VI Quantum Monte - Carlo

Until now we always aimed for representations of the many-body ware functions. However, if we are only interested in observables, we don't necessarily need representations of 145. Instead, we can rewrite expectation values as:

 $(\hat{O}) = Tr\{\hat{S}\hat{O}\}$

 $= \frac{2}{\mathfrak{s}_{1}} \frac{2}{\mathfrak{s}_{1}} \langle \mathfrak{s}_{1} \mathfrak{s}_{2} | \hat{\mathfrak{s}}_{1} | \mathfrak{s}_{1} \rangle \langle \mathfrak{s}_{1} \mathfrak{s}_{2} \rangle \langle \mathfrak{s}_{2} \rangle \langle \mathfrak{s}_{1} \mathfrak{s}_{2} \rangle \langle \mathfrak{s}_{2}$

Let us ascume Ô is diagonal in the droopen basis:

$$\langle \sigma_1 \dots \sigma_{\mathcal{L}} \mid \hat{\mathcal{O}} \mid \sigma_1 \dots \sigma_{\mathcal{L}} \rangle = \delta_{\sigma_1' \sigma_1} \dots \delta_{\sigma_{\mathcal{L}}' \sigma_{\mathcal{L}}} \mathcal{O} (\sigma_1 \dots \sigma_{\mathcal{L}})$$

 $\Rightarrow (\hat{\Theta}) = \sum_{\sigma_1 \dots \sigma_L}^{\gamma_1} p(\tau_1 \dots \sigma_L) O(\tau_1 \dots \tau_L)$ where $p(\tau_1 \dots \tau_L)$ is the prob, to find the configuration $(\sigma_1 \dots \sigma_L)$.

Assume now, that we where able to create
samples
$$\underline{\sigma} \in D^{\perp}$$
 where D is the set of outpu-
rations per degree of freedom $\underline{\sigma}_{j}$, disdributed accor-
ding to $p(\underline{\sigma})$. Let us draw N samples $\{\underline{\sigma}^{M}_{n=1}, \nu$
then:
 $\langle \widehat{\sigma} \rangle \approx \frac{1}{N} \sum_{n=1}^{N} O(\underline{\sigma}^{n}) = \overline{\alpha}_{j}$
is an approx. to $\langle \widehat{\sigma}_{i} \rangle$ in the state \widehat{B} .
Now perform $M \in [N$ upititions of the estimation:
 $\langle \overline{q} \rangle = \frac{1}{M} \sum_{m=1}^{M} \overline{q}_{im}$
which has the estimated error:
 $\langle \delta \overline{q}_{i} \rangle = \sqrt{Var[N, \delta]}^{2}$
Note that the upported sampling is required to esti-
mate $(\delta \overline{q}_{i})$, since a direct estimation of
 $(\langle \overline{\sigma} - \langle \widehat{\sigma} \rangle))^{2}$ would require knowledge of $\langle \widehat{\sigma} \rangle$.

Now we have:

$$\frac{1}{M} \frac{2}{m^{2}} \left(\left(\overline{O}_{N,m} - \left(\overline{O}_{N} \right) \right)^{2} = \frac{1}{N^{2}} \frac{2}{m^{2}} \frac{1}{M} \frac{2}{m^{2}} \left(\left(O_{m} \left(\underline{S}_{n} \right) - \left(\overline{O}_{N} \right) \right) \left(O_{m} \left(\underline{S}_{n'} \right) - \left(\overline{O}_{N} \right) \right) \right)$$
We now demand that the samples \underline{S}_{n} are drawn
independently. Then we have in the limit $M \rightarrow \infty$:

