VI Quantum Monte - Carlo
Until now we always aimed for eperesenrations of the many-body ware functions.
However, if we an only interested in observables, we don't necessaning need upusentations of 14\rangle. Instead, we can rewrite expectation values as:

$$
\begin{aligned}
\langle\hat{O}\rangle & =\operatorname{Tr}\{\hat{\rho} \hat{O}\} \\
& =\sum_{\sigma_{1}, \sigma_{L}, \sigma_{1} \ldots \sigma_{L}^{\prime}}^{?}\left\langle\sigma_{1} \ldots \sigma_{L}\right| \hat{\rho}\left|\sigma_{1}^{\prime} \ldots \sigma_{L}^{\prime}\right\rangle\left\langle\sigma_{1}^{\prime} \ldots \sigma_{L}^{\prime}\right| \hat{O}\left|\sigma_{1} \ldots \sigma_{L}\right\rangle
\end{aligned}
$$

Let us assume \hat{O} is diagonal in the doormen basis:

$$
\begin{aligned}
& \left\langle\sigma_{1}^{\prime} \ldots \sigma_{L}^{\prime}\right| \hat{O}\left|\sigma_{1} \ldots \sigma_{2}\right\rangle=\delta_{\sigma_{1}^{\prime} \sigma_{1}} \cdots \delta_{\sigma_{L}^{\prime} \sigma_{L}} O\left(\sigma_{1} \ldots \sigma_{L}\right) \\
& \Rightarrow\langle\hat{O}\rangle=2_{\sigma_{1} \ldots \sigma_{2}}^{?} p\left(\sigma_{1} \ldots \sigma_{L}\right) O\left(\sigma_{1} \ldots \sigma_{L}\right)
\end{aligned}
$$

when $p\left(\sigma_{1}, \ldots \sigma_{L}\right)$ is the prob, to fund the condignration $\left(\sigma_{1} \ldots \sigma_{l}\right)$.

Assume now, that we where able to create samples $\underline{\sigma} \in D^{L}$ where D is the set of configurations per degree of freedom σ_{j}, distributed accor $d i n g$ to $p(\underline{\sigma})$. Let us draw N samples $\left\{\underline{\sigma}^{n}\right\}_{n=1 \ldots N}$ them:

$$
\langle\hat{O}\rangle \approx \frac{1}{N} \sum_{n=1}^{N} O\left(\underline{\Phi}^{n}\right) \equiv \bar{O}_{N}
$$

is an approx. to $\left(\hat{O}_{N}\right)$ in the state $\hat{\rho}$.
Now perform $M \in \mathbb{N}$ upititions of the estimation:

$$
\left\langle\bar{O}_{N}\right\rangle=\frac{1}{M} \sum_{m=1}^{M} \bar{Q}_{N, m}
$$

which has the estimated error:

$$
\begin{aligned}
\left\langle\delta \bar{O}_{N}\right\rangle & =\sqrt{\operatorname{Var}\left[N_{1} \hat{o}\right]} \\
& =\sqrt{\frac{1}{M} \sum_{m=1}^{M}\left(\bar{O}_{N, m}-\left\langle\bar{o}_{N}\right\rangle\right)^{2}}
\end{aligned}
$$

Note that the uprated sampling is uquired to estmate $\left(\delta \overline{0}_{N}\right\rangle$, since a direct estimation of $(\langle\bar{O}-\langle\hat{O}\rangle\rangle)^{2}$ would require knowledge of $(\hat{0})$.

Now we have:

$$
\frac{1}{M} \sum_{m=1}^{M}\left(\bar{O}_{N, m}-\left\langle\bar{O}_{N}\right\rangle\right)^{2}=\frac{1}{N^{2}} \sum_{n_{1} n=1}^{N} \frac{1}{M} \sum_{m=1}^{M}\left(O_{m}\left(I_{n}\right)-\left\langle\bar{O}_{N}\right)\right)\left(O_{m}\left(I_{n}\right)-\left\langle\bar{O}_{N}\right)\right)
$$

