varphi\rangle}{\langle\varphi \mid \varphi\rangle}
$$

where MIm) is the manifold of MPS with bond
dineensious $\underline{m_{L}}=\left(m_{1}, m_{2}, \ldots, m_{L-1}\right)$. Introducing a Lagrange-multiphier $\lambda \in \mathbb{R}$, the minimization is equivalent to solve

$$
\frac{\partial}{\partial \bar{M}_{m_{j}-1}^{\sigma_{j}} \mu_{j}}(\langle\varphi| \hat{H}|\varphi\rangle-\lambda\langle\varphi \mid \varphi\rangle) \stackrel{!}{=} 0
$$

for all wefficients $\bar{M}_{m_{j-1} \sigma_{j}}^{\sigma_{j}}$ of the bra:

$$
\langle\varphi|=\sum_{\sigma_{1} \ldots \sigma_{2}}^{7} \underline{M}^{\sigma_{1}} \underline{\bar{H}}^{\sigma_{2}} \ldots \underline{\bar{M}}^{\sigma_{2}-1}\left\langle\sigma_{1} \ldots \sigma_{L}\right\rangle .
$$

we obtain L coupled equations (for each site):

is the representation of \hat{H} as mafrix-prodect operator.
Again, we use the mixed-canowicul
upresertation to decouple the set of equations:

We treat the network:

as operator acting on - Then we have to solve the local eipherake probleers:

 sweeping through the system!

Her, a Lanczos aljorithn-seems to be the method of choice to find the eiprtensor - © $-\equiv\left|\varphi_{j}\right\rangle$ \& eiprake λ yielding, an approx. to the overall ground stake.

Note:

- Computing $\hat{H}_{j}^{l \mid}\left|\varphi_{j}\right\rangle$ is numerical most expensin operation $\sim \theta\left(m^{3} d^{2} \omega^{2}\right)$ where $\omega \hat{=}$ MPO-boud dimension
- Convergence locally is exponentially fast in the gap of the local Hamiltonian $\hat{H}_{j}^{\text {ell }}$
- Global conreguce un principle also exposetidal, but: only in the manifold MIm)!
- Global optimization no longer convex
because of $\hat{H} \Rightarrow$ Can ger stuck in local minima
- Cave full choice of mitral guess $|\varphi|$ \& 2- Site updates or algorithms to increase boud-dins \underline{m} we crucial!

MPO - constunchion (the tale of FSH)
How do we obtain MPO-xpresertation of \hat{H} ?
let us look as an example at the transusese field Ising woke with $L=2$ sites:

$$
\begin{aligned}
\hat{H} & =\hat{S}_{1}^{z} \hat{S}_{2}^{z}-g \hat{S}_{1}^{x}-g \hat{S}_{2}^{x} \\
& =\hat{S}^{z} \otimes \hat{S}^{z}+\left(-g \hat{S}^{x} \mid \otimes \hat{1}+\hat{1} \otimes\left(-g \hat{S}^{x}\right)\right. \\
& =\left(\begin{array}{ll}
11 & \hat{S}^{z}-g \hat{S}^{x}
\end{array}\right)\left(\begin{array}{c}
-g \hat{S}^{x} \\
\hat{S}^{z} \\
11
\end{array}\right)
\end{aligned}
$$

General idea: Introduce bipartition at site \bar{j}

$$
\begin{aligned}
& \hat{H}=\sum_{j} \hat{S}_{j}^{z} \hat{S}_{j+1}^{z}-\sum_{j} \hat{S}^{x} \\
& =\sum_{l<j} \hat{\sigma}_{l}^{z} \hat{S}_{l+1}^{z}+\sum_{l \leq j}^{7}\left(-g \hat{S}_{l}^{y}\right) \\
& +\sum_{l=j}^{l} \hat{S}_{l}^{z} \hat{S}_{l+1}^{z}+\hat{\sum}_{l>j}\left(-j \hat{S}_{l}^{y}\right) \\
& +\hat{S}_{j}^{z} \hat{S}_{j+1}^{z}+\left(-j \hat{S}_{j}^{x}\right)
\end{aligned}
$$

Denote:
$\hat{H}_{<j}^{\alpha}=\hat{h}_{<j}^{\alpha} \otimes \mathbb{1}^{\otimes^{L-j+1}}$ where $\hat{h}_{<j}^{\alpha} \in H_{i j}$ acts ant on sites $1 \cdots j^{-1}$
$\hat{H}_{>j}^{\alpha}=11^{\otimes \prime} \otimes \hat{h}_{>j}^{\alpha} \quad$ where $\hat{h}_{>j}^{\alpha} \in H_{y_{j}}$ acts only on sites $j+1 \ldots L$

Identify:
$\hat{h}_{<j}^{L}=\sum_{l<j-1}^{\lambda_{l}} \hat{S}_{l}^{z} \hat{S}_{l+1}^{z}+\sum_{l<j}\left(-g \hat{S}_{l}^{x}\right) \quad$ aching an g on eff part of system

$$
\begin{aligned}
& \hat{h}_{>j}^{R}=\sum_{l>j} \hat{S}_{l}^{z} \hat{S}_{l+1}^{1 z}+\sum_{l>j}\left(-g \hat{S}_{l}^{x}\right) \\
& \hat{h}_{<j}^{z z}=\hat{S}_{j-1}^{z}, \hat{h}_{>j}^{z z}=\hat{S}_{j+1}^{z}
\end{aligned}
$$

