
Ithe quantum many-body problem

The central problem we want to solve

is the Schrödinger equation:

it() =F(14)

with:(i) 143 I the Hilbert space of the

system

cii) M:A- itthe Hamilton operator of
the system

When & whydo we need numerics?

solvable problems are those for which we

can determine the eigen states leigen values

is
a closed analytical form.
Examples:

· H-atom with one electron

· Potential well (box potential, 5-polential
· An-) Harmonic oscillator

ꋻ



Note:These are all single-particle/non-inter-
acting problems.

Be more precise:
Assume for some problem describing a

degree of freedom "a",
the expavalue-problem

FaI4na) =Ena M4na]

can be solved (raEIN label the eigenstates/values)

Let Ha be the corresponding Hilbert space,

Den the many-bodysilber space for
N

degrees of freedoms labeled bya is defined

by HN =Ha=cta=2 x ... Ha=N.

Let us consider the total Hamildomian

F=I
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Swice SF, FI"]=8, the sipe states of
the many-body problem are

14(n, ...nr) =(4n.) *14n) 0 . .
. (un)

witheigenvalues:

#14(n, ... un1) =( Ena14(n, ... un
Now let us introduce an operator coupling
two degrees of freedom:

Y:1+* -AN

a expand it inthe M(n,...unl):

=z? = (n,...urIVln;...i) in...n)<n...wi
....!...

Now snice Ishould only couple I degrees of

freedom we must have:

in,...nlVIn.... -Wans, nan a Unging

for all pairs a +B =[1, . . . , N3.
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Definig (n,...n)=AN d En =E(H) we

now ask, if the system with coupling described

by:1 =F +Ican be solved.

Therefore, calculate (II", ] inbasis of

known eigenstabs M(11):

(,Y] =isig1" (n)(nV(y") (1) (n)
- ('#"In") (2)(n")

we have:

(114"(2) =f, E(1)

& thus (relabeling indices):

MM
=E -EI') (na

-in (EntEns-End-Ens) Vampinan's Ma)(n'ans

/norol
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Thus, if I is diagonal inthe Hua), i.e.

Was,wasdran!OrpusVans

the It is also diagonalized by M(1)).

Consequence:
Interacting many-particle problems
ingeneral can not be solved i

Good news:Numerics helps!

#1 Second quantization
We need a convenient way

to describe

many-body systems, i.e., compact represen-
1

tations of IP & V, especiallynot in

real space!
Idea:Use eigen functions of solvable

single-particle problems Mna) ꋹ5



as batis!

We introduce occupation number seprontation.
Consider single particle problem first. We

have eigenstates Mra) (abeled by Fa. The

occupation number Una characterizes, how often

that state is occupied.
Bosonic system:Max EINo

Fermionic system:Max 20,1}

we can always write II"as:
-(1)

Ha =EEkIra+ cost.

where is is projector to kath eigenstate.

Then we can form desor product states

14 =0) (4x=1) --- (4x=0) (Un=)......
-
subsystem a=1subsystem x=2 subsystem a=N
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Example: Crystal composed of Natoms

consider only the outermost orbital of each

adom as subsystem & & assume the ware -

functions are known (e.g. H-atom orbitals):
Here:only one orbital per atom!
, Voncomb

·Zitier
&
atomic Orbitals

If orbitals a & B are occupred & their wave-

functions have finite overlap -> alrp114) =0!

=>Conlomb interaction V!

Tensor-productwave function of
Neleeine

(1) =In, ... ) with a =N.
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Expand operators inthat basis:

· single siteoperator:
Ja =Ein; al Örlich (ab(rald")(up

. two site operators:
8 =2, Z.. aplaplvari) aplu) (nuatva,a Y.Up

!

We introduce creation(annihilation operators for

convenience:

e I

Ca :map
(na) - C14x+1)

2x:map Ma) 1- E/na-1)

e

choose CER such that itca =va:

<mal (na) =(c) (nalna) =nachala)

=>êt =2 (at) (nal

1

ca
=a/a-1)(nal

This simplifies operators inmay-body
systems. We can now construct operators



on mary-body Hilbert space bytaknig
tesor products.
E.g.: · single particle operator with

Calln =Gna, vs +dax, not

=>8 =1x - ..a120 +e +d)ax...1
e wenn

orbital 1 orbital orbital
...

x - 1

·two-parhicle operator with

Calln!n!) =dexinat, Empire-

8 =10...1...11...1
xB w we

Orbital1 orbital subital B

But be careful:This isvalid only if excanging
two particles does not change
the state! ->Bosons!

For Fermions the Es must oben anticom-
mutation relations:'t = -p!
proof:consider (1) =In, ... mn) with nnt90,13

③



Now add particle inunoccupied orbital

a:1) ="[ât]" ... (e)" es
For each 4

=1the orbital B is occuppied.

we must thus exchange itwith all those

orbitals:

!(2) =(1- an.) (ä."[et]" ... (e)"
ne

das sign of state ifn, =1

i

= π(1-2) In, ... 4x+ 1
... 2)

B(xer
in
e

e

Jordan-wigner strings!

using these Jordan-Wigher strings, we can calculate

for femionia operators (:

&Ja,]=ereieinee
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now swice 2x (4x =0) =0 & 1x =1) =0

it follows with aB:
inina

ineineeins ge =-Ea
SP 8(B

8 +2
8 Fx

=>Sta,=eres(-s9 (B
8+x

-eire" (p ca

= einra-l
28x4 -

d (1 - ana)
a

=>Ja, ist 3 =dap

Important consequence:
(i)Local bosomic operators s can be represented as

simple tensor product:1*...*1* *1x...

(ii) Local fermionic operators camot be represented
as simple tensor product, instead one



must use Jordan-Wigher stringsi
1

~(H iπ U in
e

e(t)
fa - e ⑦... e c 10... *1

Back to our example:

Here:only one orbital per atom!
, V

aconcomb

·Zitier
&
atomic Orbitals

We need =F+Vinsecond quantization!
Coulomb- potential:
"=

Local problems:It =E Eal. I word of
atom

What are the overlaps (nalflup)?
Evaluate:

Saadrtal(-) Tup(*) =Sa



with saythe covelap between orbitals.

Tight-binding approximation:

Only nearest neighbows have mon-vanishing
overlaps:Sap=-t Mrpl, I Cher isotropic

But this yields a very simple form of the

local Hamiltonians:

=-2. (p +I!a) +Naña
2,B) e
e on-sitz potential
mearst neighbors

eney issow maybe even mon)

=>"hoppin
11

Now insolids the Concomb potential is

usuallyscreened ->approx Vap = U dap.
This is the famous Hubbard model:

F = -tzr+h.c) +UaYa +NN
xx,B

ladding the Spins as extra degree of freedow) B