We now demand that the samples $\underline{\sigma}_{n}$ are drawn independently. Then we have in the limit $M \rightarrow \infty=$

$$
\begin{aligned}
\operatorname{Van}[N, \hat{O}] & \stackrel{1}{N^{2}} 2_{n=1}^{M \rightarrow \infty} \int d \underline{\sigma}_{n}\left(O\left(\underline{\sigma}_{n}\right) p\left(\underline{\sigma}_{n}\right)-\left\langle\bar{O}_{N}\right\rangle\right)^{2} \\
& +\frac{1}{N^{2}} \sum_{n \neq n^{\prime}}^{N} \int d \underline{\sigma}_{n} d \underline{\sigma}_{n^{\prime}}\left(O\left(\underline{\sigma}_{n}\right) p\left(\underline{\sigma}_{n}\right)-\left\langle\bar{o}_{N}\right\rangle\right)\left(O\left(\underline{\sigma}_{n^{\prime}}\right) p\left(\sigma_{n^{\prime}}\right)-\left\langle\bar{o}_{N}\right\rangle\right) \\
& =\left\langle(\hat{O}-\langle\hat{O}\rangle)^{2}\right\rangle / N \\
& +\frac{1}{N^{2}} \sum_{n=1}^{N}[\underbrace{\int d \underline{\sigma}_{n}\left(O\left(\underline{\sigma}_{n}\right) p\left(\underline{\sigma}_{n}\right)-\left\langle\bar{\sigma}_{N}\right\rangle\right)}]^{2} \\
& =\operatorname{Var}(\hat{O}) / N \\
\Rightarrow\left\langle\delta \bar{O}_{N}\right\rangle & =\bar{O} \pm \sqrt{\frac{\operatorname{Var}(\hat{O})}{N}}
\end{aligned}
$$

The error scales as $\frac{1}{\sqrt{N}}$:
Remarks:
(i) For this estimation we need independent of samples: $p\left(\underline{\sigma}_{i}, \underline{\sigma}_{j}\right)=p\left(\underline{\sigma}_{i}\right) p\left(\Phi_{j}\right)$
(ii) For in dependent samples, we can use centra(limit theorem, i.e. the errors $\bar{O}-\left\langle\bar{O}_{N}\right\rangle$ is normal distributed for M large. Then $1 \sigma(a 68 \%)$ of all samples $\left\langle\bar{O}_{N}\right\rangle$ are in the niterval $\pm\left\langle\delta \bar{O}_{N}\right\rangle$
(iii) Evaluating $O(\underline{\sigma})$ typically only scales $\sim O\left(L^{\alpha}\right)$ with a small integer!

Now the question remains:
How to generate midependent samples distributed according to $p(\underline{\sigma})$?
Idea: Choose $\hat{\rho}=\frac{e^{-\beta \hat{H}}}{z_{\beta}}$ with $\beta \geqslant 0$ the rinses temperature $\beta=\frac{1}{1} \quad\left(k_{B} \equiv 1\right)$.
(a) Given a sample \underline{O}, we can in most practical situations evaluate $H(\underline{\sigma})$ very cheaply.
(b) From a sample σ, we can create another sample σ^{\prime} by not usn, that the ratio $\frac{p\left(\sigma^{\prime}\right)}{\rho(\sigma)}$
is give by $e^{-\beta H\left(\sigma^{\prime}\right)} / e^{-\beta H(\Phi)}$.
(c) Imagine a system is in configuration σ. The prob. is $p(\sigma)$ \& the prob. it transitions into $\underline{\sigma}^{\prime}$ is given by:

$$
p\left(\underline{\sigma}^{\prime}\right) \propto \frac{p\left(\underline{\sigma}^{\prime}\right)}{p(\underline{\sigma})} p(\underline{\Phi}) \equiv p\left(\underline{\sigma} \rightarrow \underline{\sigma}^{\prime}\right) p(\underline{\sigma})
$$

Since $p\left(\underline{\sigma} \rightarrow \underline{V}^{\prime}\right)$ only requires evaluation of $H\left(I^{\prime}\right)$ \& $H(I)$, it should be simple to sample trajectories:

$$
\underline{\sigma}_{1} \rightarrow \underline{\sigma}_{2} \rightarrow \underline{\sigma}_{3} \rightarrow \cdots
$$

Now all we need to ensure is:

