
I Tensor networkmethods

So far, we only considered exact representations

of states inthe many-body Hilbet space, facing
us with an exponential increase incomputational

complexity with the number of degrees of freedom.

Now we explore approximate representations of stakes

M) -> H, such that for a set of parameters

I =(t, it, ..., tp) with PeIN, the approximation

14(E) is optimal in
the sense:

For a given approx. quality 920 there exist

p
-IN with prOCLY) for some x-> I such tat

=>-YP =dist(14), lY(E))) > E

Questions:
si) How do optimal paramedrizations (EK) look like

for which choices of dist(X,Y)?

(ii) What do exponents a look like?

(iii) Classification of states with respect to a?
ꋻ



(iv) can we construct algorithms to solve eigen-
value problem inmanifold of paramemizations
(E))?

Conside the state 14) *He with ae(0, E):

143 =cos(x) (41) +si() (t4)

= 15,2) with e E4,1

Let us interpret 45,5 as matrix:

52 4 ↓

Icoscal)I =is
o

SVDE5, ↑

↓ Tz

↑

=-i)() (ii)
*()=E=

This suggests to write the matrixelement tas:

Y =a;4 =4,42;4 =2ki4 =42
ꌀ



or for the state 14):

14) =E,( (r (5,52)

Note:

(i) From I1 =12x2 & EE
T
=12x2 we can connect

Sto the eigen values of the reduced density
matrices:

5x =Tr(4)(4)

-, 21ri 1"lr")
~,"2"

-Er 15,) 5,"l
e

12x 2

-> Er'r 18" (x)

=>,(Ym) Sm (um
with lum) =25 15)
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an a logue;

5) =Tr,H)(4)
=2, IVm) Sm Val

(x) is eigenvalue decomposition of 5x(5x)

(ii) From y =12x& WE =12x2 it also follows

Hat
14) =Salamb IVm

is the Schmidt decomposition of 147

ciii) If we sort so such that5,252 & neglect

S2, then the approx. 1) =S, In) (r,) is the

best rank - 1approx. to 14) w.r.d. 1.le norm

of the distance of the reduced density matrices:

115x - (112 =Tr(15x -5,14)

-Tr(),Salumb(uml-5, 14)(n,1))

-Tr(s, (42) (41) =S

& analogue:11 Es
- alle -Tr(),SNukral-s, IV)(r,1)Y

=S ꋽ



This motivates us to introduce "local representations

of ware function coefficients, i.e., tensor networks!

E. 1Madrix-product states/ Tensor trains

From the previous considerations, we define a

madrix product state (MPS) by decomposing the

coefficients 45,5... , of a state 14 - 71, in

the many-body Hilbert space HL =Hd, ... * Hdy

describing LEIN degrees of freedom with local dimensions

d;EIN as i

4r,... =M418... ** ekk

where 15cV**nsare matrices for je[?, ..., 21]

& M4 = Vp**,** are row / column vectors.

We call my
eN the bond dimension of the

MPS, which specify the number of parameters
ꋹ



used to represent
di

14) =E...**...
*1* 1r, ...).

Tensor networknotation

Let Ti... be a rank-p tensor with dimensions

d, ..., dp -> IN. We devote ti...ip graphically:
in ip
↳ /
- I

i
-D

↑

is 2

contractions over a set of a shared mndices of two

tensors Ui ...ip-quin ...nq, Vj, ... jrq-"...4q are

upresented graphically as:
in is en j, jz in

" in in
I lin ↓ &

-

⑧ ꋾ I
L ꋾ -

U i =

e I 11...W ! -ip -q-
-

r- q-
ip-qr jr-q-

#



i...ip -q- 1, . . . 4q
W
je ... ja-q-1 -EinUni V

j....jr-q-1

Fusions are defined as groupwig & marging

of indices:

in ip
W ~

-

u

I
pi-p

=(i)--

Ti ...ip-, ip =Ti ...ip-1)ip

Splits are the neverse operations to fusions.

Let us use that graphical motation to uppsent the

MPS decomposition:

14) =2 ... 1848 . . . 4415,...f)

idutify:MY
-Nm, a rank-2 tensor

45(cix) -m-pi- m;
a rank-s two

ꋻ



1 -m

a
rack-2 tensor

So that each coefficient tr, ..., is given by
the network of contracted tensors:

ꋺ,-...↓ 5z

Can we always find an
MPS ipresentation for

any
ML Eit?

Yes, if we apply the decomposition scheme
infro-

duced at the example of 14) =cos() (+) +8m) (44):

is! i.. Et
/Fuse

ꋼ



↓
(ii)

5, - 4 =>(82 . .
. k)

↓ SVD
(iii)

r -- m, --m - V =>I5...E)

Set -- =M-↓ contract -S-E=LE
↑in

mm -
... ni

& upeat from (i) until all local degrees of freedom

5,are factored out.