 $V_{\alpha_{\nu}} \begin{bmatrix} \mu_{i} \hat{O} \end{bmatrix}^{M \rightarrow \infty} = \frac{1}{N^{2}} \sum_{n=r}^{N} \int d\underline{\sigma}_{n} \left(O(\underline{\sigma}_{n}) \rho(\underline{\sigma}_{n}) - \langle \overline{O}_{\nu} \rangle \right)^{2}$ $+ \frac{1}{N^{2}} \sum_{n=r}^{N} \int d\underline{\sigma}_{n} d\underline{\sigma}_{n'} \left(O(\underline{\sigma}_{n}) \rho(\underline{\sigma}_{n}) - \langle \overline{O}_{\nu} \rangle \right) \left(O(\underline{\sigma}_{n'}) \rho(\underline{\sigma}_{n'}) - \langle \overline{O}_{\nu} \rangle \right)$

$$= \langle (\hat{o} - \langle \hat{o} \rangle)^{2} \rangle / N$$

+ $\frac{1}{N^{2}} \sum_{n=1}^{N} \left[\int d\underline{s}_{n} \left(O(\underline{s}_{n}) p(\underline{s}_{n}) - \langle \overline{a}_{n} \rangle \right) \right]^{2}$
 ∂

$$= \sqrt{\alpha r} (\hat{O}) / N$$

 $\Rightarrow \langle \delta \overline{O}_{\nu} \rangle = \overline{O} \pm \sqrt{\frac{V_{\alpha\nu}(\delta)}{N}}$

remarks:

(i) For this estimation we need independent samples: $p(\underline{\sigma}_i, \underline{\sigma}_j) = p(\underline{\sigma}_i) p(\underline{\sigma}_j)$

Now the question remains: How to generate independent samples distributed according to $p(\underline{\sigma})$? Idea: Choose $\hat{\mathcal{G}} = \frac{e^{-R\hat{H}}}{2\kappa}$ with R > 0 the invox temperature $\mathcal{F} = \frac{1}{2}$ ($k_{B} \equiv 1$). (a) Given a sample $\underline{\sigma}$, we can in most practical situations evaluate $H(\underline{\sigma})$ vey cheaply.

(b) From a sample \mathfrak{T} , we can create another sample \mathfrak{T}' by noting that the ratio $\frac{P(\mathfrak{T}')}{P(\mathfrak{T})}$

is given by
$$e^{-\beta H(\underline{\sigma}')}/e^{-\beta H(\underline{\sigma})}$$

(c) Imagine a system is in writightation \mathfrak{T} . The prob. is $p(\mathfrak{T})$ & the prob. it transitions write \mathfrak{T}' is given by: $p(\mathfrak{T}') \propto \frac{p(\mathfrak{T}')}{p(\mathfrak{T})} p(\mathfrak{T}) \equiv p(\mathfrak{T} \rightarrow \mathfrak{T}') p(\mathfrak{T})$

Since $p(S \rightarrow S')$ only requires evaluation of H(S') & H(S), it should be simple to sample trajectories:

 $\overline{a}^{1} \rightarrow \overline{a}^{5} \rightarrow \overline{a}^{3} \rightarrow \cdots$

Now all we need to ensure is:

- · Insucreated this way are independent for some No
- \overline{G}_{NSM_0} are drawn according to the defined $P(\underline{S}) = e^{-\frac{2}{2}H(\underline{S})}/\frac{2}{2}B$ (105)

(106

ſ

Because
$$1 = 2^{2}$$
, $p(\mathfrak{I}_{m}) = 2^{2}$, $\left(2^{2}, \mathcal{W}_{m}, p(\mathfrak{I}_{m})\right) p(\mathfrak{I}_{m})$
= 2^{2} , $p(\mathfrak{I}_{m}) = 1$

There is an important convequence of the k restrictions:
Denote by
$$P = (P(S_i) P(S_2) \cdots P(S_D))$$
 where
 $D = |D|^{L}$ the number of all possible configu-
rations. Then then can be treated as a
matrix k :

$$\underline{W}' \cdot \underline{P} = \underline{P}$$

from condition (ii). Thus, the stationary distribution of \mathcal{W}^T is just the desired probability distribution p(s)! It can be reached starting from any configuration & successive evolution under