Then we can write:

$$
\hat{H}=\left(1^{\left(1^{(j-1)}\right.} \quad \hat{h}_{<j}^{z z} \quad \hat{h}_{<j}^{L}\right)\left(\begin{array}{ccc}
11 & \hat{S}^{\tau} & \left(-g \hat{S}^{x}\right) \\
0 & 0 & \hat{S}^{z} \\
& & 11
\end{array}\right)\left(\begin{array}{l}
\hat{h}_{>j}^{R} \\
\hat{h}_{>j}^{z z} \\
11
\end{array}\right)
$$

Interpretation: open operator strings connecting leff/zight

we hare:
(i) complete operator strings in left|zight part of the system
(ii) open operator strings connecting bef|right
pert of system with sit j
(iii) strictly local operators

Systematic formulation using finite state machines (ISMs)

An operator is completely characterized by all nou-trivial, distinct strings of local operators.
 as "words" formed by "alphabet" \sum_{1} (e.g. for spurs: $Z^{Z}=\left\{11, \hat{S}^{x}, \hat{S}^{y}, \hat{S}^{z}\right\}$). If global operator \hat{H} is then defined by the set of "words" compatible with \hat{H}.

Finite state mach nee:
For 2_{1} a set of symbols \& Ω a set of states then $\delta: z_{i} \times \Omega \rightarrow \Omega$ an invertible map definer a FSM.

Example
Which transition function δ generates all possible combinations of $0 \ldots 01 \ldots 10 \ldots 0$ with at arb. around of " 1 " between arbitrary amount of " 0 "?

Graphical solution:

$$
\begin{array}{lll}
\delta[I, 0] \mapsto I & \delta[A, 0] \mapsto F & \delta[A, 1] \mapsto A \\
\delta[I, 1] \mapsto A & \delta[F, 0] \mapsto F &
\end{array}
$$

Write δ as matrix:

$$
\left.\begin{array}{c}
I \\
I \\
A \\
F \\
F \\
\hline O
\end{array} \begin{array}{lll}
O & F & \sigma \\
\varnothing & 0 & 0
\end{array}\right)
$$

Now any sequence of length ' L ' is obtained by formally multiplyüy matins:

$$
\begin{aligned}
& L=4: \\
& \left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & \sigma \\
\theta & 1 & 0 \\
0 & \varnothing & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
\theta & 1 & 0 \\
0 & \varnothing & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& =\left(\begin{array}{lll}
00 & 00+01 & 00
\end{array}\right)\left(\begin{array}{c}
0 \\
10 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Now let's apply this to operators!
Courider $\hat{H}=\sum_{j}\left(\hat{S}_{j}^{x} \hat{S}_{j}^{x}+\hat{S}_{j}^{y} \hat{S}_{j}^{y}+\hat{S}_{j}^{\forall} \hat{S}_{j}^{z}\right)$.
There are 3 types of operator strings:
a) $\mathbb{1} \otimes \cdots \mathbb{1} \otimes \hat{S}^{x} \hat{S}^{x} \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}$
b) $1 \mathbb{\otimes \cdots \otimes \mathbb { 1 } \otimes \hat { S } ^ { y } \hat { S } ^ { y } \otimes \mathbb { 1 } \otimes \cdots \otimes \mathbb { 1 } , ~ (1)}$
c) $\mathbb{1} \otimes \cdots \otimes \mathbb{1} \otimes \hat{s}^{z} \hat{S}^{t} \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}$

They are generated by the FSM:

$$
\begin{aligned}
& 2=\left\{1, \hat{S}^{x}, \hat{S}^{y}, \hat{S}^{z}\right\} \\
& \Omega=\{I, A, B, C, F\}
\end{aligned}
$$

Trassition function as operator-valued matuix:

$$
\left.\hat{\underline{\omega}}=\begin{array}{ccccc|c}
\underline{N} & \hat{S}^{x} & \hat{S}^{y} & \hat{S}^{-2} & 0 \\
0 & 0 & 0 & 0 & \hat{S}^{x} \\
0 & 0 & 0 & 0 & \hat{S}^{y} & A \\
0 & 0 & 0 & 0 & \hat{S}^{+} & C \\
0 & 0 & 0 & 0 & 11
\end{array}\right) \mp
$$

at lattice site j take expectation value:

$$
\begin{aligned}
& \underline{\omega}^{\sigma_{j}} \sigma_{j}^{\prime}=\left\langle\sigma_{j}\right| \underline{\hat{\omega}}\left|\sigma_{j}^{\prime}\right\rangle \\
& =\underbrace{\left(\begin{array}{ccc}
\left\langle\sigma_{j}\right| \mathbb{L}\left|\sigma_{j}^{\prime}\right\rangle & \left\langle\sigma_{j}\right| \hat{s}^{x}\left|\sigma_{j}^{\prime}\right\rangle & \left\langle\sigma_{j}\right| \hat{s^{x}}\left|\sigma_{j}^{\prime}\right\rangle \\
& \left\langle\sigma_{j}\right| \hat{s}^{\hat{\lambda}}\left|\sigma_{j}^{\prime}\right\rangle & 0 \\
& \left\langle\sigma_{j}\right| \hat{\delta}^{x}\left|\sigma_{j}^{\prime}\right\rangle \\
& \left\langle\sigma_{j}\right| \hat{s^{y}\left|\sigma_{j}^{\prime}\right\rangle} \\
& \left\langle\sigma_{j}\right| \hat{s}^{\tau}\left|\sigma_{j}^{\prime}\right\rangle \\
& \left\langle\sigma_{j}\right| \mathbb{1}\left|\sigma_{j}^{\prime}\right\rangle
\end{array}\right)}
\end{aligned}
$$

MPO - mathix at site j !

From this constriction scheme, any operator on It La be converted nits an UPO by constructing the matrices $\underline{W}^{G_{j} \sigma_{j}^{\prime}}$ explicitel,