- Ensnocreated this wag ave independent for some no
- - ${ }_{n}$ no are drawn according to the desired $p(\Phi)=e^{-\beta H(\Phi)} / z_{\beta}$
VI. 1 Markov chain \& Metropolis algorithm Let $\sigma_{n}, \sigma_{m} \in D^{L}$ be configurations \& $\omega_{n m}$ the prob. that the transition $\sigma_{n} \rightarrow I_{m}$ occurs. Pun describes a Markov process, if:
(i) $\omega_{n m} \geqslant 0$ for all u, m
(ii) $\sum_{m}^{2} \omega_{n m}=1$

Important: Prob. to transition from $\underline{\theta}_{n} \rightarrow \underline{\sigma}_{m}$ unit only depend on $\underline{\sigma}_{n}$!

We need a certain type of Markov proves:
(i) all configurations must be reachable from any other configuration: $\omega_{n m}^{n}>0, n \in \mathbb{N}$
(ii) We wand to map probability dishibutions to probability distributions under $\omega_{n m}$:

$$
p\left(\mathbb{I}_{m}\right)=\sum_{n} \omega_{n m} p\left(I_{n}\right)
$$

Because $1=2_{n}^{7} p\left(\sigma_{m}\right)=\sum_{n}^{2 ?}(\underbrace{\sum_{n}^{2} \omega_{n m}}_{1}) p\left(\sigma_{n}\right)$

$$
=\sum_{n} p\left(I_{n}\right)=1
$$

There is an important consequence of thee restrictions: Denote by $\quad P=\left(\begin{array}{llll}p\left(\sigma_{1}\right) & p\left(\sigma_{2}\right) & \cdots & p\left(I_{D}\right)\end{array}\right)$ where $D=|D|^{L}$ the number of all possible confinerations. Then Whim can be treated as a matrix \& :

$$
\underline{w}^{\top} \cdot \underline{P}=P
$$

from condition (ii). Thus, the stationary distribution of ${\underline{\omega}}^{\top}$ is just the desired probability distribution $p(I)$!
If can be reached starting from any configuration \& successive evolution under
\underline{W}^{\top} generates $p(\underline{I})$ (Power-method $\int_{00}(1)$.
Now we can easily formalize our initial idea:
If $\omega_{n m}$ satisfies $p\left(\underline{g}_{n}\right) \omega_{n m}=p\left(\underline{g}_{m}\right) \omega_{m n}$, then $P(\Xi)$ is the stationary distribution of $\omega_{\text {um }}$.
This implies: $\frac{p\left(I_{n}\right)}{p\left(I_{n}\right)}=\frac{\omega_{m n}}{\omega_{n m}} \begin{aligned} & \text { (compare this } \\ & \left.\text { to } p\left(\underline{I}_{n} \rightarrow I_{m}\right)\right)\end{aligned}$
Sketch for $D=\{\uparrow, b\}$!
$\left.\begin{array}{lllllllll}\uparrow & 1 & \downarrow & \uparrow & \downarrow & \uparrow & \uparrow & \downarrow & \sigma_{1} \\ & \uparrow & \uparrow & \downarrow & \uparrow & \uparrow & \uparrow & \downarrow & \downarrow \\ & \underline{\sigma}_{2}\end{array}\right)$ with \quad prob, $\quad \min \left(1, \frac{P\left(\sigma_{2}\right)}{P\left(\sigma_{1}\right)}\right)$
Simplest realization: Flip only one spin " \because '

$$
\omega_{u m}^{[i]}=\left(\prod_{j \neq i} \delta_{\sigma_{j, n}, \sigma_{j, m}}\right) \omega_{i}\left(\sigma_{i} \rightarrow \bar{\sigma}_{i}\right)
$$

We can show easily that varying i from $1, \ldots, 1$, this is a Marlon process with stationary distributton $P\left(\sigma_{1, n}, \ldots, \sigma_{2, n}\right)$. Then we obtain

$$
\frac{\omega_{i}(\imath \rightarrow \downarrow)}{\omega_{i}(\downarrow \rightarrow \imath)}=\frac{P\left(\sigma_{i, n}, \ldots, \sigma_{i, n}=\downarrow, \ldots, \sigma_{L, n}\right)}{P\left(\sigma_{1, n}, \ldots, \sigma_{i, n}=1, \ldots, \sigma_{L, n}\right)}
$$