Observations:

(i) at j'th iteration, the number myof nor-vanishuy
Singular values Sjin, n=21, ..., mj]

determines

the bond-dimensions mj
ꋽ



(ii) Le6 m
=max mjdd =

je..9j, themje[1, .-,]

the number of coefficients per site
tensor is

bounded by dru? Thus in total the number of

coefficients is bounded by:

adm
+dj m2

~ (hdm

Civil In each bipartition, the approximation (4) with

max. boud dimension Mo-m yulds the

best approx. of
the reduced density matrix

word. 11. Ile-norm.

ꋾ



Mixed-canonical form &
gange fixing

We consider a general MPS representation of
a state (4) -> 12 inthe computational

basis 215,...513 where oj's are labeling
Die local basis states, i.e., 5j - {0, ..., dj-13
with local dimensions dj EIN for j-[1,..., 23:

14) =3...tr.e
with 15 eVixM;matrices (or vectors at

the edges).

The coefficient densor tr....w is invariant

ruder ganze
transformations of the forme:

For AEVM*M;an invertible matrix,

the MPS is uivariant under the joint Gato:

jg
-

--=ge ꋻ



mj
-

-
--E

Thismeans that MPS ipresentations are not

unique! We can fixthe gangs degrees of

freedom by fixing the ganze transformations:

(i) left canonical ganze:

Mj- 1 In =22? (Mü,mi)Mü,m; dug,um,,8j

=(

(ii) min-gus- Mj (Mäguidajit
mj-1

i
=

⑧



Definig:

cal Leftfusion: Mim;Majuj) mj

ming-j)i

(3) Right fusion:ME,m; in Mujug
nj1 -0-mj(mj,

-0-(5jmj)
↓j

The garge conditions (i)/(ii) can be satisfied

by choosing Aas:
Mj

(i) (5,mj-) =0-m,(ymj) =E- mj -4- m,
=>A =E1 which always exists because

*

is upper trangular

L Q

(ii) mj,
-0=(ymj) -amj --3- 4,! -x+(5mj)

=>*
=1" which always exists because

*is upper tricular



Consequences:
1)The ganze transformations taking Mjto the

leff-/right-canonical form are unique,
because QR(LQ) - decomposition is unique

2) For each M;there is a unique gange-trafs

*
so that all ganze degress of feedom of

the MPS - representation can be fixed deman-

diy all site-tensors to be either left- or

right-conomicul!

3)Replacing QR/G) - decomposition with the
SVD, we immediately can read of "E!

Notational agreement:
(i) Left-canonical site-tensors are upresented by

triangles pointing to the right:

m-



Aj& devated by mi mj

(ii) Right-canonical site-fensors are represented by
triangles pointingto the left:mj -Is
& deoted by Be,mj

A MPS of the form:

---4-m.. mite5z E-1

is called left-canonical

A Mps of the form:

8
-

m,
-

...-5, E

is called night - canonical

AMPS of the form:

-m
...

---↓
jt1

③



is called mixed-canonical with orthogonality
center at site j.

The ganze fixing projector

To formulate MPS - algorithms, itis convenient, to

introduce the ganze fixnig projector #j.

I;can be defined by:
!, wj 5 Sitz

Emimi... kükmit miniin-I

[-mitmeiimm-mi in de

If Ij acts on 143, then we can use the

ganz-trafo to show:

0-m"-0-...

mi... -

-2Dieede I

↑
- M,--- ↑m,...

-... 5, 5,

ꋺ



which yields:Er-in -by aMj

Ozgam". zantmügiIst 187

ü -
Jet E·It.. la↓ 22 5- 1 T

11

... mititisane
Itis also easy to see thatij=Fj.
Thus, Itis the unique operator, which

transforms the MPS representation of 14) ito

the mixed - canonical representation with

Ethogonality center at site"j".

⑧



Variational compression

Assume 14) is given as MPS with bond

dimensions m,...ML-1. We
want to

approximate 14) by a state (4) with

max, band dimension inbyminimizing
the distance:

dist(14), 142) =1114)-1> 11
2

=(4143 +(14) - 44/4) - (14)

We minimize dist)14), (4) by searching the statio-
~ oj

wavy point wirt to all coefficients M
m,mjof

the guess
state (4):

(4) =(, M*, ...,

=>0 =(* *... +(44) - (1)--

⑧



The scalar products are evaluated by contracting
a
tensor-network:

(14) -.........
147

=19 liüüüü
Now each derivative "erases"the coefficients

*

; it acts on:

o14 =z...übi..12 15

inihiy
1

coefficients ME,m. removed
S

from derivatived

ꋽ



However, solving the optimization problem for

als deviratives is still hopeless. But we

can use the fact (4)=Fj14) where now

#jis created from the ganze-fixed tensors of

I. We then solve for each je {1...., 23:

& (1) - (15;14)) =0-

&Ma

Therefore, we can use the mixed-canonical

representation & only solve for one set of cofficients
~

Mr; im;

6

0....mj
-

0-0-m.
e

- 185+1 r8 =---
-
- ...----

6

0....mj
-

0-0-m.
e

=>j,
-
- m =Ir 185+1 r
↳ ↳....jz-L-j

-- -

⑧



The left-hand side is an optimized site -tensor

of the approx.
14) & the right-hand side the

contractions we have to perform to obtainthis

optimized tensor. Note that if we sweep from

left to right & rice vesa, we
can obtain opti-

mited tensors, reusing previous
contractions of the

night side.