$$\begin{split} & \underbrace{\boldsymbol{\omega}}^{T} \quad \text{generales} \quad \boldsymbol{p}(\underline{S}) \quad \left(\begin{array}{c} \text{Power-method} \quad \left| \begin{array}{c} \left| \begin{array}{c} \left| \end{array} \right| \right\rangle \right| \right), \\ & \text{Now we can easily formalize ows mithal} \\ & \text{idea:} \\ & \text{if } \quad \text{Warn scheftes} \quad \boldsymbol{p}(\underline{S}_{0}) \quad \text{Warn} = \boldsymbol{p}(\underline{S}_{0}) \quad \text{Warn } \\ & \text{then } \underline{T}(\underline{S}) \quad \text{is the stationary distribution of} \\ & \text{Warn.} \\ & \text{This implies: } \quad \underbrace{\boldsymbol{p}(\underline{S}_{0})}_{(\underline{S}_{0})} = \frac{W_{min}}{W_{min}} \quad \left(\begin{array}{c} \text{compare this} \\ & \text{to } \boldsymbol{p}(\underline{S}_{1} - \underline{S}_{0}) \right) \\ & \text{stelch for } \quad \boldsymbol{D} - \left\{ \begin{array}{c} 1 & 1 & 1 \\ & 1 & 1 \end{array} \right\} : \\ & 1 \quad (1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \\ & 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \\ & 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \\ & 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \\ & 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \\ & 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \\ & \text{steled for } \end{array} \right) \\ & \text{Sim plead vachization : Flip only one spin "i" \\ & \quad \mathcal{W}_{min}^{UI} = \left(\begin{array}{c} \mathrm{Tr} \quad \delta \\ & \sigma_{jm}, \sigma_{jm} \end{array} \right) \quad \mathcal{W}_{i}(\sigma_{i} = \overline{\sigma}_{i}) \end{array} \right) \\ \end{array}$$

We can show easily that varying i from
$$1,...,1L$$
,
this is a Markow process with stationary distri-
bution $P(S_{1,M},...,S_{L,M})$. Then we obtain
 $\frac{\omega_i(1 \rightarrow b)}{\omega_i(1 \rightarrow 1)} = \frac{P(S_{1,M},...,S_{1,M} = J,...,S_{L,M})}{P(S_{1,M},...,S_{1,M} = T,...,S_{L,M})}$
 \overline{VI} . 1 Local Houte-Carlo algorithus
Harkov processes with a desired stationary
distribution $p(S)$ can be constructed by
updating only one deper of freedom at a
time. Consider spin - 2 degrees of freedom
on a d-dimensional cubic (affice with
L spins along each direction: $V = L^{d}$ spins.
The transition probabilities should satisfy
detailed balance:
 $p(S_{M}) W_{MM} = p(S_{M}) W_{MM}$ (105)

$$=\sum \sum_{i=1}^{n} p(S_{in}) W_{nu} = \sum_{i=1}^{n} p(S_{in}) W_{nu} = p(S_{in}) \sum_{i=1}^{n} W_{nu} = p(S_{in})$$

i.e. detailed balance for W_{nu} w.v.l. $p(S_{in})$
implies that $p(S)$ is the stabionary distr.!
We decompose W_{nu} into local updates:
 $W(S_{in} \rightarrow S_{in}) = \prod_{j \in V} w_{nu}^{(j)}$
where j labels the V Siks on the hypercube.
Here, $w_{nu}^{(j)}$ means keep all spins fixed except
for Sik j:
 $w_{nu}^{(j)} = (\prod_{i\neq j}^{n} S_{in} \cap S_{in}) W(S_{jm} \rightarrow S_{im})$.
If $w_{nu}^{(j)}$ satisfy detailed balance:
 $p(T_{in}, \dots, T_{in}) w_{nu}^{(j)} = p(T_{in}, \dots, T_{in}) w_{nu}^{(j)}$

$$\begin{cases} w_{nm}^{(j)} & \text{is } Markov - process : 2^{T} w_{nm}^{(j)} = 1 , \text{ then} \\ for \quad V \quad subsequent updates \quad \sigma_{nn} \rightarrow \sigma_{nn}, \sigma_{2n} \rightarrow \sigma_{2n}, \dots \\ we \quad get: \\ S'k \quad 1: \\ \rho(\sigma_{nn_{1},\dots,1} \sigma_{Vm_{n}}) w_{mn_{n}}^{(1)} = \rho(\sigma_{nn_{1}} \sigma_{2m_{1},\dots,1} \sigma_{Vm_{n}}) w_{nm_{n}}^{(1)} \\ \Rightarrow \rho(\sigma_{nm_{1},\dots,1} \sigma_{Vm_{n}}) \frac{w_{mn_{n}}^{(1)}}{w_{mn_{n}}^{(1)}} = \rho(\sigma_{nn_{1}}, \sigma_{2m_{1},\dots,1} \sigma_{Vm_{n}}) \end{cases}$$