VI. 1 Local Monte-Carlo algorithms

Markov processes with a desired stationary distribution $p(\underline{\sigma})$ can be constmeted by updating only ane dejue of freedom at a time. Consider spin- $\frac{1}{2}$ degrees of freedom our a d-dimensional cubic lattice with L spies along each direction: $V=L^{d}$ spans. The transition probabilities should satisfy detailed balance:

$$
p\left(\underline{\sigma}_{n}\right) \omega_{u m}=p\left(\underline{\sigma}_{m}\right) \omega_{m u}
$$

$$
\begin{aligned}
\Rightarrow \sum_{n} \vec{v}^{p} p\left(I_{n}\right) \omega_{n m} & =\sum_{n} \vec{l}^{\prime} p\left(I_{n}\right) \omega_{m u} \\
& =p\left(I_{n}\right) \sum_{n} \overrightarrow{1}_{n} \omega_{n k}=p\left(I_{n}\right)
\end{aligned}
$$

i.e. detailed balance for Wnw w.r.t. $P\left(I_{n}\right)$ imphis that $p(\underline{\sigma})$ is the stationary distr.!

We decompose $\omega_{\text {nu }}$ into local updates:

$$
\omega\left(\underline{\sigma}_{n} \rightarrow \sigma_{m}\right)=\prod_{j \in V} \omega_{n m}^{[i]}
$$

where j labels the V sites on the hyper cube. Here, $\omega_{n m}^{[j]}$ means keep all spurs fixed except for site j :

$$
\omega_{u m}^{[j]}=\left(\prod_{i \neq j} \delta_{\sigma_{i, n}} \sigma_{i, m}\right) \omega\left(\sigma_{j, m} \rightarrow \sigma_{j, m}\right)
$$

If wm satisfy detailed balance:

$$
p\left(\sigma_{1, n}, \ldots, \sigma_{j n}, \ldots \sigma_{v, n}\right) \omega_{n m}^{[j]}=p\left(\sigma_{1 n}, \ldots, \sigma_{j m}, \ldots, \sigma_{v n}\right) \omega_{m n}^{[j]}
$$

for V subsequent updates $\sigma_{1 n} \rightarrow \sigma_{1 m}, \sigma_{2 m} \rightarrow \sigma_{2 m}, \cdots$ we get:
site 1:

$$
\begin{aligned}
& p\left(\sigma_{1 m}, \ldots, \sigma_{V_{m}}\right) \omega_{m n}^{[1]}=p\left(\sigma_{1 n}, \sigma_{2 m}, \ldots, \sigma_{V_{m}}\right) \omega_{u m}^{[1]} \\
& \Rightarrow p\left(\sigma_{n m}, \ldots, \sigma_{v_{m}}\right) \frac{\omega_{m n}^{[1]}}{\omega_{u m}^{[1]}}=p\left(\sigma_{1 n}, \sigma_{2 m}, \ldots, \sigma_{V_{m}}\right)
\end{aligned}
$$

site 2:

$$
p\left(\sigma_{1 m}, \ldots, \sigma_{v_{m}}\right) \omega_{m u}^{[2]} \frac{\omega_{m y}^{[1]}}{\omega_{n m}^{[1]}}=p\left(\sigma_{14}, \sigma_{2 n}, \sigma_{3 m}, \ldots, \sigma_{m m}\right) \omega_{n m}^{[2]}
$$

site V:

$$
\begin{aligned}
& p\left(\sigma_{1 m}, \ldots, \sigma_{v m} \prod_{\prod_{i=1} \omega_{n=1}^{V} \omega_{m n}^{[i]}}^{\prod_{m m}^{[j]}}=p\left(\sigma_{1 n}, \ldots, \sigma_{v_{n}}\right)\right. \\
& \Rightarrow \sum_{\sigma_{m m}-\sigma_{V m}} p\left(\sigma_{1 m}, \ldots, \sigma_{V m}\right) \prod_{j=1}^{V} \omega_{m u}^{[i j]}=p\left(\sigma_{i n}, \ldots, \sigma_{V n}\right)_{\sigma_{1 m}} \sum_{n} \prod_{V_{m}} \prod_{i=1}^{V} \omega_{n m}^{[i]}
\end{aligned}
$$

using $\sum_{\sigma_{j m}}^{2} \omega_{n m}^{[j]}$ i.e. $\omega_{n k}^{[j]}$ is Macleod: $=p\left(\sigma_{i n} \mid \ldots, \sigma_{V_{n}}\right)$
\Rightarrow stationery chistuibution is again $p(\underline{\sigma})$.
Question:
How to choose now win?