Variational ground-State search

We apply the variational principle to find

optimal approx. to the solution of the

minimization problem:

1Yr) =argmin e
(4) (M(m)

where c12) is the manifold of MPS with bond

⑧



dimensinns m
=(m,mn, ...,m). Indroducing

a Lagays-multipler in - M, the minimization

is equivalent to solve

;((11) - x(19) =0

for all wefficients Maimsof the bra:

41 =r *E... **(r, ... 1.

we obtain a coupled equations (for each site):

Mp-...
-- 0
-0- ... -(4)

:: = I I I
I I

-... -- -- ... -(y)
5

wher .... --daswirwar ... warir.)(r
5, T

is the representation of I as matrix-product
operator.

Again, we use the mixed-canonical
ɩ



upretation to decouple the set of equations:

:i =x
We treat the network:

In... -:
as operator acting on -p. Then we have

to solve the loal egevalue problems:

-x =x

e
I

145 147

Note:5 =

E.. can be constucted iteratively when

↓... sweeping through the system! ꋻ



Hers, a Lanczos algorithm seems to be

the method of choice to find the

eipatensor
- 8
- =14;) & eiqevalue R

yielding an approx. to the overall ground
stak.

Note:

· computing [19j) is numerical most

expensive operation - 0 (m d'wY where

w =M40-bond dimension

·Convergence locally is exponentially fast in

the gap of the local Hamiltonian Mi

. Global conserface
inprinciple also exposer-

hia, but:only in
the manifold (m)!

· Global optimization no longer consex
e



because of Ft => Can get stuck inlocal

minima

· Cars full doice of mitial guess (4) &

2 siteupdates or algorithms to increase

bond-dins onare concial!

MPO- construction (the tale of FSMS)

How do we
obtainMPO -represendation of FI?

Led us look as an example at the transverse

field Isig model withL=2 sites:

4 =552 - 95Y -g

=5x +( - g5x +1x(g5y)

I
- 55

I=(157 - g5Y S
ꋻ



General idea: Introduce bipartition at side j

if =25,5 - 925*

=2+59
exj

+ - 552)
23j
ech

-5; +1- 55%)

Denote:
( - j+1

#i =4;*1
④

where his ts;acts only

on sites 1...j-1

eix
#; =1 ⑦ ksj where hs->is;acts only

on sites ja... L

Identify:

in =en+tg5) aching only on left
part of system ꋺ



httg
12

=2 =S
j - 1 I i =5

Then we can write:

A =(er i ii)(it
Interpretation: open operator shis,connecting leftlzigt

h part
↓ ↓

52 Sty -st
0

-
...vovo.... IsI-gixx -g'systis

↑Danbany
afsos;sich and only light of j

I
we have;

(i) complete operator strings inleft night part of the
system

(ii) open operator strings connecting leffright 5



part of system with size j

(iii) strickly local operators

Systematic formulation using finite state

machines (FSMs)

An operator is completely characterized by all

non-trivial, distinct strings of local operators.

Treat operator strings (e.g. 1x.-- ****1*-)

as "words" formed by alphabed" , le.g. for
1

spris:2
={1, 5*, 5,54]). A global operator H

is the defined by the set of "words"compatible
with II.

Finite state machine:

For 2a set of symbols & of a set of states

then 8:2 xed -> od an invertible map

defires a FSH.

⑲



Example

which transition function & generates all possible
combinations of 0...01... 10 ... 0 with at

ub. amountas"1"between arbitrary amount of "O?

Craphical solution: 2={0,13Out
dan ={I,A,F]

8SI,0JH I WIA,0] 1 F d(A,1] A

↓[I, 1] 1- A
d[F,0] 1F

Write & as matrix:

IA F

0 0

E I -A
⑧ ⑧

Now any sequence of length " is obtained

by formally multiplying matrices:

ꋽ



1
=4:

1 x(2)()(8)

=100 00 +0200 (108900) =0000 +0010 +0100+ 0110+0008

Now let's apply this to operators!

Consider II =5.75,5, +515; +5,55).
There are 3 types of operator strings:

a) 14..e1 * **1 Q... *1

5) 10..e1"01Q... *1

c) 10..e15010... *1

They are generated by the FSM:

54 5x 2={1,5",57}
->0
va**or 2 =2I,A,B,2,F]
↳

ꋾ



Transition function as operator - valued matrix:
I 5"YSt 0 I

0 0 0 0 gY A

i =
0 0 0 0 Y B

-

- I
0 O 0 ⑧

I
I

0 0 0 0 :t C

IA
ic

at Lattice site;take expectation value:

=11
<55 ** (5j')

(8;11153 (551545' (515415;(5,1545;7 ⑧

I s5;15"10;)I<5;15415;-Ei!
ꋻ



From this construction scheme, any operator on

its can be converted indo an M40 by constructi
the matrices 55explicitely.
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