site V:

$$p(\mathcal{G}_{nn}, \dots, \mathcal{G}_{kn}) \xrightarrow{V}_{j=1}^{U} \omega_{mn}^{(j)} = p(\mathcal{G}_{nn}, \dots, \mathcal{G}_{kn})$$

$$\Rightarrow \sum_{m} p(\mathcal{G}_{nn}, \dots, \mathcal{G}_{kn}) \xrightarrow{V}_{j=1}^{U} \omega_{mn}^{(j)} = p(\mathcal{G}_{nn}, \dots, \mathcal{G}_{kn}) \sum_{j=1}^{V} \omega_{mn}^{(j)}$$

$$(11)$$

Clearly we have detailed balance:

$$\frac{p(s_{1n_{1}\dots,j},s_{n_{1}\dots,j},s_{n_{n}})}{p(s_{1n_{1}\dots,j},s_{n_{n}\dots,j},s_{n_{n}})} = \frac{e^{-\beta H(s_{1n_{1}\dots,j},s_{n_{n}\dots,j},s_{n_{n}})}}{e^{-\beta H(s_{1n_{1}\dots,j},s_{n_{n}\dots,j},s_{n_{n}})}} = \frac{\omega_{n_{n}n}}{\omega_{n_{n}n}}$$

$$\& Harkov - process: \frac{27}{s_{1n}} \omega_{n_{n}n} = 1.$$

Head bath has a problem: It chooses new coupies.
independent on previous coupies. What if In is
a very unlikely writing? Heat bath does not
care when determining will This can be and
taking prob. of In who account:
$$w_{sin}^{[j]} = min (1, \frac{P(\sigma_{m_1, \dots, s_{jm_1, \dots, s_$$

$$|\{ p(\mathfrak{s}_{1n},\ldots,\mathfrak{s}_{j'n},\ldots,\mathfrak{s}_{Vn}) < p(\mathfrak{s}_{1n},\ldots,\mathfrak{s}_{Vn}) | \leq p(\mathfrak{s}_{1n},\ldots,\mathfrak{s}_{j'n},\ldots,\mathfrak{s}_{Vn}) |$$

(113)

Prove defailed balance & Markov-properties as exercise I.

 $(\dot{1}\Upsilon)$

Confide again the variance of an observable
ô for N samples
$$\{\underline{\sigma}_{n}\}$$
 in H independent realizations:
 $Var[V_{1}\delta] = \langle (\frac{1}{V} \frac{Z}{\sigma_{n}}^{V} (O[\underline{\sigma}_{n}] - \langle \overline{O}_{n} \rangle)^{2} \rangle$
where $\langle \cdot \rangle$ refers to the average over the H
realizations. We now define the antocorrelation
 $\Gamma_{\delta}(n-m) = \langle (O[\underline{\sigma}_{n}] - \langle \overline{O}_{n} \rangle) (O[\underline{\sigma}_{m}] - \langle \overline{O}_{n} \rangle) \rangle$
 $\Rightarrow Var[V_{1}\delta] = \frac{1}{N^{2}} \sum_{v, y = 1}^{N} \Gamma_{\delta}(u-m)$
 $\stackrel{Hoo}{=} \frac{1}{N} Var(\delta) + \frac{1}{N^{2}} \sum_{v, y = 1}^{N} \Gamma_{\delta}(u-m)$
The second vanishes for independent samples
 $\underline{\Gamma}_{n}(see \underline{VI}, 1)$ but in practice it's finit.
For large $[n-m]$ we get for Markov-chains:
 $\Gamma_{\delta}^{2}(u-h) \sim e^{-\frac{1}{N-m}}$, $T \in \mathbb{R}^{+}$