Easy, only have to fulfill Markou-conditions \& detailed balance!
Note: The state space per gilt is small!
For $\operatorname{spai}-\frac{1}{2}: n \in\{\uparrow, \downarrow\}$
Head-bath update
$\omega_{\text {um }}^{[j]}$ is chosen such that final state m^{n} is independent on initial state n :

Clearly we have detailed balance:

$$
\frac{p\left(\sigma_{\mid n 1}, \ldots, \sigma_{j n \mid}, \sigma_{v_{n}}\right)}{p\left(\sigma_{\mid n, \ldots,}, \sigma_{j m, \ldots}, \ldots, \sigma_{v_{n}}\right)}=\frac{e^{-\beta H\left(\sigma_{n}, \ldots, \sigma_{j n}, \ldots, \sigma_{n}\right)}}{e^{-\beta H\left(\sigma_{1 n}, \ldots, \sigma_{j m}, \ldots, \sigma_{v_{n}}\right)}}=\frac{\omega_{m n}^{[j]}}{\omega_{n m}^{[i]}}
$$

\& Markuv-process: $\sum_{\sigma_{j u}} \omega_{\text {nm }}^{[j]}=1$.

Metropolis update
Heal both has a problem: It chooses new confine. independent on persons confrig. What if σ_{n} is a very unlikely wafts? Heat bath does not cone when determining $w_{\text {nu. }}^{[j]}$. This can be coned taking prob. of σ_{n} vito account:

$$
\begin{aligned}
& \omega_{\sigma_{j n} \sigma_{j m}}^{[j]}=m i n\left(1, \frac{p\left(\sigma_{m}, \ldots, \sigma_{j m}, \ldots, \sigma_{v_{n}}\right)}{p\left(\sigma_{n}, \ldots, \sigma_{j n}, \ldots, \sigma_{v_{n}}\right)}\right) \\
& \text { If } p\left(\sigma_{1 n}, \ldots, \sigma_{j n}, \ldots, \sigma_{v_{n}}\right)<p\left(\sigma_{1 n}, \ldots, \sigma_{j m}, \ldots, \sigma_{v_{n}}\right)
\end{aligned}
$$

then the new wuffy is chooser for sure!
For spin- $\frac{1}{2}$:

$$
\begin{aligned}
& \omega_{\sigma_{n}, \sigma_{n}}^{[j]}=\min \left(1, \frac{\left.e^{-\beta H\left(\sigma_{n}, \ldots,\right.}, \bar{\sigma}_{j n}, \ldots, \sigma_{v_{n}}\right)}{e^{-\beta H\left(\sigma_{1 m}, \ldots, \sigma_{n}, \ldots, \sigma_{v_{n}}\right)}}\right) \\
& \text { with } \bar{\sigma}= \begin{cases}\downarrow & \text { if } \sigma=\uparrow \\
i & \text { if } \sigma=\downarrow\end{cases}
\end{aligned}
$$

Pore detailed balance \& Morkov-properties as exercise i.
VI. 2 Auto conctation time

We saw that we need statistically independent samples $\underline{\sigma}_{n}$ to properly estimate the sidd-dev.
For local updates $\left(\sigma_{m,}, \ldots, \sigma_{j n}, \ldots, \sigma_{v_{n}}\right) \rightarrow\left(\sigma_{m_{1}, \ldots}, \sigma_{j m}, \ldots \sigma_{m_{n}}\right)$ this is surely not the cark.
So how many Markou-steps do we have to take until I_{n} \& In are independent?