(115

(if can be down that
$$t = -\frac{1}{4\pi\lambda}$$
 where $\lambda_{1} < \underline{1}$
is the provid (aspst lipevalue of W_{nm}).
Using $\overline{r}_{0}^{2}(n-m) = \overline{r}_{0}^{2}(n-m)$ we get:
 $\sum_{\substack{N=1\\ n\neq m=1}}^{N} \overline{r}_{0}^{2}(n-m) = \partial \sum_{\substack{N=1\\ n\neq m}}^{N} \overline{r}_{0}^{2}(n-m)$
 $= \partial \sum_{\substack{n=1\\ n\neq m}}^{N} \overline{r}_{0}^{2}(m)$
 $= \sum_{\substack{n=1\\ n\neq m}}^{N} \overline{r}_{0}^{2}(m)$
 $= \frac{V_{01}(0)}{N} (1 + 2\sum_{\substack{n=1\\ n\neq m}}^{N} (1 - \frac{n}{N}) \frac{\overline{r}_{0}^{2}(n)}{V_{01}(0)})$
 $= \frac{V_{01}(0)}{N} (1 + T_{m})$
Thus, the estimator for uncone (ated
Camples $\frac{V_{01}(0)}{N}$ is convected by T_{m} is

<u>VI</u>3 Cluster Houte-Calo algorithus Systems at kuppenhares $T \approx T_c$ where F is the critical kup. of a continents phase brackitions, exhibit universal behavior. It particular the correlation length's diverge: $g \sim 1T - T_c I^{-v}$

Correlation function: $([\delta \hat{S}^2]^2) = (\hat{S}_i^2 \hat{S}_j^2) - (\hat{S}_i^2) (\hat{S}_j^2) - \{r = 1, |T - T_c| > 0\}$ $([\delta \hat{S}^2]^2) = (\hat{S}_i^2 \hat{S}_j^2) - (\hat{S}_i^2) (\hat{S}_j^2) - \{r = 1, |T - T_c| > 0\}$ $(T - T_c) = 1, |T - T_c| > 0$ $(T - T_c) = 0$ $(T - T_c) = 0$ $(T - T_c) = 0$

Critical slow - down
For Hedropoli's updak the acceptance prob is

$$p_{\overline{\sigma}\overline{\sigma}}^{(j)} = \min\left(1, \frac{e}{e^{\beta J \frac{2}{p'} \cdot \sigma_{ni} \cdot \overline{\sigma}_{nj}}}{p_{\overline{\sigma}\overline{\sigma}} = \min\left(1, \frac{e}{e^{\beta J \frac{2}{p'} \cdot \sigma_{ni} \cdot \overline{\sigma}_{nj}}}\right)}\right)$$
Only if "i" is at bounday at clusters we get
large accept. -prob. Since fl is invariant under
 $\sigma_j \rightarrow \overline{\sigma}_j$ for all $j_1 P(\underline{\sigma}) = P(\underline{\sigma})$ is we an
estimate number of surface sites by covoring
 $L^2/2$ area with patcles of size s^2 :
Mpatches = $\frac{L^2}{2g^2} \implies n \frac{L}{g}$ boundary sites
 \Rightarrow acceptance rate becauses
 $n p_{\overline{\sigma}\overline{\sigma}} = \frac{\mu_{\overline{\sigma}}}{\mu_{\overline{\alpha}}} = p_{\overline{\sigma}\overline{\sigma}} = L_{\overline{\delta}}^{2j}$

(i) T-T-1>50:

Green clustes have spins aligned T. ty. Site is $\sim \int \ll L \Rightarrow \frac{1}{L_{5}} \sim O(1)$

(ii) $\left| T - T_c \right| \approx 0$:

Close to critical temperature, the acceptance rale goes down ~ $\frac{1}{2} \Rightarrow T_m$ direges; $T_m \sim |T - T_c|^{-2V} \sim 1^2$ and here $z \approx 2$ (from above estimation: $-L^2$ samples to successfully flip one spin).

known as critical slow-down! But this not a problem of the method; Dependency or Tu in observable estimation courses from Wun being local! Idea: use global updates! Cluster decomposition

We want to derive a Morkov-process sahisfying detailed balance such that more than 1 sik an be updated without evaluating probabilities for too many different configurations!