Consider again the variance of an observable \hat{O} for N samples $\left\{\underline{\sigma}_{n}\right\}$ in M independent realizations:

$$
\operatorname{Vav}\left[N_{1} \hat{O}\right]=\left\langle\left(\frac{1}{N} \sum_{n=1}^{N}\left(O\left[\theta_{N}\right]-\left\langle\bar{O}_{N}\right)\right)^{2}\right\rangle\right.
$$

where $\langle\cdot\rangle$ refers to the average over the M realizations. We now define the antocorvelation

$$
\begin{aligned}
\Gamma_{\hat{O}}(n-m) & =\left\langle\left(O\left[I_{n}\right]-\left\langle\bar{O}_{N}\right\rangle\right)\left(O\left[\underline{\sigma}_{m}\right]-\left\langle\bar{O}_{N}\right)\right)\right\rangle \\
\Rightarrow \operatorname{Var}[\mu, \hat{O}] & =\frac{1}{N^{2}} \sum_{n, m=1}^{N} \Gamma_{\hat{O}}(n-m) \\
& =\frac{1}{N} \operatorname{Vav}(\hat{o})+\frac{1}{N^{2}} \sum_{n \neq m=1}^{N} \Gamma_{\hat{o}}(n-m)
\end{aligned}
$$

The second vanishes for independent samples $\underline{\sigma}_{n}$, In (see VI. 1) but in practice it's finite.
For large $|n-m|$ we get for Markov-chanis:

$$
\Gamma_{\hat{o}}(n-\dot{m}) \sim e^{-\frac{\ln -m / \tau}{\tau}} \quad, \tau \in \mathbb{R}^{+}
$$

(it can be shown tar $\tau=-\frac{1}{\ln \lambda_{1}}$ where $\lambda_{1}<1$ is the second laspist eipavalue of Warm!?

Using $\Gamma_{\hat{0}}(n-m)=\Gamma_{\hat{0}}(|n-m|)$ we get:

$$
\begin{aligned}
\left.\sum_{n \neq m=1}^{N} \Gamma_{\hat{o}}(\mid n-m)\right) & =2 \sum_{n<m}^{N} \Gamma_{\hat{o}}(n-m) \\
& =2 \sum_{n=1}^{N-1} \sum_{m=n+1}^{N} \Gamma_{\hat{o}}^{N}(n-m) \\
& =2 \sum_{n=1}^{N} \sum_{m=1}^{N-n} \Gamma_{\hat{o}}(m) \\
& =2 \sum_{n=1}^{N-1}(N-n) \Gamma_{\hat{o}}(n) \\
\Rightarrow \operatorname{Var}(\hat{0}, N] & =\frac{\operatorname{Var}(\hat{0})}{N}\left(1+2 \sum_{n=1}^{N}\left(1-\frac{n}{N}\right) \frac{\Gamma_{\hat{0}}(n)}{\operatorname{Var}(\hat{0})}\right) \\
& \equiv \frac{\operatorname{Var}(\hat{0})}{N}\left(1+\tau_{m}\right)
\end{aligned}
$$

Thus, the estimator for uncorrelated samples $\frac{V_{0}(\hat{0})}{N}$ is created by τ_{m} !
VI. 3 Cluster Moure-Carlo algorithms

Systems at temperatures $T \approx T_{C}$ where T_{C} is the critical temp. of a continonos phase fracritions, exhibit universal belantior. K particular the correlation length's diverge: $\xi \sim\left|T-T_{c}\right|^{-\nu}$.

Example:
2D-1sing model: $\quad \hat{H}=-3 \sum_{\langle i, j)}^{i_{i}^{z}} \hat{S}_{j}^{8}$

$$
\begin{aligned}
& (m)=\frac{1}{L^{2}} \sum_{j=1}^{L^{2}}\left\langle\hat{S}_{j}^{z}\right\rangle \\
& T_{c} / J=\frac{2}{a(1+\sqrt{2})} \approx 2,265
\end{aligned}
$$

Correlation functions

$$
\begin{aligned}
& \text { Congelation function } \\
& \left\langle\left(\delta \hat{S}^{z}\right)^{2}\right\rangle=\left\langle\hat{S}_{i}^{z} \hat{S}_{j}^{z}\right\rangle-\left\langle\hat{S}_{i}^{77}\right\rangle\left\langle\hat{S}_{j}^{7 z}\right\rangle \sim \begin{cases}c e^{-\mid i-j 1 / \uparrow} & \left|T-T_{c}\right| \gg 0 \\
\left|T-T_{c}\right|^{-\nu} & ,\left|T-T_{c}\right| \approx 0\end{cases}
\end{aligned}
$$

what does this mean for local updates?

Critical slow-down
For Metropolis update the acceptance prob is

$$
\rho_{\sigma \bar{\sigma}}^{[j]}=m i n\left(1, \frac{e^{\beta \gamma \sum_{i}^{2} \sigma_{n i} \sigma_{n j}}}{e^{\beta j \sum_{i}^{\prime} \sigma_{n i} \sigma_{n j}}}\right)
$$

Only if " j " is at boundary of clusters we get large accept. -prob. Since \hat{H} is invariant under $\sigma_{j} \rightarrow \bar{\sigma}_{j}$ for all $j_{1} P(\underline{\sigma})=p(\underline{\bar{\sigma}}) \&$ we can estimate number of surface files by covering $L^{2} / 2$ area with patches of size ξ^{2} :

$$
n_{\text {patches }}=\frac{L^{2}}{2 \xi^{2}} \Longrightarrow \sim \frac{L}{\xi} \text { boundary sites }
$$

\Rightarrow acceptance rate becomes

$$
\sim \rho_{\sigma \bar{\sigma}}^{[j]} \frac{n_{\text {path es }}}{L^{2}}=p_{\sigma \bar{\sigma}}^{[j]} \frac{1}{L\{ }
$$

(i) Γ $-T_{c} \mid \gg 0$:

Green clusters have spurs aligned T. try. Site is

$$
\sim \zeta \ll L \Rightarrow \frac{1}{L \xi} \sim O(1)
$$

(ii) $\left|T-T_{c}\right| \approx 0$:

Green clusters have spin aligned T. try. Site is

$$
\sim \mathcal{F} \sim L \Rightarrow \frac{1}{L S} \sim \frac{1}{L^{2}}
$$

Close to critical temperature, the acceptance vale goes down $\sim \frac{1}{L^{2}} \Rightarrow \tau_{m}$ diverges:

$$
\left.\tau_{m} \sim\left|T-T_{c}\right|^{-z \nu} \sim\right\}^{z}
$$

and here $z \approx 2$ (from above estimation: " L^{2} samples to successfully flip one spin).

Known as critical slow-down! But this not a problem of the method: Dependency on τ_{u} in observable estimation woes from $W_{\text {un }}$ being local! Idea: use global updates!

Cluster decomposition
we want to derive a Markov-process sahisfyciens detailed balance such that more than 1 site an be updated without evaluating probabilities for too many different configurations!
Consider a configuration of spin- $\frac{1}{2}$ degas of freedom:

$\downarrow \sqrt[1]{G_{G 4}} \downarrow$ We can label clusters of aligned spurs to this configuration:

$$
G_{G}=\left\{G_{1}, G_{2}, G_{3}, G_{4}, \ldots\right\}
$$

t configuration σ can be decomposed into various clusters! Let's identify cheaters with graphs (herr bond percolation graphs) \& decompose $p(\underline{\sigma})$:
$p(\mathbb{I})=\sum_{G \in G}^{\urcorner} \omega(\sigma, G)$ for all possible graphs $G \in G$.
The prob. to find a certain graph G in a
given config σ is

$$
P_{\underline{\sigma}}(G)=\frac{\omega(\underline{\sigma}, G)}{p(\underline{\sigma})}
$$

For the bond-percalation graphs we can factor W :

$$
\omega(\underline{\sigma}, G)=V(G) \perp(\underline{\sigma}, G)
$$

when $V(G)$ is the prob. to find graph G out of all possible lattice-compatible graphs $g \& \Delta(\sigma, G)$ sorts out graphs incompatible with $\underline{\sigma}$:

$$
\Delta(\underline{\sigma}, G)= \begin{cases}1 & \text { if } G \in G_{\underline{\sigma}} \\ 0 & \text { other wise }\end{cases}
$$