Consider a configuration of spin- 2 depres of freedom:

1 VIII 1929 Cas Note: 1 1 1 1 1 We can label clustes of aligned 1 1 1 1 9 spins to this configuration: 1 1 1 1 1

t configuration & can be decomposed into various clustes! Let's identify clusters with graphs (here boud pecolation graphs) & decompose p(c):

 $p(\mathbf{I}) = \sum_{G \in \mathcal{G}} W(\mathbf{S}, G)$ for all possible graphs $G \in \mathcal{G}$. The prob. to find a certain graph G in a (120)

given
$$\operatorname{confi}_{J} \Sigma$$
 is
 $P_{\Sigma}(G) = \frac{W(\underline{S},G)}{p(\underline{S})}$.
Tor the bond-percelation graphs we can factor W :
 $W(\underline{S},G) = V(G) \Lambda(\underline{S},G)$
when $V(G)$ is the prob. to find graph G and of all
possible (attice-compatible graphs $G \Lambda(\underline{S},G)$ sorts and
graphs incompatible with \underline{S} :
 $\Lambda(\underline{S},G) = \begin{cases} 1 & \text{if } G \in \underline{S} \\ O & \text{otherwise} \end{cases}$

Now introduce a Markov process:

Detailed balance: (i) $P_{\underline{s}_{h}}(G) \ W_{\underline{s}_{h}G'}^{[\underline{s}_{h}]} \stackrel{!}{=} P_{\underline{s}_{h}}(G') \ W_{\underline{s}_{h}G'}^{[\underline{s}_{h}]}$ if we always dook a new graph to then $\omega_{\mathcal{L}\mathcal{L}'}^{(\underline{e}_{\mathcal{L}})} = \underline{1} \stackrel{=}{=} \frac{\gamma_{\underline{e}_{\mathcal{L}}}^{(\underline{e}_{\mathcal{L}})}}{\overline{\gamma_{\underline{e}_{\mathcal{L}}}}(\underline{L}')} \stackrel{=}{=} \frac{V(\underline{L})}{V(\underline{L}')} \stackrel{=}{=} \underline{1}$ (ii) $P_{G}(\underline{\sigma}_{n}) \omega_{nm}^{(G)} \stackrel{!}{=} P_{G}(\underline{\sigma}_{n}) \omega_{nm}^{(G)}$ Here PG(In) is the prob to have config In & we can assign graph G from In : $\mathcal{P}_{\mathcal{G}}(\underline{\mathfrak{T}}_{\mathcal{N}}) = \mathcal{W}(\underline{\mathfrak{T}}_{\mathcal{N}}, \mathbf{G})$ $\Rightarrow \omega(\underline{s}_{n},\underline{c}) \omega_{nm}^{[G]} = \omega(\underline{s}_{n},\underline{c}) \omega_{nn}^{[G]}$ $= \frac{\sqrt{(h)} \Delta(\underline{s}_{n}, h)}{\sqrt{(h)} \Delta(\underline{s}_{n}, G)} = \frac{\omega_{nn}^{(c)}}{\omega_{nn}^{(c)}}$ 1 because In & Im compatible with

6, otherwise
$$w_{nm}^{Lad} = 0$$
 for all n, m ?
We now only need to choose w_{nm}^{Lad} to
obey $p(s) = \frac{2}{2}$, $V(h)$.
Consider graphs constructed from aligned, neighbory
spins:
 $w_{nm}^{Lad} = 1$ $\alpha = 1$ $\alpha = \frac{1}{2}$, $\frac{1}{2}$,

For $W_{mn}^{[G]}$ flip cluster of connected spins (which beeps graph G nitact) with $W_{nm}^{[G]} = W_{mn}^{[G]}$. Examples discussed on sheef 4. Zemartes

(i) In the step (In, G) -> (In, G') clustes are allowed to grow. Near T=Tc this will happen almost surely since $P_{\underline{\sigma}}(G) \neq 0$ only for aligned spins (i) tway from T=Tc large clusters are unlikely (only with prob. $\sim \frac{5}{L^2}$). Then updates can become very expensive (Mi) Observing Ton & switching from Local to cluster updates is good strategy!