Now introduce a Markov process:

$$
\omega_{n m}^{G G^{\prime}}=\omega_{G G^{\prime}}^{\left[\mathbb{I}_{n}\right]} \omega_{\sigma_{n} \sigma_{m}}^{\left[G_{m}^{\prime}\right]}
$$

where: (i) $W_{G G^{\prime}}^{\left[G_{U}\right]^{\prime}}$ is transition acuplitude from graph $G \rightarrow G^{\prime}$ given σ_{n}
(ii) $\omega_{g_{n}}^{[G ']}$ is trmsilion amplitude from confj $F_{n} \rightarrow F_{n}$ given G^{\prime}

Detailed balance:
(i) $\operatorname{P}_{\sigma_{n}}(G) \omega_{G G^{\prime}}^{\left[\sigma_{n}\right]} \stackrel{!}{=} P_{\sigma_{n}}\left(G^{\prime}\right) \omega_{G^{\prime} G}^{\left[\sigma_{n}\right]}$
if we always cook a new graph a^{\prime} then

$$
\omega_{h G^{\prime}}^{\left(\sigma_{n}\right)}=1 \Rightarrow \frac{P_{\sigma_{n}}(G)}{P_{\sigma_{r}}\left(G^{\prime}\right)}=\frac{V(G)}{V\left(G^{\prime}\right)}=1
$$

(ii) $P_{G}\left(\underline{\sigma}_{n}\right) \omega_{n m}^{[G]} \stackrel{!}{=} P_{G}\left(\underline{I}_{m}\right) \omega_{m n}^{[G]}$

Here $P_{G}\left(\underline{\sigma}_{n}\right)$ is the poos. to have config $\underline{\sigma}_{n}$ \& we can assign graph G from σ_{n} :

$$
\begin{aligned}
P_{G}\left(\underline{\sigma}_{n}\right) & =\omega\left(\underline{\sigma}_{n}, G\right) \\
\Rightarrow W\left(\underline{\sigma}_{n}, G\right) \omega_{n m}^{[G]} & =\omega\left(\underline{\sigma}_{m}, G_{1}\right) \omega_{m n}^{[G]} \\
\Leftrightarrow \frac{V(G) \Delta\left(\underline{\sigma}_{n}, G\right)}{V(G) \Delta\left(\underline{\sigma}_{m}, G\right)} & =\frac{\omega_{m n}^{[G]}}{\omega}
\end{aligned}
$$

1 because $\sigma_{n} \& \sigma_{m}$ compatible with
G, otherwise $\omega_{n m}^{[G]}=0$ for all n, m !
we now only need to choose $\omega_{\text {nm }}^{[G]}$ to

Consider graphs constmated from aligned, weighbong spins:

$\substack{\text { Graph }}$	$0-0$	0	$p(\sigma)$
$\uparrow \uparrow$	$\Delta=1$	$\Delta=1$	$\sim e^{+\beta J}$
$\uparrow \downarrow$	$\Delta=0$	$\Delta=1$	$\sim e^{-\beta \gamma}$
$\uparrow \downarrow$	$\Delta=0$	$\Delta=1$	$\sim e^{-\beta \gamma}$
$\downarrow \downarrow$	$\Delta=1$	$\Delta=1$	$\sim e^{+\beta \gamma}$

For $P_{\leq}(h)=\left\{\begin{array}{cl}\left(e^{+\beta \gamma}+e^{-\beta \gamma}\right) / e^{\beta \gamma} & \text { if } \uparrow \uparrow \text { or } \downarrow \downarrow \\ 0 & \text { otherwise }\end{array}\right.$

For $\omega_{\mathrm{mn}}^{[G]}$ flip cluster of connected spain (which beeps graph G ritact) with $\omega_{n m}^{[G]}=\omega_{\mathrm{mn}}^{[G]}$. Examples discussed on sheet 4.

Remorles
(i) In the step $\left(\sigma_{n}, G\right) \rightarrow\left(I_{n}, G^{\prime}\right)$ Cluster are allowed to grow. Near $T=T_{c}$ this will happen almost surely since $P_{\underline{\sigma}}(G) \neq 0$ only for aligned spins
(ii) Away from $T=T_{c}$ large clusters are unlikely, (only with prob. $\sim \frac{S^{2}}{L^{2}}$). Then updates can become very expensive
(iii) Observing $\tau_{m} \&$ switching from local to cluster updates is good strategy!

